Advertisement

Metal-Catalyzed Cross-Coupling Reactions for Indoles

  • Jie Jack LiEmail author
  • Gordon W. Gribble
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 26)

Abstract

Metal-catalyzed cross-coupling reactions for indoles are reviewed. Palladium-catalyzed cross-coupling reactions are the most widely explored and applied of all metal-catalyzed cross-coupling reactions. Applications of Kumada coupling, Negishi coupling, Suzuki coupling, Stille coupling, Sonogashira reaction, the Heck reaction, carbonylation, and C–N bond formation reactions in indoles are summarized. In addition, other transition metal-catalyzed cross-coupling reactions using copper, rhodium, iron, and nickel in indole synthesis are also discussed.

Keywords

Copper Cross-coupling Heck Indole Palladium Stille Suzuki 

References

  1. 1.
    For example: de Meijere A, Diederich F (eds) (2004) Metal-catalyzed cross-coupling reactions, second completely revised and enlarged edition, vol 2. Wiley-VCH, Weinheim, 437 ppGoogle Scholar
  2. 2.
    Oestreich M (2009) The Mizoroki–Heck reaction. Wiley, Hoboken, NJ, 938 ppGoogle Scholar
  3. 3.
    Farina V, Scott WJ (1998) The Stille reaction. Wiley, New York, NY, 672 ppGoogle Scholar
  4. 4.
    Li JJ, Gribble GW (2006) Palladium in heterocyclic chemistry, 2nd edn. Pergamon/Elsevier, OxfordGoogle Scholar
  5. 5.
    Mori M, Chiba K, Ban Y (1977) Tetrahedron Lett 18:1037–1040Google Scholar
  6. 6.
    Ban Y, Wakamatsu T, Mori M (1977) Heterocycles 6:1711–1715Google Scholar
  7. 7.
    Terpko MO, Heck RF (1979) J Am Chem Soc 101:5281–5283Google Scholar
  8. 8.
    Larock RC, Yang H, Pace P, Cacchi S, Fabrizi G (1998) Tetrahedron Lett 39:1885–1888Google Scholar
  9. 9.
    Larock RC, Pace P, Yang H (1998) Tetrahedron Lett 39:2515–2518Google Scholar
  10. 10.
    Larock RC, Pace P, Yang H, Russell CE, Cacchi S, Fabrizi G (1998) Tetrahedron 54:9961–9980Google Scholar
  11. 11.
    Larock RC, Babu S (1987) Tetrahedron Lett 28:5291–5294Google Scholar
  12. 12.
    Larock RC, Hightower TR, Hasvold LA, Peterson KP (1996) J Org Chem 61:3584–3585Google Scholar
  13. 13.
    The Jeffrey’s conditions: Jeffery T (1996) Tetrahedron 52:10113–10130Google Scholar
  14. 14.
    Jeffery T (1984) J Chem Soc Chem Commun:1287–1289Google Scholar
  15. 15.
    Jeffery T (1999) Tetrahedron Lett 40:1673–1676Google Scholar
  16. 16.
    Jeffery T, Galland J-C (1994) Tetrahedron Lett 35:4103–4106Google Scholar
  17. 17.
    Jeffery T (1996) Adv Met Org Chem 5:153–260Google Scholar
  18. 18.
    Jeffery T, David M (1998) Tetrahedron Lett 39:5751–5754Google Scholar
  19. 19.
    Sundberg RJ, Pitts WJ (1991) J Org Chem 56:3048–3054Google Scholar
  20. 20.
    Li JJ (1999) J Org Chem 64:8425–8427Google Scholar
  21. 21.
    Macor JE, Blank DH, Post RJ, Ryan K (1992) Tetrahedron Lett 33:8011–8014Google Scholar
  22. 22.
    Macor JE, Ogilvie RJ, Wythes MJ (1996) Tetrahedron Lett 37:4289–4292Google Scholar
  23. 23.
    Ma J, Yin W, Zhou H, Liao X, Cook JM (2009) J Org Chem 74:264–273Google Scholar
  24. 24.
    Larock RC, Yum EK (1991) J Am Chem Soc 113:6689–6690Google Scholar
  25. 25.
