Advertisement

β-Diketo Building Blocks for MCRs-Based Syntheses of Heterocycles

  • Maria Mar Sanchez del Duque
  • Christophe Allais
  • Nicolas Isambert
  • Thierry ConstantieuxEmail author
  • Jean RodriguezEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 23)

Abstract

In the context of sustainable chemistry, because of economic and ecological increasing pressure, domino multicomponent reactions (MCRs) constitute a central academic and industrial investigation domain in diversity-oriented synthesis of functionalized heterocycles. Although isocyanide-based MCRs generally predominate nowadays, the use of 1,3-dicarbonyls as substrates, proposed as early as 1882 by Hantzsch, proved to be highly efficient, but have been relatively unexplored until recently. In the last few years, such transformations received a growing attention as new useful methodologies valuable for the selective direct access to highly functionalized small organic molecules of primary synthetic and biological value. This review focuses on the more significant recent developments on the use of β-diketo building blocks for MCRs published in the last 5 years.

Keywords

1,3-Dicarbonyls Biginelli reaction Hantzsch reaction Heterocyclic chemistry Knoevenagel condensation Mannich reaction Michael addition Multicomponent reactions 

Abbreviations

aemim

Aminoethyl methylimidazolium

BDMS

Bromodimethylsulfonium bromide

bmim

Butyl methylimidazolium

CAN

Cerium(IV) ammonium nitrate

cat

Catalyst

DABCO

Diazabicyclo[2.2.2]octane

DBU

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE

Dichloroethane

DHP

Dihydropyridine

DHPM

Dihydropyrimidinone

DMF

Dimethylformamide

ee

Enantiomeric excess

HPLC

High performance liquid chromatography

IBX

2-Iodoxybenzoic acid

L*

Ligand

LUMO

Lowest unoccupied molecular orbital

MARDi

Michael addition-Aldolisation-Retro-Dieckmann

MCR

Multicomponent reaction

MS

Molecular sieves

MW

Microwave

PFO

Perfluorooctanoate

p-TSA

Para-toluenesulfonic acid

RCM

Ring closing metathesis

rt

Room temperature

TBAF

Tetrabutylammonium fluoride

TEBA

Triethylbenzylammonium chloride

THF

Tetrahydrofurane

TMAH

Tetramethylammonium hydroxide

TMSCl

Trimethylsilyl chloride

Yb

Ytterbium

Notes

Acknowledgments

C.A. thanks the French Research Ministry for a fellowship award. CNRS (UMR 6263 iSm2 and RDR2 research network), National Research Agency (ANR), French Research Ministry, University Paul Cézanne and Ville de Marseille are acknowledged for financial support.

