Skip to main content

Microreactor Technology as an Efficient Tool for Multicomponent Reactions

  • Chapter
  • First Online:
Synthesis of Heterocycles via Multicomponent Reactions I

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 23))

Abstract

Multicomponent reactions are an important tool in organic synthesis as they often allow the circumvention of multistep procedures by combining three or more molecules into one structure in a single step. An additional asset of the approach is the significant increase of the combinatorial possibilities, since a modification of the final product is easily accomplished by implementing minor changes in the reaction setup; this obviously allows considerable savings in time and resources. These advantages are of particular interest in pharmaceutical research for the construction of libraries. In order to increase the sustainability of chemical processes, the field is intensively explored, and novel reactions are frequently reported. Microreactor technology also offers a contemporary way of conducting chemical reactions in a more sustainable fashion due to the miniaturization and increased safety, and also in a technically improved manner due to intensified process efficiency. This relatively new technology is implemented in novel and improved applications and is getting more and more used in chemical research. The combination of the benefits from the two approaches clearly presents an attractive reaction design, and this chapter presents an overview of the reported examples in which the microreactor technology and the multicomponent approach are combined, usually with dramatically improved results compared to those previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A-15:

Amberlyst 15

A-21:

Amberlyst 21

Bn:

Benzyl

Boc:

tert-Butoxycarbonyl

Bu:

Butyl

CFC:

Convection-flow coil

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCM:

Dichloromethane

DMF:

Dimethylformamide

DPPA:

Diphenylphosphoryl azide

ee :

Enantiomeric excess

GC:

Gas chromatography

HPLC:

High pressure liquid chromatography/high performance liquid chromatography

i.d.:

Internal diameter

MACOS:

Microwave-assisted continuous flow organic synthesis

Me:

Methyl

MNTS:

N-Methyl-N-nitroso-p-toluenesulfonamide

MR:

Microreactor

MW:

Microwave

PEEK:

Polyether ether ketone

PFA:

Poly(fluoroacetate)

PMP:

p-Methoxy-phenyl

PS-BEMP:

Polymer-supported 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine

PSP:

Polymer-supported tetra-N-alkylammonium perruthenate

PS-PIFA:

Polymer-supported (ditrifluoroacetoxyiodo)benzene

PTFE:

Polytetrafluoroethylene

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl

TMSCN:

Trimethylsilyl cyanide

TOF-MS:

Time-of-flight mass spectrometry

TTMSS:

Tris(trimethylsilyl)silane

μSYNTAS:

Miniaturised synthesis and total analysis system

References

  1. Strecker A (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Ann Chem Pharm 75(1):27–45

    Article  Google Scholar 

  2. Hantzsch A (1882) Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Liebigs Ann Chem 215(1):1–82

    Article  Google Scholar 

  3. Biginelli P (1893) Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz Chim Ital 23:360–413

    Google Scholar 

  4. Mannich C, Krösche W (1912) Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch Pharm 250(1):647–667

    Article  CAS  Google Scholar 

  5. Passerini M, Simone L (1921) Sopra gli Isonitrili (I). Composto del p-Isonitrilazobenzolo con Acetone ed Acido Acetico. Gazz Chim Ital 51:126–129

    CAS  Google Scholar 

  6. Bienaymé H, Hulme C, Oddon G et al (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6(18):3321–3329

    Article  Google Scholar 

  7. Syamala M (2005) A decade of advances in three-component reactions. A review. Org Prep Proced Int 37(2):103–171

    Article  CAS  Google Scholar 

  8. Syamala M (2009) Recent progress in three-component reactions. An update. Org Prep Proced Int 41(1):1–68

    Article  CAS  Google Scholar 

  9. Zhu J, Bienaymé H (eds) (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  10. Löhder W, Bergann L (1986) Akademie der Wissenschaften der DDR. DD 246, 257

    Google Scholar 

  11. Watts P, Wiles C (2007) Recent advances in synthetic micro reaction technology. Chem Commun 5:443–467

    Article  Google Scholar 

  12. Roberge DM, Ducry L, Bieler N et al (2005) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol 28(3):318–323

    Article  CAS  Google Scholar 

  13. Roberge DM, Zimmermann B, Rainone F et al (2008) Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: is the revolution underway? Org Process Res Dev 12(5):905–910

    Article  CAS  Google Scholar 

  14. www.syrris.com/. Accessed 14 Sept 2009

  15. Syrris Ltd (2007) Africa application notes, reaction optimisation (1) http://www.johnmorris.com.au/inetstore/item/321431_opt7.pdf. Accessed 10 Sept 2009