    Larock RC, Yum EK, Refvik MD (1998) J Org Chem 63:7652–7562Google Scholar
  26. 26.
    Jeschke T, Wensbo D, Annby U, Gronowitz S, Cohen LA (1993) Tetrahedron Lett 34:6471–6474Google Scholar
  27. 27.
    Ujjainwalla F, Warner D (1998) Tetrahedron Lett 39:5355–5358Google Scholar
  28. 28.
    Ujjainwalla F, Walsh TF (2001) Tetrahedron Lett 42:6441–6445Google Scholar
  29. 29.
    Park SS, Choi J-K, Yum EK, Ha D-C (1998) Tetrahedron Lett 39:627–630Google Scholar
  30. 30.
    Kang SK, Park SS, Kim SS, Choi J-K, Yum EK (1999) Tetrahedron Lett 40:4379–4382Google Scholar
  31. 31.
    Chen C, Lieberman DR, Larsen RD, Reamer RA, Verhoeven TR, Reider PJ, Cottrell IF, Houghton PG (1994) Tetrahedron Lett 35:6981–6984Google Scholar
  32. 32.
    Chen C, Lieberman DR, Street LJ, Guiblin AR, Larsen RD, Verhoeven TR (1996) Synth Commun 26:1977–1984Google Scholar
  33. 33.
    Larock RC, Doty MJ, Han X (1998) Tetrahedron Lett 39:5143–5146Google Scholar
  34. 34.
    Maassarani F, Pfeffer M, Spencer J, Wehman E (1994) J Organomet Chem 466:265–271Google Scholar
  35. 35.
    Rosso VW, Lust DA, Bernot PJ, Grosso JA, Modi SP, Rusowicz A, Sedergran TC, Simpson JH, Srivastava SK, Humora MJ, Anderson NG (1997) Org Process Res Dev 1:311–314Google Scholar
  36. 36.
    Larock RC, Berrios-Peña NG, Fried CA (1991) J Org Chem 56:2615–2617Google Scholar
  37. 37.
    Larock RC, Zenner JM (1995) J Org Chem 60:482–483Google Scholar
  38. 38.
    Zenner JM, Larock RC (1999) J Org Chem 64:7312–7322Google Scholar
  39. 39.
    Desarbre E, Mérour J-Y (1996) Tetrahedron Lett 37:43–46Google Scholar
  40. 40.
    Larock RC, Liu C-L, Lau HH, Varaprath S (1984) Tetrahedron Lett 25:4459–4462Google Scholar
  41. 41.
    Roesch KR, Larock RC (1999) Org Lett 1:1551–1553Google Scholar
  42. 42.
    Roesch KR, Larock RC (2001) J Org Chem 66:412–420Google Scholar
  43. 43.
    Batail N, Bendjeriou A, Lomberget T, Barret R, Dufaud V, Djakovitch L (2009) Adv Synth Catal 351:2055–2062Google Scholar
  44. 44.
    Åkermark B, Eberson L, Jonsson E, Pettersson E (1975) J Org Chem 40:1365–1367Google Scholar
  45. 45.
    Åkermark B, Oslob JD, Heuschert U (1995) Tetrahedron Lett 36:1325–1326Google Scholar
  46. 46.
    Ferreira EM, Stoltz BM (2003) J Am Chem Soc 125:9578–9579Google Scholar
  47. 47.
    Liu C, Widenhoefer RA (2004) J Am Chem Soc 126:10250–10251Google Scholar
  48. 48.
    Itahara T, Sakakibara T (1978) Synthesis:607–608Google Scholar
  49. 49.
    Itahara T (1979) Synthesis:151–152Google Scholar
  50. 50.
    Itahara T (1986) Heterocycles 24:2557–2562Google Scholar
  51. 51.
    Itahara T (1981) J Chem Soc Chem Commun:254–255.Google Scholar
  52. 52.
    Itahara T (1985) J Org Chem 50:5272–5275Google Scholar
  53. 53.
    Harris W, Hill CH, Keech E, Malsher P (1993) Tetrahedron Lett 34:8361–8364Google Scholar
  54. 54.
    Gribble GW, Berthel S (1993) J Stud Nat Prod Chem. In: Atta-ur-Rahman (ed) Elsevier, New York, vol 12, p 365Google Scholar
  55. 55.