References

  1. 1.
    For a special issue in green chemistry (2007) see: Chem Rev 107:2167–2820Google Scholar
  2. 2.
    Zhu J, Bienaime H (2005) Multicomponent reactions. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Orru RVA, de Greef M (2003) Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis 10:1471–1499Google Scholar
  5. 5.
    Ramon DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44:1602–1634Google Scholar
  6. 6.
    Guillena G, Ramon DJ, Yus M (2007) Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron-Asymmetry 18:693–700Google Scholar
  7. 7.
    Padwa A, Bur SK (2007) The domino way to heterocycles. Tetrahedron 63:5341–5378Google Scholar
  8. 8.
    Vugts DJ, Koningstein MM, Schmitz RF, de Kanter FJJ, Groen MB, Orru RVA (2006) Multicomponent synthesis of dihydropyrimidines and thiazines. Chem Eur J 12:7178–7189Google Scholar
  9. 9.
    Nielsen TE, Schreiber SL (2008) Diversity-oriented synthesis – towards the optimal screening collection: a synthesis strategy. Angew Chem Int Ed 47:48–56Google Scholar
  10. 10.
    Trost BM (2002) On inventing reactions for atom economy. Acc Chem Res 35:695–705Google Scholar
  11. 11.
    Wender PA, Baryza JL, Brenner SE, Clarke MO, Gamber CG, Horan JC, Jessop TC, Kan C, Pattabiraman K, Williams TJ (2003) Inspirations from nature. New reactions, therapeutic leads, and drug delivery systems. Pure Appl Chem 75:143–155Google Scholar
  12. 12.
    Wender PA, Gamber GG, Hubbard RD, Pham SM, Zhang L (2005) Inspirations from nature. New reactions, therapeutic leads, and drug delivery systems. J Am Chem Soc 127:2836–2837Google Scholar
  13. 13.
    Wender PA, Handy ST, Wright DL (1997) Towards the ideal synthesis. Chem Ind 765–768Google Scholar
  14. 14.
    Zhu JP (2003) Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur J Org Chem 1133–1144Google Scholar
  15. 15.
    Domling A (2006) Recent developments in isocyanide-based multicomponent reactions in applied chemistry. Chem Rev 106:17–89Google Scholar
  16. 16.
    Simon C, Constantieux T, Rodriguez J (2004) Utilisation of 1,3-dicarbonyl derivatives in multicomponent reactions. Eur J Org Chem 4957–4980Google Scholar
  17. 17.
    Reddy GM, Shiradkar M, Chakravarthy AK (2007) Chemical and pharmacological significance of 1,4-dihydropyridines. Curr Org Chem 11:847–852Google Scholar
  18. 18.
    Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O (1996) Artificial enzymes. Chem Rev 96:721–758Google Scholar
  19. 19.
    Sambongi Y, Nitta H, Ichihashi K, Futai M, Ueda I (2002) A novel water-soluble Hantzsch 1,4-dihydropyridine compound that functions in biological processes through NADH regeneration. J Org Chem 67:3499–3501Google Scholar
  20. 20.
    Moseley JD (2005) Alternative esters in the synthesis of ZD0947. Tetrahedron Lett 46:3179–3181Google Scholar
  21. 21.
    Mobinikhaledi A, Foroughifar N, Fard MAB, Moghanian H, Ebrahimi S, Kalhor M (2009) Efficient one-pot synthesis of polyhydroquinoline derivatives using silica sulfuric acid as a heterogeneous and reusable catalyst under conventional heating and energy-saving microwave irradiation. Synth Commun 39:1166–1174Google Scholar
  22. 22.
    Sapkal SB, Shelke KF, Shingate BB, Shingare MS (2009) Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett 50:1754–1756Google Scholar
  23. 23.
    Kumar A, Maurya RA (2008) Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles. Synlett 883–885Google Scholar
  24. 24.
    Wang SX, Li ZY, Zhang JC, Li JT (2008) The solvent-free synthesis of 1,4-dihydropyridines under ultrasound irradiation without catalyst. Ultrason Sonochem 15:677–680Google Scholar
  25. 25.
    Mekheimer RA, Hameed AA, Sadek KU (2008) Solar thermochemical reactions: four-component synthesis of polyhydroquinoline derivatives induced by solar thermal energy. Green Chem 10:592–593Google Scholar
  26. 26.
    Bandgar BP, More PE, Kamble VT, Totre JV (2008) Synthesis of polyhydroquinoline derivatives under aqueous media. Arkivoc 1–8Google Scholar
  27. 27.
    Heydari A, Khaksar S, Tajbakhsh M, Bijanzadeh HR (2009) One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. J Fluor Chem 130:609–614Google Scholar
  28. 28.
    Kumar S, Sharma P, Kapoor KK, Hundal MS (2008) An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron 64:536–542Google Scholar
  29. 29.
    Legeay JC, Goujon JY, Eynde JJV, Toupet L, Bazureau JP (2006) Liquid-phase synthesis of polyhydroquinoline using task-specific ionic liquid technology. J Comb Chem 8:829–833Google Scholar
  30. 30.
    Wang LM, Sheng J, Zhang L, Han JW, Fan ZY, Tian H, Qian CT (2005) Facile Yb(OTf)(3) promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron 61:1539–1543Google Scholar
  31. 31.
    Nagarapu L, Kumari MD, Kumari NV, Kantevari S (2007) MCM-41 catalyzed rapid and efficient one-pot synthesis of polyhydroquinolines via the Hantzsch reaction under solvent-free conditions. Catal Commun 8:1871–1875Google Scholar
  32. 32.
    Kumar A, Maurya RA (2007) Bakers' yeast catalyzed synthesis of polyhydroquinoline derivatives via an unsymmetrical Hantzsch reaction. Tetrahedron Lett 48:3887–3890Google Scholar
