Skip to main content

Heterophenes Carrying Phosphorus Functional Groups as Key Structures

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 21))

Abstract

Heterophenes have contributed a great deal to the progress of π-conjugated systems such as benzenoid and quinoid compounds. Introduction of heterophenes in place of benzenoid or benzoquinoid structures in π-conjugated systems often leads to improvement of properties and stability as well as facile synthesis. In recent studies on phosphorus compounds, heterophenes such as thiophene and selenophene played a key role in the construction of unique π-conjugated systems. The focus of this chapter is on heterophenes carrying phosphorus functional groups as key structures. A series of phosphaquinoid compounds, which have low coordinated phosphorus as well as quinoid structure, have been synthesized during this decade, and those carrying thienoquinoid structure greatly contributed to diversity as well as understanding of properties. Cyclic π-conjugated systems completely substituted by heteroatoms have attracted considerable attention for a long time from structural as well as physical viewpoints. Although benzene carrying phosphorus substituents on all carbons has not yet been synthesized, recent studies on all-phosphorus-substituted aromatic compounds reached five-membered ring systems, and thiophene and selenophene fully substituted by phosphoryl groups were synthesized by unconventional manner and shown to have unique structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Patai S (ed) (1974) The chemistry of the quinoid compounds, parts 1 and 2. Wiley, London

    Google Scholar 

  2. Patai S, Rappoport Z (eds) (1988) The chemistry of the quinoid compounds, vol 2, parts 1 and 2. Wiley, Chichester

    Google Scholar 

  3. Bock H, Mohmand S, Hirabayashi T, Maier G, Reisenauer HP (1983) Chem Ber 116:273

    Article  CAS  Google Scholar 

  4. Raasch MS (1979) J Org Chem 44:632

    Article  CAS  Google Scholar 

  5. Itoh T, Fujikawa K, Kubo M (1996) J Org Chem 61:8329

    Article  CAS  Google Scholar 

  6. 6. Suzuki R, Matsumoto K, Kurata H, Oda, M (2000) Chem Commun 1357

    Google Scholar 

  7. 7. Suzuki R, Kurata H, Kawase T, Oda M (1999) Chem Lett 28:571

    Google Scholar 

  8. 8. Märkl G, Hennig R, Raab KM (1996) Chem Commun 2057

    Google Scholar 

  9. Sasaki S, Murakami F, Yoshifuji M (1999) Angew Chem Int Ed 38:340

    Article  CAS  Google Scholar 

  10. 10. Kurata H, Tanaka T, Sauchi T, Oda M (1997) Chem Lett 26:947

    Google Scholar 

  11. Murakami F, Sasaki F, Yoshifuji M (2002) Angew Chem Int Ed 41:2574

    Article  CAS  Google Scholar 

  12. Murakami F, Sasaki S, Yoshifuji M (2005) J Am Chem Soc 127:8926

    Article  CAS  Google Scholar 

  13. Murakami F (2000) Thesis for the Degree of Doctor of Science, Tohoku University

    Google Scholar 

  14. Appel R (1990) In: Regitz M, Scherer O (eds) Multiple bonds and low coordination in phosphorus chemistry. Thieme, Stuttgart, pp 157–219

    Google Scholar 

  15. Morton JR, Preston KF (1978) J Magn Reson 30:577

    CAS  Google Scholar 

  16. Geoffroy M, Lucken EAC, Mazeline C (1974) Mol Phys 28:839

    Article  CAS  Google Scholar 

  17. 17. Cetinkaya B, Hudson A, Lappert MF, Goldwhite H (1982) J Chem Soc Chem Commun 609

    Google Scholar 

  18. Geoffroy M, Jouaiti A, Terron G, Cattani-Lorente M, Ellinger Y (1992) J Phys Chem 96:8241

    Article  CAS  Google Scholar 

  19. Culcasi M, Gronchi G, Escudié J, Couret J, Pujol J, Tordo P (1986) J Am Chem Soc 108:3130

    Article  CAS  Google Scholar 

  20. 20. Bard AJ, Cowley AH, Kilduff JE, Leland JK, Norman NC, Pakulski M, Heath GA (1987) J Chem Soc Dalton Trans 249

    Google Scholar 

  21. Shah S, Burdette SC, Swavey S, Urbach FL, Protasievicz JD (1997) Organometallics 16:339

    Article  Google Scholar 

  22. Tsuji K (1997) Thesis for Doctor of Science, Tohoku University

    Google Scholar 

  23. Thomaides J, Przemyslaw M, Breslow R (1988) J Am Chem Soc 110:3970

    Article  CAS  Google Scholar 

  24. Miller JS, Dixon DA, Calabrese JC, Vazques C, Krusic PJ, Ward MD, Wasserman E, Harlow RL (1990) J Am Chem Soc 112:381