    Ohkubo M, Nishimura T, Jona H, Honma T, Morishima H (1996) Tetrahedron 52:8099–8112Google Scholar
  56. 56.
    Faul MM, Winneroski LL, Krumrich CA (1998) J Org Chem 63:6053–6058Google Scholar
  57. 57.
    Billups WE, Erkes RS, Reed LE (1980) Synth Commun 10:147–154Google Scholar
  58. 58.
    Fujiwara Y, Maruyama O, Yoshidomi M, Taniguchi H (1981) J Org Chem 46:851–855Google Scholar
  59. 59.
    Itahara T, Ikeda M, Sakakibara T (1983) J Chem Soc Perkin Trans 1:1361–1363Google Scholar
  60. 60.
    Itahara T, Kawasaki K, Ouseto F (1984) Synthesis:236–237Google Scholar
  61. 61.
    Capito E, Brown JM, Ricci A (2005) Chem Commun:1854–1856Google Scholar
  62. 62.
    Harrington PJ, Hegedus LS (1984) J Org Chem 49:2657–2662Google Scholar
  63. 63.
    Yokoyama Y, Matsumoto T, Murakami Y (1995) J Org Chem 60:1486–1487Google Scholar
  64. 64.
    Osanai K, Yokoyama Y, Kondo K, Murakami Y (1999) Chem Pharm Bull 47:1587–1590Google Scholar
  65. 65.
    Yokoyama Y, Takahashi M, Kohno Y, Kataoka K, Fujikawa Y, Murakami Y (1990) Heterocycles 31:803–804Google Scholar
  66. 66.
    Yokoyama Y, Takahashi M, Takashima M, Kohno Y, Kobayashi H, Kataoka K, Shidori K, Murakami Y (1994) Chem Pharm Bull 42:832–838Google Scholar
  67. 67.
    Bandini M, Melloni A, Umani-Ronchi A (2004) Org Lett 6:3199–3202Google Scholar
  68. 68.
    Ma S, Yu S (2004) Tetrahedron Lett 45:8419–8422Google Scholar
  69. 69.
    Daniell K, Stewart M, Madsen E, Le M, Handl H, Brooks N, Kiakos K, Hartley JA, Lee M (2005) Bioorg Med Chem Lett 15:177–180Google Scholar
  70. 70.
    Abreu AS, Ferreira PMT, Queiroz M-JRP, Ferreira ICFR, Calhelha RC, Estevinho LM (2005) Eur J Org Chem:2951–2957Google Scholar
  71. 71.
    Stuart DR, Fagnou K (2007) Science 316:1172–1175Google Scholar
  72. 72.
    Minato A, Tamao K, Hayashi T, Suzuki K, Kumada M (1981) Tetrahedron Lett 22:5319–5322Google Scholar
  73. 73.
    Minato A, Suzuki K, Tamao K, Kumada M (1984) Tetrahedron Lett 25:83–86Google Scholar
  74. 74.
    Minato A, Suzuki K, Tamao K, Kumada M (1984) J Chem Soc Chem Commun:511–513Google Scholar
  75. 75.
    Kondo Y, Yoshida A, Sato S, Sakamoto T (1996) Heterocycles 42:105–108Google Scholar
  76. 76.
    Widdowson DA, Zhang Y-Z (1986) Tetrahedron 42:2111–2116Google Scholar
  77. 77.
    Vincent P, Beaucourt JP, Pichart L (1984) Tetrahedron Lett 25:201–202Google Scholar
  78. 78.
    Danieli B, Lesma G, Martinelli M, Passarella D, Peretto I, Silvani A (1998) Tetrahedron 54:14081–14088Google Scholar
  79. 79.
    Fisher LE, Labadie SS, Reuter DC, Clark RD (1995) J Org Chem 60:6224–6225Google Scholar
  80. 80.
    Cheng K-F, Cheung M-K (1996) J Chem Soc Perkin Trans 1:1213–1218Google Scholar
  81. 81.
    Faul MM, Winneroski LL (1997) Tetrahedron Lett 38:4749–4752Google Scholar
  82. 82.