  33. 33.
    Kumar A, Maurya RA (2007) Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron 63:1946–1952Google Scholar
  34. 34.
    Das Sharma S, Hazarika P, Konwar D (2008) A simple, green and one-pot four-component synthesis of 1,4-dihydropyridines and their aromatization. Catal Commun 9:709–714Google Scholar
  35. 35.
    Debache A, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2008) One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction. Synlett 509–512Google Scholar
  36. 36.
    Cherkupally SR, Mekala R (2008) P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation. Chem Pharm Bull 56:1002–1004Google Scholar
  37. 37.
    Akbari JD, Tala SD, Dhaduk MF, Joshi HS (2008) Molecular iodine-catalyzed one-pot synthesis of some new Hantzsch 1,4-dihydropyridines at ambient temperature. Arkivoc 126–U21Google Scholar
  38. 38.
    Sabitha G, Arundhathi K, Sudhakar K, Sastry BS, Yadav JS (2009) CeCl3 center dot 7H2O-Catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at room temperature. Synth Commun 39:2843–2851Google Scholar
  39. 39.
    Suresh KD, Sandhu JS (2009) New efficient protocol for the production of Hantzsch 1,4-dihydropyridines using RuCl3. Synth Commun 39:1957–1965Google Scholar
  40. 40.
    Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2009) An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett 50:5248–5250Google Scholar
  41. 41.
    Evans CG, Gestwicki JE (2009) Enantioselective organocatalytic Hantzsch synthesis of polyhydroquinolines. Org Lett 11:2957–2959Google Scholar
  42. 42.
    Martin NJA, Cheng X, List B (2008) Organocatalytic asymmetric transferhydrogenation of beta-nitroacrylates: accessing beta(2)-amino acids. J Am Chem Soc 130:13862–13863Google Scholar
  43. 43.
    Simon L, Goodman JM (2008) Theoretical study of the mechanism of Hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. J Am Chem Soc 130:8741–8747Google Scholar
  44. 44.
    Franke PT, Johansen RL, Bertelsen S, Jorgensen KA (2008) Organocatalytic enantioselective one-pot synthesis and application of substituted 1,4-dihydropyridines – Hantzsch ester analogues. Chem Asian J 3:216–224Google Scholar
  45. 45.
    Heravi MM, Behbahani FK, Oskooie HA, Shoar RH (2005) Catalytic aromatization of Hantzsch 1,4-dihydropyridines by ferric perchlorate in acetic acid. Tetrahedron Lett 46:2775–2777Google Scholar
  46. 46.
    Yadav JS, Reddy BVS, Basak AK, Baishya G, Narsaiah AV (2006) Iodoxybenzoic acid (IBX): an efficient and novel oxidizing agent for the aromatization of 1,4-dihydropyridines. Synthesis 451–454Google Scholar
  47. 47.
    Xia JJ, Wang GW (2005) One-pot synthesis and aromatization of 1,4-dihydropyridines in refluxing water. Synthesis 2379–2383Google Scholar
  48. 48.
    Tu SJ, Jiang B, Jia RH, Zhang JY, Zhang Y (2007) An efficient and expeditious microwave-assisted synthesis of 4-azafluorenones via a multi-component reaction. Tetrahedron Lett 48:1369–1374Google Scholar
  49. 49.
    Shen L, Cao S, Wu JJ, Zhang J, Li H, Liu NJ, Qian XH (2009) A revisit to the Hantzsch reaction: unexpected products beyond 1,4-dihydropyridines. Green Chem 11:1414–1420Google Scholar
  50. 50.
    Tu SJ, Wu SS, Yan S, Hao WJ, Zhang XH, Cao XD, Han ZG, Jiang B, Shi F, Xia M, Zhou JF (2009) Design and microwave-assisted synthesis of naphtho 2,3-f quinoline derivatives and their luminescent properties. J Comb Chem 11:239–242Google Scholar
  51. 51.
    Shi F, Yan S, Zhou DX, Tu SJ, Zou X, Hao WJ, Zhang XH, Han ZG, Wu SS, Cao XD (2009) A facile and efficient synthesis of novel pyrimido 5,4-b 4,7 phenanthroline-9,11(7H, 8H, 10H, 12H)-dione derivatives via microwave-assisted multicomponent reactions. J Heterocycl Chem 46:563–566Google Scholar
  52. 52.
    Wang XH, Hao WJ, Tu SJ, Zhang XH, Cao XD, Yan S, Wu SS, Han ZG, Shi F (2009) Microwave-assisted multicomponent reaction for the synthesis of new and significative bisfunctional compounds containing two furo 3,4-b quinoline and acridinedione skeletons. J Heterocycl Chem 46:742–747Google Scholar
  53. 53.
    Tu SJ, Cao LJ, Zhang Y, Shao QQ, Zhou DX, Li CM (2008) An efficient synthesis of pyrido 2,3-d pyrimidine derivatives and related compounds under ultrasound irradiation without catalyst. Ultrason Sonochem 15:217–221Google Scholar
  54. 54.
    Wang XS, Zhang MM, Jiang H, Shi DQ, Tu SJ, Wei XY, Zong ZM (2006) An improved and benign synthesis of 9,10-diarylacridine-1,8-dione and indenoquinoline derivatives from 3-anilino-5,5-dimethylcyclohex-2-enones, benzaldehydes, and 1,3-dicarbonyl compounds in an ionic liquid medium. Synthesis 4187–4199Google Scholar
  55. 55.
    Dondoni A, Massi A, Aldhoun M (2007) Hantzsch-type three-component approach to a new family of carbon-linked glycosyl amino acids. synthesis of C-glycosylmethyl pyridylalanines. J Org Chem 72:7677–7687Google Scholar
  56. 56.
    Ducatti DRB, Massi A, Noseda MD, Duarte MER, Dondoni A (2009) Dihydropyridine C-glycoconjugates by organocatalytic Hantzsch cyclocondensation. Stereoselective synthesis of alpha-threofuranose C-nucleoside enantiomers. Org Biomol Chem 7:1980–1986Google Scholar
  57. 57.