    Article  CAS  Google Scholar 

  25. Schuster II, Weissensteiner W, Mislow K (1986) J Am Chem Soc 108:6661

    Article  CAS  Google Scholar 

  26. Sakurai H, Ebata K, Kabuto C, Sekiguchi A (1990) J Am Chem Soc 112:1799

    Article  CAS  Google Scholar 

  27. Ebata K, Inada T, Kabuto C, Sakurai H (1994) J Am Chem Soc 116:3595

    Article  CAS  Google Scholar 

  28. Khalimon AY, Lin ZH, Simionescu R, Vyboishchikov F, Nikonov GI (2007) Angew Chem Int Ed 46:4530

    Article  CAS  Google Scholar 

  29. Suenaga Y, Kuroda-Sowa T, Munakata M, Maekawa M, Morimoto H (1999) Polyhedron 18:429

    Article  CAS  Google Scholar 

  30. Patsch M, Heinz E (1971) Ger Offen DE 1960939

    Google Scholar 

  31. Reiter SA, Nogai SD, Schmidbaur HZ (2005) Anorg Allg Chem 631:2595

    Article  CAS  Google Scholar 

  32. McFarlane HCE, McFarlane W (1988) Polyhedron 7:1875

    Article  Google Scholar 

  33. Reets T (1960) US Patent 2935518

    Google Scholar 

  34. 34. Kobiro K, Min S, Inoue Y (1999) Chem Lett 28:633

    Google Scholar 

  35. 35. Sasaki S, Tanabe Y, Yoshifuji M (2002) Chem Commun 1876

    Google Scholar 

  36. Sasaki S, Kato K, Tanabe Y, Yoshifuji M (2004) Chem Lett 33:1004

    Article  CAS  Google Scholar 

  37. 37. Sünkel K, Stramm C, Soheili S (1999) J Chem Soc Dalton Trans 4299

    Google Scholar 

  38. Kyushin S, Matsuura T, Matsumoto H (2006) Organometallics 25:2761

    Article  CAS  Google Scholar 

  39. Sasaki S, Adachi K, Yoshifuji M (2007) Org Lett 9:1729

    Article  CAS  Google Scholar 

  40. Guzmán A, Alfaro R, Díaz E (1999) Synth Commun 29:3021

    Article  Google Scholar 

  41. Tavs P (1970) Chem Ber 103:2428

    Article  CAS  Google Scholar 

  42. Gerbier P, Guérin C, Henner B, Unal J-R (1999) J Mater Chem 9:2559

    Article  CAS  Google Scholar 

  43. Bravo-Altamirano K, Huang Z, Montchamp J-L (2005) Tetrahedron 61:6315

    Article  CAS  Google Scholar 

  44. Krasil’nikova EA, Nevzorova OL, Sentemov VV (1985) Zh Obshch Khim 55:1283

    Google Scholar 

  45. Stott TL, Wolf MO (2004) J Phys Chem B 108:18815

    Article  CAS  Google Scholar 

  46. Kakiuchi N, Furusho H, Otani N, Minami T, Okauchi T (2006) JP Patent 309692

    Google Scholar 

  47. Benincori T, Pilati T, Rizzo S, Sannicol F, Burk MJ, de Ferra L, Ullucci E, Piccolo O (2005) J Org Chem 70:5436

    Article  CAS  Google Scholar 

  48. 48. Acheson RM, Ansell PJ, Murray JR (1986) J Chem Res 378

    Google Scholar 

  49. 49. Prochazka M (1965) Collect Czech Chem Commun 1158

    Google Scholar 

  50. Kalinowski H- O, Berger S, Braun S (1988) Carbon-13 NMR spectroscopy. Wiley, Chichester

    Google Scholar 

  51. Nakayama J, Choi KS, Ishii A, Hoshino M (1990) Bull Chem Soc Jpn 63:1026

    Article  CAS  Google Scholar 

  52. Inoue S, Jigami T, Nozoe H, Otsubo T, Ogura F (1994) Tetrahedron Lett 35:8009

    CAS  Google Scholar 

  53. Nakayama J, Matsui T, Sato N (1995) Chem Lett 24:485

    Article  Google Scholar 

  54. Nakayama J, Matsui T, Sugihara Y, Ishii A, Kumakura S (1996) Chem Lett 25:269

    Article  Google Scholar 

  55. Umezawa T, Sugihara Y, Ishii A, Nakayama J (1998) J Am Chem Soc 120:12351

    Article  CAS  Google Scholar 

  56. Lindner E, Bosch E, Fawzi R, Steimann M, Mayer HA, Gierling K (1996) Chem Ber 129:945

    Article  CAS  Google Scholar 

  57. S. Sasaki Unpublished result

    Google Scholar 

  58. Nyulaszi L, Veszpremi T (1986) J Mol Struct 140:253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully thanks Dr. F. Murakami and Mr. K. Adachi of Tohoku University for their exhaustive research work on phosphaquinoid compounds and phosphorus substituted heterophenes, respectively. He expresses thanks also to Professors. M. Yoshifuji and N. Morita of Tohoku University for encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sasaki, S. (2010). Heterophenes Carrying Phosphorus Functional Groups as Key Structures. In: Bansal, R. (eds) Phosphorus Heterocycles II. Topics in Heterocyclic Chemistry, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2009_3

Download citation

Publish with us

Policies and ethics