    Burns B, Grigg R, Sridharan V, Stevenson P, Sukirthalingam S, Worakun T (1989) Tetrahedron Lett 30:1135–1138Google Scholar
  83. 83.
    Luo F-T, Wang R-T (1991) Heterocycles 32:2365–2372Google Scholar
  84. 84.
    Mothes C, Lavielle S, Karoyan P (2008) J Org Chem 73:6706–6710Google Scholar
  85. 85.
    Ishikura M (2002) Curr Org Chem 6:507–521Google Scholar
  86. 86.
    Ishikura M (2001) Trends Heterocycl Chem 7:75–89Google Scholar
  87. 87.
    Conway SC, Gribble GW (1990) Heterocycles 30:627–633Google Scholar
  88. 88.
    Claridge TDW, Long JM, Brown JM, Hibbs D, Hursthouse MB (1997) Tetrahedron 53:4035–4050Google Scholar
  89. 89.
    Cai X, Snieckus V (2004) Org Lett 6:2293–2295Google Scholar
  90. 90.
    Fraley ME, Arrington KL, Buser CA, Ciecko PA, Coll KE, Fernandes C, Hartman GD, Hoffman WF, Lynch JJ, McFall RC, Rickert K, Singh R, Smith S, Thomas KA, Wong BK (2004) Bioorg Med Chem Lett 14:351–355Google Scholar
  91. 91.
    See also: Payack JF, Vazquez E, Matty L, Kress MH, McNamara J (2005) J Org Chem 70:175–178.Google Scholar
  92. 92.
    Hendrickson JB, Wang J (2004) Org Lett 6:3–5Google Scholar
  93. 93.
    Prieto M, Zurita E, Rosa E, Muñoz L, Lloyd-Williams P, Giralt E (2004) J Org Chem 69:6812–6820Google Scholar
  94. 94.
    However, see: Leadbeater NE, Marco M (2003) J Org Chem 68:5660–5667Google Scholar
  95. 95.
    Bouchard J, Wakim S, Leclerc M (2004) J Org Chem 69:5705–5711Google Scholar
  96. 96.
    Chu L, Fisher MH, Goulet MT, Wyvratt MJ (1997) Tetrahedron Lett 38:3871–3874Google Scholar
  97. 97.
    Weinstein DS, Liu W, Gu Z, Langevine C, Ngu K, Fadnis L, Combs DW, Sitkoff D, Ahmad S, Zhuang S, Chen X, Wang F-L, Loughney DA, Atwal KS, Zahler R, Macor JE, Madsen CS, Murugesan N (2005) Bioorg Med Chem Lett 15:1435–1440Google Scholar
  98. 98.
    Meng CQ, Rakhit S, Lee DKH, Kamboj R, McCallum KL, Mazzocco L, Dyne K, Slassi A (2000) Bioorg Med Chem Lett 10:903–905Google Scholar
  99. 99.
    Chi SM, Choi J-K, Yum EK, Chi DY (2000) Tetrahedron Lett 41:919–922Google Scholar
  100. 100.
    Carini DJ, Kaltenback RF III, Liu J, Benfield PA, Boylan J, Boisclair M, Brizuela L, Burton CR, Cox S, Grafstrom R, Harrison BA, Harrison K, Akamike E, Markwalder JA, Nakano Y, Seitz SP, Sharp DM, Trainor GL, Sielecki TM (2001) Bioorg Med Chem Lett 11:2209–2211Google Scholar
  101. 101.
    Nicolaou KC, Snyder SA, Simonsen KB, Koumbis AE (2000) Angew Chem Int Ed 39:3473–3478Google Scholar
  102. 102.
    Todd MH, Oliver SF, Abell C (1999) Org Lett 1:1149–1151Google Scholar
  103. 103.
    Bullock KM, Mitchell MB, Toczko JF (2008) Org Process Res Dev 12:896–899Google Scholar
  104. 104.
    Hodson HF, Madge DJ, Widdowson DA (1992) Synlett:831–832Google Scholar
  105. 105.
    Hodson HF, Madge DJ, Slawin ANZ, Widdowson DA, Williams DJ (1994) Tetrahedron 50:1899–1906Google Scholar
  106. 106.