    Muravyova EA, Shishkina SV, Musatov VI, Knyazeva IV, Shishkin OV, Desenko SM, Chebanov VA (2009) Chemoselectivity of multicomponent condensations of barbituric acids, 5-aminopyrazoles, and aldehydes. Synthesis 1375–1385Google Scholar
  58. 58.
    Chebanov VA, Saraev VE, Desenko SM, Chernenko VN, Knyazeva IV, Groth U, Glasnov TN, Kappe CO (2008) Tuning of chemo- and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone, and aldehydes. J Org Chem 73:5110–5118Google Scholar
  59. 59.
    Tu SJ, Zhang Y, Jiang H, Jiang B, Zhang JY, Jia RH, Shi F (2007) A simple synthesis of furo 3′,4′: 5,6 pyrido 2,3-d pyrimidine derivatives through multicomponent reactions in water. Eur J Org Chem 1522–1528Google Scholar
  60. 60.
    Shaabani A, Rahmati A, Rezayan AH, Darvishi M, Badri Z, Sarvari A (2007) Clean synthesis in water: Uncatalyzed three-component condensation reaction of 3-amino-1,2,4-triazole or 2-aminobenzimidazole with aldehyde in the presence of activated CH-Acids. QSAR Comb Sci 26:973–979Google Scholar
  61. 61.
    Kolosov MA, Orlov VD, Beloborodov DA, Dotsenko VV (2009) A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol Divers 13:5–25Google Scholar
  62. 62.
    De Souza R, da Penha ET, Milagre HMS, Garden SJ, Esteves PM, Eberlin MN, Antunes OAC (2009) The three-component Biginelli reaction: a combined experimental and theoretical mechanistic investigation. Chem Eur J 15:9799–9804Google Scholar
  63. 63.
    Sabitha G, Reddy KB, Yadav JS, Shailaja D, Sivudu KS (2005) Ceria/vinylpyridine polymer nanocomposite: an ecofriendly catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 46:8221–8224Google Scholar
  64. 64.
    Shaabani A, Rahmati A (2005) Ionic liquid promoted efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Catal Lett 100:177–179Google Scholar
  65. 65.
    Dabiri M, Salehi P, Baghbanzadeh M, Shakouri M, Otokesh S, Ekrami T, Doosti R (2007) Efficient and eco-friendly synthesis of dihydropyrimidinones, bis(indolyl) methanes, and N-alkyl and N-arylimides in ionic liquids. J Iran Chem Soc 4:393–401Google Scholar
  66. 66.
    Legeay JC, Eynde JJV, Bazureau JP (2008) Ionic liquid phase organic synthesis (IoLiPOS) methodology applied to the preparation of new 3,4-dihydropyrimidine-2(1H)-ones bearing bioisostere group in N-3 position. Tetrahedron 64:5328–5335Google Scholar
  67. 67.
    Gui JZ, Liu D, Wang C, Lu F, Lian JZ, Jiang H, Sun ZL (2009) One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Catalyzed by Acidic Ionic Liquids Under Solvent-Free Conditions. Synth Commun 39:3436–3443Google Scholar
  68. 68.
    Putilova ES, Troitskii NA, Zlotin SG, Khudina OG, Burgart YV, Saloutin VI, Chupakhin ON (2006) One-step solvent-free synthesis of fluoroalkyl-substituted 4-hydroxy-2-oxo(thioxo)hexahydropyrimidines in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate. Russ J Org Chem 42:1392–1395Google Scholar
  69. 69.
    Ming L, Guo WS, Wen LR, Li YF, Yang HZ (2006) One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (BMImSac) and structural determination of two products. J Mol Catal A: Chem 258:133–138Google Scholar
  70. 70.
    Bose DS, Sudharshan M, Chavhan SW (2005) New protocol for Biginelli reaction-a practical synthesis of monastrol. Arkivoc 228–236Google Scholar
  71. 71.
    Dong F, Jun L, Xinli Z, Zhiwen Y, Zuliang L (2007) One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids. J Mol Catal A: Chem 274:208–211Google Scholar
  72. 72.
    Comas H, Buisson DA, Najman R, Kozielski F, Rousseau B, Lopez R (2009) Synthesis of 5-Acyl-3,4-dihydropyrimidine-2-thiones via solvent-free, solution-phase and solid-phase Biginelli procedures. Synlett 1737–1740Google Scholar
  73. 73.
    Bahrami K, Khodaei MM, Farrokhi A (2009) Highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc oxide. Synth Commun 39:1801–1808Google Scholar
  74. 74.
    Gross GA, Wurziger H, Schober A (2006) Solid-phase synthesis of 4,6-diaryl-3,4-dihydropyrimidine-2(1H)-one-5-carboxylic acid amide derivatives: a Biginelli three-componentcondensation protocol based on immobilized beta-ketoamides. J Comb Chem 8:153–155Google Scholar
  75. 75.
    Desai B, Dallinger D, Kappe CO (2006) Microwave-assisted solution phase synthesis of dihydropyrimidine C5 amides and esters. Tetrahedron 62:4651–4664Google Scholar
  76. 76.
    Kumar A, Maurya RA (2007) An efficient bakers' yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett 48:4569–4571Google Scholar
  77. 77.
    Zalavadiya P, Tala S, Akbari J, Joshi H (2009) Multi-component synthesis of dihydropyrimidines by iodine catalyst at ambient temperature and in-vitro anti mycobacterial activity. Arch Pharm 342:469–475Google Scholar
  78. 78.
    Hegedus A, Hell Z, Vigh I (2006) Convenient one-pot heterogeneous catalytic method for the preparation of 3,4-dihydropyrimidin-2(1H)-ones. Synth Commun 36:129–136Google Scholar
  79. 79.
    Joseph JK, Jain SL, Sain B (2006) Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: an improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones. J Mol Catal A: Chem 247:99–102Google Scholar
  80. 80.