    Amat M, Hadida S, Sathyanarayana S, Bosch J (1994) J Org Chem 59:10–11Google Scholar
  107. 107.
    Beak P, Lee WK (1993) J Org Chem 58:1109–1117Google Scholar
  108. 108.
    Labadie SS, Teng E (1994) J Org Chem 59:4250–4254Google Scholar
  109. 109.
    Caddick S, Joshi S (1992) Synlett:805–806Google Scholar
  110. 110.
    Fukuyama T, Chen X, Peng G (1994) J Am Chem Soc 116:3127–3128Google Scholar
  111. 111.
    Kobayashi Y, Fukuyama T (1998) J Heterocycl Chem 35:1043–1055Google Scholar
  112. 112.
    Kobayashi Y, Peng G, Fukuyama T (1999) Tetrahedron Lett 40:1519–1522Google Scholar
  113. 113.
    Kobayashi S, Ueda T, Fukuyama T (2000) Synlett:883–886Google Scholar
  114. 114.
    Yokoyama Y, Ito S, Takahashi Y, Murakama Y (1985) Tetrahedron Lett 26:6457–6460Google Scholar
  115. 115.
    Yokoyama Y, Ikeda M, Saito M, Yoda T, Suzuki H, Murakami Y (1990) Heterocycles 31:1505–1511Google Scholar
  116. 116.
    Yoshida S, Kubo H, Saika T, Katsumura S (1996) Chem Lett:139–140Google Scholar
  117. 117.
    Sakamoto T, Satoh C, Kondo Y, Yamanaka H (1992) Heterocycles 34:2379–2384Google Scholar
  118. 118.
    Sakamoto T, Yasuhara A, Kondo Y, Yamanaka H (1993) Heterocycles 36:2597–2600Google Scholar
  119. 119.
    Lefoix M, Coudert G, Routier S, Pfeiffer B, Caignard D-H, Hickman J, Pierre A, Golsteyn RM, Leonce S, Bossard C, Merour J-Y (2008) Bioorg Med Chem 16:5303–5321Google Scholar
  120. 120.
    Sonogashira K, Tohda Y, Hagihara N (1975) Tetrahedron Lett:4467–4470Google Scholar
  121. 121.
    Castro CE, Stephens RD (1963) J Org Chem 28:2163Google Scholar
  122. 122.
    Stephens RD, Castro CE (1963) J Org Chem 28:3313–3315Google Scholar
  123. 123.
    Castro CE, Gaughan EJ, Owsley DC (1966) J Org Chem 31:4071–4078Google Scholar
  124. 124.
    Castro CE, Havlin R, Honwad VK, Malte A, Mojé S (1969) J Am Chem Soc 91:6464–6470Google Scholar
  125. 125.
    Sakamoto T, Kondo Y, Yamanaka H (1984) Heterocycles 22:1347–1350Google Scholar
  126. 126.
    Sakamoto T, Kondo Y, Yamanaka H (1986) Chem Pharm Bull 34:2362–2368Google Scholar
  127. 127.
    For a review of the use of palladium catalysis in heterocycle synthesis, with a good summary of the authors’ work, see Sakamoto T, Kondo Y, Yamanaka H (1988) Heterocycles 27:2225–2249Google Scholar
  128. 128.
    Taylor EC, Katz AH, Salgado-Zamora H, McKillop A (1985) Tetrahedron Lett 26:5963–5966Google Scholar
  129. 129.
    Tischler AN, Lanza TJ (1986) Tetrahedron Lett 27:1653–1656Google Scholar
  130. 130.
    Arcadi A, Cacchi S, Marinelli F (1989) Tetrahedron Lett 30:2581–2584Google Scholar
  131. 131.
    Amatore C, Blart E, Genet JP, Jutand A, Lemaire-Audoire S, Savignac M (1995) J Org Chem 60:6829–6839Google Scholar
  132. 132.
    Fagnola MC, Candiani I, Visentin G, Cabri W, Zarini F, Mongelli N, Bedeschi A (1997) Tetrahedron Lett 38:2307–2310Google Scholar
  133. 133.
    Collini MD, Ellingboe JW (1997) Tetrahedron Lett 38:7963–7966Google Scholar
  134. 134.
    Zhang H-C, Brumfield KK, Jaroskova L, Maryanoff BE (1998) Tetrahedron Lett 39:4449–4452Google Scholar
  135. 135.
    Zhang H-C, Ye H, Moretto AF, Brumfield KK, Maryanoff BE (2000) Org Lett 2:89–92Google Scholar
  136. 136.
    Zhang H-C, Ye H, White KB, Maryanoff BE (2001) Tetrahedron Lett 42:4751–4754Google Scholar
  137. 137.
    Xiong X, Pirrung M (2008) Org Lett 10:1151–1154Google Scholar
  138. 138.
    Frank WC, Kim YC, Heck RF (1978) J Org Chem 43:2947–2949Google Scholar
  139. 139.
    Somei M, Yamada F (1984) Chem Pharm Bull 32:5064–5065Google Scholar
  140. 140.
    Malapel-Andrieu B, Mérour J-Y (1998) Tetrahedron 54:11079–11094Google Scholar
  141. 141.
    Malapel-Andrieu B, Mérour J-Y (1998) Tetrahedron Lett 39:39–42Google Scholar
  142. 142.
    Conway SC, Gribble GW (1992) Synth Commun 22:2129–2141Google Scholar
  143. 143.
    Harrington PJ, Hegedus LS, McDaniel KF (1987) J Am Chem Soc 109:4335–4338Google Scholar
  144. 144.
    Hegedus LS, Toro JL, Miles WH, Harrington PJ (1987) J Org Chem 52:3319–3322Google Scholar
  145. 145.
    Yokoyama Y, Matsushima H, Takashima M, Suzuki T, Murakami Y (1997) Heterocycles 46:133–136Google Scholar
  146. 146.
    Horwell DC, Nichols PD, Roberts E (1994) Tetrahedron Lett 35:939–940Google Scholar
  147. 147.
    Horwell DC, Nichols PD, Ratcliffe GS, Roberts E (1994) J Org Chem 59:4418–4423Google Scholar
  148. 148.
    Kalinin AV, Chauder BA, Rakhit S, Snieckus V (2003) Org Lett 5:3519–3521Google Scholar
  149. 149.
    Sundberg RJ, Cherney RJ (1990) J Org Chem 55:6028–6037Google Scholar
  150. 150.
    Birman VB, Rawal VH (1998) Tetrahedron Lett 39:7219–7222Google Scholar
  151. 151.
    Rawal VH, Michoud C, Monestel RF (1995) J Am Chem Soc 115:3030–3031Google Scholar
  152. 152.
    Rawal VH, Michoud C (1993) J Org Chem 58:5583–5584Google Scholar
  153. 153.
    Rawal VH, Michoud C (1991) Tetrahedron Lett 32:1695–1698Google Scholar
  154. 154.
    Rawal VH, Iwasa S (1994) J Org Chem 59:2685–2686Google Scholar
  155. 155.
    Maligres PE, Humphrey GR, Marcoux J-F, Hillier MC, Zhao D, Krska S, Grabowski EJ (2009) J Org Process Res Dev 13:525–534Google Scholar
  156. 156.
    Hegedus LS, Allen GF, Olsen DJ (1980) J Am Chem Soc 102:3583–3587Google Scholar
  157. 157.
    Edstrom ED, Yu T (1995) J Org Chem 60:5382–5383Google Scholar
  158. 158.
    Edstrom ED, Yu T (1994) Tetrahedron Lett 35:6985–6988Google Scholar
  159. 159.
    Herbert JM, McNeil AH (1998) Tetrahedron Lett 39:2421–2424Google Scholar
  160. 160.
    Tidwell JH, Peat AJ, Buchwald SL (1994) J Org Chem 59:7164–7168Google Scholar
  161. 161.
    Ishikura M (1995) Heterocycles 41:1385–1388Google Scholar
  162. 162.
    Brennführer A, Neumann H, Pews-Davtyan A, Beller M (2009) Eur J Org Chem:38–42Google Scholar
  163. 163.
    Arthuis M, Pontikis R, Florent JC (2009) Org Lett 11:4608–4611Google Scholar
  164. 164.
    Åkermark B, Bäckvall JE, Hegedus LS, Zetterberg K, Siirala-Hansén K, Sjöberg K (1974) J Organomet Chem 72:127–138Google Scholar
  165. 165.