    Han XY, Xu F, Luo YQ, Shen Q (2005) An efficient one-pot synthesis of dihydropyrimidinones by a samarium diiodide catalyzed Biginelli reaction under solvent-free conditions. Eur J Org Chem 1500–1503Google Scholar
  81. 81.
    Putilova ES, Troitskii NA, Zlotin SG (2005) Reaction of aromatic aldehydes with beta-dicarbonyl compounds in a catalytic system: piperidinium acetate – 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Russ Chem Bull 54:1233–1238Google Scholar
  82. 82.
    Khunt RC, Akbari JD, Manvar AT, Tala SD, Dhaduk MF, Joshi HS, Shah A (2008) Green chemistry approach to synthesis of some new trifluoromethyl containing tetrahydropyrimidines under solvent-free conditions. Arkivoc 277–U8Google Scholar
  83. 83.
    Ryabukhin SV, Plaskon AS, Ostapchuk EN, Volochnyuk DM, Shishkin OV, Tolmachev AA (2008) CF3-substituted 1,3-dicarbonyl compounds in the Biginelli reaction promoted by chlorotrimethylsilane. J Fluor Chem 129:625–631Google Scholar
  84. 84.
    Azizian J, Mirza B, Mojtahedi MM, Abaee MS, Sargordan M (2008) Biginelli reaction for synthesis of novel trifluoromethyl derivatives of bis(tetrahydropyrimidinone)benzenes. J Fluor Chem 129:1083–1089Google Scholar
  85. 85.
    Amini MM, Shaabani A, Bazgir A (2006) Tangstophosphoric acid (H3PW12O40): an efficient and eco-friendly catalyst for the one-pot synthesis of dihydropyrimidin-2(1H)-ones. Catal Commun 7:843–847Google Scholar
  86. 86.
    Byk G, Kabha E (2006) A solid-supported stereoselective multicomponent reaction: One-pot generation of three asymmetric carbons. Synlett 747–748Google Scholar
  87. 87.
    Nilsson BL, Overman LE (2006) Concise synthesis of guanidine-containing heterocycles using the Biginelli reaction. J Org Chem 71:7706–7714Google Scholar
  88. 88.
    Hulme R, Zamora ODP, Mota EJ, Pasten MA, Contreras-Rojas R, Miranda R, Valencia-Hernandez I, Correa-Basurto J, Trujillo-Ferrara J, Delgado F (2008) Cyanamide: a convenient building block to synthesize 4-aryl-2-cyanoimino-3,4-dihydro-1H-pyrimidine systems via a multicomponent reaction. Tetrahedron 64:3372–3380Google Scholar
  89. 89.
    Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type – a literature survey. Eur J Med Chem 35:1043–1052Google Scholar
  90. 90.
    Kappe CO (2003) The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry. QSAR Comb Sci 22:630–645Google Scholar
  91. 91.
    Gong LZ, Chen XH, Xu XY (2007) Asymmetric organocatalytic biginelli reactions: a new approach to quickly access optically active 3,4-dihydropyrimidin-2-(1H)-ones. Chem Eur J 13:8920–8926Google Scholar
  92. 92.
    Kappe CO, Uray G, Roschger P, Lindner W, Kratky C, Keller W (1992) Synthesis and reactions of Biginelli compounds. 5. Facile preparation and resolution of a stable 5-dihydropyrimidinecarboxylic acid. Tetrahedron 48:5473–5480Google Scholar
  93. 93.
    Schnell B, Strauss UT, Verdino P, Faber K, Kappe CO (2000) Synthesis of enantiomerically pure 4-aryl-3,4-dihydro-pyrimidin-2(1H)-ones via enzymatic resolution: preparation of the antihypertensive agent (R)-SQ 32926. Tetrahedron Asymmetry 11:1449–1453Google Scholar
  94. 94.
    Dondoni A, Massi A (2006) Design and synthesis of new classes of Heterocyclic C-glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs). Acc Chem Res 39:451–463Google Scholar
  95. 95.
    Huang YJ, Yang FY, Zhu CJ (2005) Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst: Asymmetric synthesis of dihydropyrimidines. J Am Chem Soc 127:16386–16387Google Scholar
  96. 96.
    Chen XH, Xu XY, Liu H, Cun LF, Gong LZ (2006) Highly enantioselective organocatalytic Biginelli reaction. J Am Chem Soc 128:14802–14803Google Scholar
  97. 97.
    Li N, Chen XH, Song J, Luo SW, Fan W, Gong LZ (2009) Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3,3′-disubstituents of phosphoric acids. J Am Chem Soc 131:15301–15310Google Scholar
  98. 98.
    Goss JM, Schaus SE (2008) Enantioselective synthesis of SNAP-7941: chiral dihydropyrimidone inhibitor of MCH1-R. J Org Chem 73:7651–7656Google Scholar
  99. 99.
    Wu YY, Chai Z, Liu XY, Zhao G, Wang SW (2009) Synthesis of substituted 5-(Pyrrolidin-2-yl)tetrazoles and their application in the asymmetric Biginelli reaction. Eur J Org Chem 904–911.Google Scholar
  100. 100.
    Jeyaraman R, Avila S (1981) Chemistry of 3-azabicyclo 3.3.1 nonanes. Chem Rev 81:149–174Google Scholar
  101. 101.
    Metten B, Kostermans M, Van Baelen G, Smet M, Dehaen W (2006) Synthesis of 5-aryl-2-oxopyrrole derivatives as synthons for highly substituted pyrroles. Tetrahedron 62:6018–6028Google Scholar
  102. 102.
    Shen L, Cao S, Liu NJ, Wu JJ, Zhu LJ, Qian XH (2008) Ytterbium(III) perfluorooctanoate catalyzed one-pot, three-component synthesis of fully substituted pyrazoles under solvent-free conditions. Synlett 1341–1344Google Scholar
  103. 103.
    Shen L, Zhang J, Cao S, Yu JL, Liu NJ, Wu JJ, Qian XH (2008) One-pot synthesis of trifluoromethyl-containing pyrazoles via sequential Yb(PFO)(3)-catalyzed three-component reaction and IBX-mediated oxidation. Synlett 3058–3062Google Scholar
  104. 104.