    Hegedus LS, Allen GF, Waterman EL (1976) J Am Chem Soc 98:2674–2676Google Scholar
  166. 166.
    Hegedus LS, Allen GF, Bozell JJ, Waterman EL (1978) J Am Chem Soc 100:5800–5807Google Scholar
  167. 167.
    Hegedus LS, Weider PR, Mulhern TA, Asada H, D’Andrea S (1986) Gazz Chim Ital 116:213–219Google Scholar
  168. 168.
    Boger DL, Panek JS (1984) Tetrahedron Lett 25:3175–3178Google Scholar
  169. 169.
    Boger DL, Duff SR, Panek JS, Yasuda M (1985) J Org Chem 50:5782–5789Google Scholar
  170. 170.
    Boger DL, Duff SR, Panek JS, Yasuda M (1985) J Org Chem 50:5790–5795Google Scholar
  171. 171.
    Nozaki K, Takahashi K, Nakano K, Hiyama T, Tang H-Z, Fujiki M, Yamaguchi S, Tamao K (2003) Angew Chem Int Ed 42:2051–2053Google Scholar
  172. 172.
    Kuwahara A, Nakano K, Nozaki K (2005) J Org Chem 70:413–419Google Scholar
  173. 173.
    Willis MC, Brace GN, Holmes IP (2005) Angew Chem Int Ed 44:403–406Google Scholar
  174. 174.
    Wolfe JP, Wagaw S, Buchwald SL (1996) J Am Chem Soc 118:7215–7216, and references cited thereinGoogle Scholar
  175. 175.
    Louie J, Driver MS, Hamann BC, Hartwig JF (1997) J Org Chem 62:1268–1273Google Scholar
  176. 176.
    Driver MS, Hartwig JF (1996) J Am Chem Soc 118:7217–7218, and references cited thereinGoogle Scholar
  177. 177.
    Hartwig JF (1997) Synlett:329–340Google Scholar
  178. 178.
    Marcoux J-F, Wagaw S, Buchwald SL (1997) J Org Chem 62:1568–1569Google Scholar
  179. 179.
    Sadighi JP, Harris MC, Buchwald SL (1998) Tetrahedron Lett 39:5327–5330Google Scholar
  180. 180.
    Wolfe JP, Buchwald SL (1997) J Org Chem 62:1264–1267Google Scholar
  181. 181.
    Hartwig JF (1998) Angew Chem Int Ed 37:2046–2067Google Scholar
  182. 182.
    Wolfe JP, Wagaw S, Marcoux J-F, Buchwald SL (1998) Acc Chem Res 31:805–818Google Scholar
  183. 183.
    Yang BH, Buchwald SL (1999) J Organomet Chem 576:125–146Google Scholar
  184. 184.
    Hartwig JF (1998) Angew Chem Int Ed 37:2090–2092Google Scholar
  185. 185.
    Belfield AJ, Brown GR, Foubister AJ (1999) Tetrahedron 55:11399–11428Google Scholar
  186. 186.
    Huang J, Grasa G, Nolan SP (1999) Org Lett 1:1307–1309Google Scholar
  187. 187.
    Peat AJ, Buchwald SL (1996) J Am Chem Soc 118:1028–1030Google Scholar
  188. 188.
    Wolfe JP, Rennels RA, Buchwald SL (1996) Tetrahedron 52:7525–7546Google Scholar
  189. 189.
    Wagaw S, Rennels RA, Buchwald SL (1997) J Am Chem Soc 119:8451–8458Google Scholar
  190. 190.
    Aoki K, Peat AJ, Buchwald SL (1998) J Am Chem Soc 120:3068–3073Google Scholar
  191. 191.
    Yang BH, Buchwald SL (1999) Org Lett 1:35–37Google Scholar
  192. 192.
    MacNeil SL, Gray M, Briggs LE, Li JJ, Snieckus V (1998) Synlett:419–421Google Scholar
  193. 193.
    Abouabdellah A, Dodd RH (1998) Tetrahedron Lett 39:2119–2122Google Scholar
  194. 194.
    He F, Foxman BH, Snider BB (1998) J Am Chem Soc 120:6417–6418Google Scholar
  195. 195.