    Khan AT, Parvin T, Choudhury LH (2008) Effects of Substituents in the beta-Position of 1,3-dicarbonyl compounds in bromodimethylsulfonium bromide-catalyzed multicomponent reactions: a facile access to functionalized piperidines. J Org Chem 73:8398–8402Google Scholar
  105. 105.
    Habib-Zahmani H, Hacini S, Charonnet E, Rodriguez J (2002) A new multicomponent domino transformation of 1,3-dicarbonyl compounds: one-pot regio-, chemo- and stereoselective access to valuable alpha,gamma-difunctionalized alpha-ketoesters and amides. Synlett 1827–1830Google Scholar
  106. 106.
    Wang XS, Li Q, Wu JR, Li YL, Yao CS, Tu SJ (2008) An efficient and highly selective method for the synthesis of 3-arylbenzoquinoline derivatives catalyzed by iodine via three-component reactions. Synthesis 1902–1910Google Scholar
  107. 107.
    Tu SJ, Zhang Y, Zhang JY, Jiang B, Jia RH, Zhang JP, Ji SJ (2006) A simple procedure for the synthesis of 4-aza-podophyllotoxin derivatives in water under microwave irradiation conditions. Synlett 2785–2790Google Scholar
  108. 108.
    Wender PA, Zercher CK, Beckham S, Haubold EM (1993) A photochemically triggered DNA-cleaving agent – synthesis, mechanistic and DNA cleavage studies on a new analog of the antitumor antibiotic dynemicin. J Org Chem 58:5867–5869Google Scholar
  109. 109.
    Ori M, Toda N, Takami K, Tago K, Kogen H (2005) Stereospecific synthesis of 2,2,3-trisubstituted tetrahydroquinolines: application to the total syntheses of benzastatin E and natural virantmycin. Tetrahedron 61:2075–2104Google Scholar
  110. 110.
    Zhang W, Guo YP, Liu ZG, Jin XL, Yang L, Liu ZL (2005) Photochemically catalyzed Diels-Alder reaction of arylimines with N-vinylpyrrolidinone and N-vinylcarbazole by 2,4,6-triphenylpyrylium salt: synthesis of 4-heterocycle-substituted tetrahydroquinoline derivatives. Tetrahedron 61:1325–1333Google Scholar
  111. 111.
    Kadutskii AP, Kozlov NG (2006) A novel three-component reaction of anilines, formaldehyde and beta-diketones: simple synthesis of 3-spirosubstituted 1,2,3,4-tetrahydroquinolines. Synlett 3349–3351Google Scholar
  112. 112.
    Fujioka H, Murai K, Kubo O, Ohba Y, Kita Y (2007) New three-component reaction: novel formation of a seven-membered ring by the unexpected reaction at the gamma-position of the beta-keto ester. Org Lett 9:1687–1690Google Scholar
  113. 113.
    Sotoca E, Allais C, Constantieux T, Rodriguez J (2009) User-friendly stereoselective one-pot access to 1,4-diazepane derivatives by a cyclodehydrative three-component reaction with 1,3-dicarbonyls. Org Biomol Chem 7:1911–1920Google Scholar
  114. 114.
    Sotoca E, Constantieux T, Rodriguez J (2008) Solvent- and catalyst-free three-component reaction with beta-ketoamides for the stereoselective one-pot access to 1,4-diazepines. Synlett 1313–1316Google Scholar
  115. 115.
    Murai K, Nakatani R, Kita Y, Fujioka H (2008) One-pot three-component reaction providing 1,5-benzodiazepine derivatives. Tetrahedron 64:11034–11040Google Scholar
  116. 116.
    Tietze LF (1990) Domino-reactions – the tandem-Knoevenagel-hetero-Diels-Alder reaction and its application in natural product synthesis. J Heterocycl Chem 27:47–69Google Scholar
  117. 117.
    Heravi MM, Baghernejad B, Oskooie HA, Hekmatshoar R (2008) A novel and facile synthesis of 2-(cyclohexylamino)-6,7-dihydro-3-aryl-1H-indole-4(5H)-ones via a one-pot multi-component reaction. Tetrahedron Lett 49:6101–6103Google Scholar
  118. 118.
    Gozalishvili LL, Beryozkina TV, Omelchenko IV, Zubatyuk RI, Shishkin OV, Kolos NN (2008) A rapid and facile synthesis of new spiropyrimidines from 5-(2-arylethylidene-2-oxo)-1,3-dimethylpyrimidine-2,4,6-triones. Tetrahedron 64:8759–8765Google Scholar
  119. 119.
    Nagarapu L, Bantu R, Mereyala HB (2009) TMSCl-mediated one-pot, three-component synthesis of 2H-indazolo 2, 1-b phthalazine-triones. J Heterocycl Chem 46:728–731Google Scholar
  120. 120.
    Li M, Yang WL, Wen LR, Li FQ (2008) A first resource-efficient and highly flexible procedure for a four-component synthesis of dispiropyrrolidines. Eur J Org Chem 2751–2758Google Scholar
  121. 121.
    Peng YQ, Song GH (2007) Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal Commun 8:111–114Google Scholar
  122. 122.
    Babu NS, Pasha N, Rao KTV, Prasad PSS, Lingalah N (2008) A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans. Tetrahedron Lett 49:2730–2733Google Scholar
  123. 123.
    Balalaie S, Bararjanian M, Amani AM, Movassagh B (2006) (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo b pyran derivatives in aqueous media. Synlett 263–266Google Scholar
  124. 124.
    Balalaie S, Sheikh-Ahmadi M, Bararjanian M (2007) Tetra-methyl ammonium hydroxide: an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo b pyran derivatives in aqueous media. Catal Commun 8:1724–1728Google Scholar
  125. 125.
    Zhu SL, Ji SJ, Zhang Y (2007) A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron 63:9365–9372Google Scholar
  126. 126.
    Song SD, Song LP, Dai BF, Yi H, Jin GF, Zhu SZ, Shao M (2008) A convenient one-pot synthesis of 2-(trifluoromethyl)-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one derivatives and their further transformations. Tetrahedron 64:5728–5735Google Scholar
  127. 127.
    Prajapati D, Gohain M (2006) An efficient synthesis of novel pyrano 2,3-d - and furopyrano 2,3-d pyrimidines via indium-catalyzed multi-component domino reaction. Beilstein J Org Chem 2. Doi:10.1186/1860-5397-2-11Google Scholar
  128. 128.
    Gerencser J, Dorman G, Darvas F (2006) Meldrum's acid in multicomponent reactions: applications to combinatorial and diversity-oriented synthesis. QSAR Comb Sci 25:439–448Google Scholar
  129. 129.
    Jimenez-Alonso S, Chavez H, Estevez-Braun A, Ravelo AG, Feresin G, Tapia A (2008) An efficient synthesis of embelin derivatives through domino Knoevenagel hetero Diels-Alder reactions under microwave irradiation. Tetrahedron 64:8938–8942Google Scholar
  130. 130.
    Jimenez-Alonso S, Estevez-Braun A, Ravelo AG, Zarate R, Lopez M (2007) Double domino Knoevenagel hetero Diels-Alder strategy towards bis-pyrano-1,4-benzoquinones. Tetrahedron 63:3066–3074Google Scholar
  131. 131.
    Gu Y, De Sousa R, Frapper P, Bachmann C, Barrault J, Jérôme F (2009) Catalyst-free aqueous multicomponent domino reaction from formaldehyde and 1,3-dicarbonyls derivatives. Green Chem 11:1968–1972Google Scholar
  132. 132.
    Nandi GC, Samai S, Kumar R, Singh MS (2009) An efficient one-pot synthesis of tetrahydrobenzo a xanthene-11-one and diazabenzo a anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron 65:7129–7134Google Scholar
  133. 133.
    Gao SJ, Tsai CH, Yao CF (2009) A simple and green approach for the synthesis of tetrahydrobenzo a xanthen-11-one derivatives using tetrabutyl ammonium fluoride in water. Synlett 949–954Google Scholar
  134. 134.
    Khurana JM, Magoo D (2009) pTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo a xanthen-11-ones in ionic liquid and neat conditions. Tetrahedron Lett 50:4777–4780Google Scholar
  135. 135.
    Wang RZ, Zhang LF, Cui ZS (2009) Iodine-catalyzed synthesis of 12-aryl-8,9,10,12-tetrahydro-benzo a xanthen-11-one derivatives via multicomponent reaction. Synth Commun 39:2101–2107Google Scholar
  136. 136.
    Das B, Laxminarayana K, Krishnaiah M, Srinivas Y (2007) An efficient and convenient protocol for the synthesis of novel 12-aryl- or 12-alkyl-8,9,10,12-tetrahydrobenzo a xanthen-11-one derivatives. Synlett 3107–3112Google Scholar
  137. 137.
    Nagarajan AS, Reddy BSR (2009) Synthesis of substituted pyranopyrazoles under neat conditions via a multicomponent reaction. Synlett 2002–2004Google Scholar
  138. 138.
    Vasuki G, Kumaravel K (2008) Rapid four-component reactions in water: synthesis of pyranopyrazoles. Tetrahedron Lett 49:5636–5638Google Scholar
  139. 139.
    Litvinov YM, Shestopalov AA, Rodinovskaya LA, Shestopalov AM (2009) New convenient four-component synthesis of 6-amino-2,4-dihydropyrano 2,3-c pyrazol-5-carbonitriles and one-pot synthesis of 6′-aminospiro (3H)-indol-3,4′-pyrano 2,3-c pyrazol -(1H)-2-on-5′-carbonitriles. J Comb Chem 11:914–919Google Scholar
  140. 140.
    Kumaravel K, Vasuki G (2009) Four-component catalyst-free reaction in water: combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives. Green Chem 11:1945–1947Google Scholar
  141. 141.
    Shanthi G, Perumal PT (2009) InCl3-catalyzed efficient one-pot synthesis of 2-pyrrolo-3 '-yloxindoles. Tetrahedron Lett 50:3959–3962Google Scholar
  142. 142.
    Dey S, Pal C, Nandi D, Giri VS, Zaidlewicz M, Krzeminski M, Smentek L, Hess BA, Gawronski J, Kwit M, Babu NJ, Nangia A, Jaisankar P (2008) Lewis acid-catalyzed one-pot, three-component route to chiral 3,3′-bipyrroles. Org Lett 10:1373–1376Google Scholar
  143. 143.
    Alizadeh A, Rezvanian A, Zhu LG (2008) One-pot synthesis of 4,5-dihydro-1H-pyrrol-3-carboxamide derivatives via a four-component reaction. Tetrahedron 64:351–355Google Scholar
  144. 144.
    Simon C, Peyronel JF, Rodriguez J (2001) A new multicomponent domino reaction of 1,3-dicarbonyl compounds: One-pot access to polycyclic N/O-, N/S-, and N/N-aminals. Org Lett 3:2145–2148Google Scholar
  145. 145.
    Noel R, Fargeau-Bellassoued MC, Vanucci-Bacque C, Lhommet G (2008) Convenient one-pot synthesis of chiral tetrahydropyridines via a multicomponent reaction. Synthesis 1948–1954Google Scholar
  146. 146.
    Sridharan V, Maiti S, Menendez JC (2009) A very efficient cerium(IV) ammonium nitrate catalyzed, four-component synthesis of tetrahydropyridines and its application in the concise generation of functionalized homoquinolizine frameworks. Chem Eur J 15:4565–4572Google Scholar
  147. 147.
    Maiti S, Menendez JC (2009) A mild protocol for the efficient synthesis of 5,6-unsubstituted 1,4-dihydropyridines. Synlett 2249–2252Google Scholar
  148. 148.
    Sridharan V, Perumal PT, Avendano C, Menendez JC (2007) A new three-component domino synthesis of 1,4-dihydropyridines. Tetrahedron 63:4407–4413Google Scholar
  149. 149.
    Kumar A, Maurya RA (2008) Organocatalysed three-component domino synthesis of 1,4-dihydropyridines under solvent free conditions. Tetrahedron 64:3477–3482Google Scholar
  150. 150.