    Bryan CS, Lautens M (2008) Org Lett 10:4633–4636Google Scholar
  196. 196.
    Mann G, Hartwig JF, Driver MS, Fernández-Rivas C (1998) J Am Chem Soc 120:827–828Google Scholar
  197. 197.
    Hartwig JF, Kawatsura M, Hauck SI, Shaughnessy KH, Alcazar-Roman LM (1999) J Org Chem 64:5575–5580Google Scholar
  198. 198.
    Watanabe M, Nishiyama M, Yamamoto T, Koie Y (2000) Tetrahedron Lett 41:481–483Google Scholar
  199. 199.
    Lane BS, Sames D (2004) Org Lett 6:2897–2900Google Scholar
  200. 200.
    Lane BS, Brown MA, Sames D (2005) J Am Chem Soc 127:8050–8057Google Scholar
  201. 201.
    Wang X, Grtibkov DV, Sames D (2007) J Org Chem 72:1476–1479Google Scholar
  202. 202.
    Bellina F, Calandri C, Cauteruccio S, Rossi R (2007) Tetrahedron 63:1970–1980Google Scholar
  203. 203.
    Bellina F, Benelli F, Rossi R (2008) J Org Chem 73:5529–5535Google Scholar
  204. 204.
    Zhang J, Zhang Y, Cheng K (2008) J Org Chem 73:7428–7431Google Scholar
  205. 205.
    Joucla L, Djakovitch L (2009) Adv Synth Catal 351:673–714Google Scholar
  206. 206.
    McCormick TM, Liu Q, Wang S (2007) Org Lett 9:4087–4090Google Scholar
  207. 207.
    Perregaard J, Andersen K, Hyttel J, Sanchez C (1992) J Med Chem 35:4813–4822Google Scholar
  208. 208.
    Andersen K, Perregaard J, Arn AJ, Nielsen JB, Bergtrup M (1992) J Med Chem 35:4823–4831Google Scholar
  209. 209.
    Klapars A, Antilla JC, Huang X, Buchwald SL (2001) J Am Chem Soc 123:7727–7729Google Scholar
  210. 210.
    Antilla JC, Klapars A, Buchwald SL (2002) J Am Chem Soc 124:11684–11688Google Scholar
  211. 211.
    Mino T, Harada Y, Shindo H, Sakamoto M, Fujita T (2008) Synlett:614–620Google Scholar
  212. 212.
    Cristau H-J, Cellier PP, Spindler J-F, Taillefer M (2004) Chem Eur J 10:5607–5622Google Scholar
  213. 213.
    Alam M, Beevers RE, Ceska T, Davernport RJ, Dickson KM, James LA, Jones MW, Kinsella N, Lowe C, Meissner JWG, Nicolas A-L, Perry BG, Phillips DJ, Pitt WR, Platt A, Ratcliffe AJ, Sharpe A, Tait LJ (2007) Bioorg Med Chem Lett 17:3463–3467Google Scholar
  214. 214.
    Deng W, Wang YF, Zhang C, Liu L, Guo QX (2006) Chin Chem Lett 17:313–316Google Scholar
  215. 215.
    Phipps RJ, Grimster NP, Gaunt MJ (2008) J Am Chem Soc 130:8172–8174Google Scholar
  216. 216.
    Wang X, Lane BS, Sames D (2005) J Am Chem Soc 127:4996–4997Google Scholar
  217. 217.
    Yanagisawa S, Sudo T, Noyori R, Itami K (2006) J Am Chem Soc 128:11748–11749Google Scholar
  218. 218.
    Correa A, Bolm C (2007) Angew Chem Int Ed 46:8862–8865Google Scholar
  219. 219.
    Courtois V, Barhdadi R, Troupel M, Périchon J (1997) Tetrahedron 53:11569–11576Google Scholar
  220. 220.
    Wynne JH, Hughes JM, Lloyd CT, Mushrush GW (2003) Ind Eng Chem Res 42:945–948Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Discovery ChemistryBristol-Myers Squibb CompanyWallingfordUSA
  2. 2.Department of Chemistry, 6128 Burke LaboratoryDartmouth CollegeHanoverUSA

Personalised recommendations