    Das B, Suneel K, Venkateswarlu K, Ravikanth B (2008) Sulfonic acid functionalized silica: an efficient heterogeneous catalyst for a three-component synthesis of 1,4-dihydropyridines under solvent-free conditions. Chem Pharm Bull 56:366–368Google Scholar
  151. 151.
    Kantam ML, Ramani T, Chakrapani L, Choudary BM (2009) Synthesis of 1,4-dihydropyridine derivatives using nanocrystalline copper(II) oxide catalyst. Catal Commun 10:370–372Google Scholar
  152. 152.
    Jiang J, Yu J, Sun XX, Rao QQ, Gong LZ (2008) Organocatalytic asymmetric three-component cyclization of cinnamaldehydes and primary amines with 1,3-dicarbonyl compounds: straightforward access to enantiomerically enriched dihydropyridines. Angew Chem Int Ed 47:2458–2462Google Scholar
  153. 153.
    Bagley MC, Chapaneri K, Dale JW, Xiong X, Bower J (2005) One-pot multistep Bohlmann-Rahtz heteroannulation reactions: synthesis of dimethyl sulfomycinamate. J Org Chem 70:1389–1399Google Scholar
  154. 154.
    Blayo AL, Le Meur S, Gree D, Gree R (2008) New enantioselective synthesis of monofluorinated pyridines designed for the preparation of chemical libraries. Adv Synth Cat 350:471–476Google Scholar
  155. 155.
    Kantevari S, Chary MV, Vuppalapati SVN (2007) A highly efficient regioselective one-pot synthesis of 2,3,6-trisubstituted pyridines and 2,7,7-trisubstituted tetrahydroquinolin-5-ones using K5CoW12O40 center dot 3H(2)O as a heterogeneous recyclable catalyst. Tetrahedron 63:13024–13031Google Scholar
  156. 156.
    Lieby-Muller F, Simon C, Constantieux T, Rodriguez J (2006) Current developments in Michael addition-based multicomponent domino reactions involving 1,3-dicarbonyls and derivatives. QSAR Comb Sci 25:432–438Google Scholar
  157. 157.
    Lieby-Muller F, Allais C, Constantieux T, Rodriguez J (2008) Metal-free Michael addition initiated multicomponent oxidative cyclodehydration route to polysubstituted pyridines from 1,3-dicarbonyls. Chem Commun 4207–4209Google Scholar
  158. 158.
    Allais C, Constantieux T, Rodriguez J (2009) Highly Efficient Synthesis of trans-beta,gamma-Unsaturated alpha-Keto Amides. Synthesis 2523–2530Google Scholar
  159. 159.
    Allais C, Constantieux T, Rodriguez J (2009) Use of β, γ-unsaturated α-ketocarbonyls for a totally regioselective oxidative multicomponent synthesis of polyfunctionalized pyridines. Chem Eur J 15:12945–12948Google Scholar
  160. 160.
    Coquerel Y, Bensa D, Moret V, Rodriguez J (2006) Synthetic studies on the MARDi cascade: stereoselective preparation of sulfonyl-substituted seven-membered rings. Synlett 2751–2754Google Scholar
  161. 161.
    Coquerel Y, Bensa D, Doutheau A, Rodriguez J (2006) Synthetic studies on the MARDi cascade: stereoselective synthesis of heterocyclic seven-membered rings. Org Lett 8:4819–4822Google Scholar
  162. 162.
    Coquerel Y, Filippini MH, Bensa D, Rodriguez J (2008) The MARDi cascade: a Michael-initiated domino-multicomponent approach for the stereoselective synthesis of seven-membered rings. Chem Eur J 14:3078–3092Google Scholar
  163. 163.
    Lieby-Muller F, Simon C, Imhof K, Constantieux T, Rodriguez J (2006) A multicomponent domino reaction and in situ aerobic oxidation sequence for the first one-pot synthesis of polycyclic benzimidazoles from 1,3-dicarbonyl derivatives. Synlett 1671–1674Google Scholar
  164. 164.
    Lieby-Muller F, Constantieux T, Rodriguez J (2007) Highly efficient access to original polycyclic pyrrolopiperazine scaffolds by a three-component reaction with 1,3-dicarbonyls. Synlett 1323–1325Google Scholar
  165. 165.
    Lieby-Muller F, Constantieux T, Rodriguez J (2005) Multicomponent domino reaction from beta-ketoamides: highly efficient access to original polyfunctionalized 2,6-diazabicyclo 2.2.2 octane cores. J Am Chem Soc 127:17176–17177Google Scholar
  166. 166.
    Habib-Zahmani H, Viala J, Hacini S, Rodriguez J (2007) Synthesis of functionalized spiroheterocycles by sequential multicomponent reaction/metal-catalyzed carbocylizations from simple beta-ketoesters and amides. Synlett 1037–1042Google Scholar
  167. 167.
    Radi M, Bernardo V, Bechi B, Castagnolo D, Pagano M, Botta M (2009) Microwave-assisted organocatalytic multicomponent Knoevenagel/hetero Diels-Alder reaction for the synthesis of 2,3-dihydropyran 2,3-c pyrazoles. Tetrahedron Lett 50:6572–6575Google Scholar
  168. 168.
    Giorgi G, Miranda S, Lopez-Alvarado P, Avendano C, Rodriguez J, Menendez JC (2005) Unique Michael addition-initiated domino reaction for the stereoselective synthesis of functionalized macrolactones from alpha-nitroketones in water. Org Lett 7:2197–2200Google Scholar
  169. 169.
    Tietze LF, Bohnke N, Dietz S (2009) Synthesis of the deoxyaminosugar (+)-D-forosamine via a novel domino-Knoevenagel-hetero-Diels-Alder reaction. Org Lett 11:2948–2950Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maria Mar Sanchez del Duque
    • 1
  • Christophe Allais
    • 1
  • Nicolas Isambert
    • 1
  • Thierry Constantieux
    • 1
    Email author
  • Jean Rodriguez
    • 1
    Email author
  1. 1.Institut des Sciences Moléculaires de Marseille, UMR CNRS 6263 iSm2Aix-Marseille Université – Centre Saint JérômeMarseille Cedex 20France

Personalised recommendations