  16. Gelens E, De Kanter FJJ, Schmitz RF et al (2006) Efficient library synthesis of imidazoles using a multicomponent reaction and microwave irradiation. Mol Divers 10(1):17–22

    Article  CAS  Google Scholar 

  17. Acke DRJ, Orru RVA, Stevens CV (2006) Continuous synthesis of tri- and tetrasubstituted imidazoles via a multicomponent reaction under microreactor conditions. QSAR Comb Sci 25(5–6):474–483

    Article  CAS  Google Scholar 

  18. Schwalbe T, Golbig K, Hohmann M et al (2001) Miniaturized reaction apparatus. YMC Co Ltd, EP 1,123,734

    Google Scholar 

  19. Opatz T, Ferenc D (2005) Facile preparation of 3-amino-4-(arylamino)-1H-isochromen-1-ones by a new multicomponent reaction. Eur J Org Chem 5:817–821

    Article  Google Scholar 

  20. Acke DRJ, Stevens CV (2007) A HCN-based reaction under microreactor conditions: industrially feasible and continuous synthesis of 3, 4-diamino-1H-isochromen-1-ones. Green Chem 9(4):386–390

    Article  CAS  Google Scholar 

  21. Acke DRJ, Stevens CV, Roman BI (2008) Microreactor technology: continuous synthesis of 1H-isochromeno[3, 4-d]imidazol-5-ones. Org Process Res Dev 12(5):921–928

    Article  CAS  Google Scholar 

  22. Quiroga J, Mejia D, Insuasty B et al (2001) Regioselective synthesis of 4, 7, 8, 9-tetrahydro-2H-pyrazolo[3, 4-b]-quinolin-5(6H)-ones. Mechanism and structural analysis. Tetrahedron 57(32):6947–6953

    Article  CAS  Google Scholar 

  23. Lipson VV, Shirobokova MG, Shishkin OV et al (2006) Synthesis of partially hydrogenated pyrazolo[3, 4-b]quinolinones by condensation of 3-amino-5-methylpyrazole with aromatic aldehydes and dimedone. Russ J Org Chem 42(7):1015–1021

    Article  CAS  Google Scholar 

  24. Jairo Q, Braulio I, Angelina H et al (1998) Synthesis of 4-aryl-4, 7, 8, 9-tetrahydro-6H-pyrazolo[3, 4-b]quinolin-5-ones. J Heterocycl Chem 35(3):575–578

    Article  Google Scholar 

  25. Bremner WS, Organ MG (2007) Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9(1):14–16

    Article  CAS  Google Scholar 

  26. Nair V, Vinod AU, Abhilash N et al (2003) Multicomponent reactions involving zwitterionic intermediates for the construction of heterocyclic systems: one pot synthesis of aminofurans and iminolactones. Tetrahedron 59(51):10279–10286

    Article  CAS  Google Scholar 

  27. Skoda-Foldes R, Kollar L (2002) Synthetic applications of palladium catalysed carbonylation of organic halides. Curr Org Chem 6(12):1097–1119

    Article  CAS  Google Scholar 

  28. Boyarskii VP (2008) Catalytic systems for carbonylation of aryl halides. Russ J Gen Chem 78(9):1742–1753

    Article  CAS  Google Scholar 

  29. des Abbayes H, Salaun JY (2003) Double carbonylation and beyond: systems at work and their organometallic models. Dalton Trans 6:1041–1052

    Article  Google Scholar 

  30. Miller PW, Long NJ, de Mello AJ et al (2006) Rapid formation of amides via carbonylative coupling reactions using a microfluidic device. Chem Commun 5:546–548

    Article  Google Scholar 

  31. Murphy ER, Martinelli JR, Zaborenko N et al (2007) Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. Angew Chem Int Ed 46(10):1734–1737

    Article  CAS  Google Scholar 

  32. www.thalesnano.com/#. Accessed 15 Sept 2009

  33. Csajagi C, Borcsek B, Niesz K et al (2008) High-efficiency aminocarbonylation by introducing CO to a pressurized continuous flow reactor. Org Lett 10(8):1589–1592

    Article  CAS  Google Scholar 

  34. Balogh J, Kuik Á, Ürge L et al (2009) Double carbonylation of iodobenzene in a microfluidics-based high throughput flow reactor. J Mol Catal A Chem 302(1–2):76–79

    Article  CAS  Google Scholar 

  35. Rahman MT, Fukuyama T, Kamata N et al (2006) Low pressure Pd-catalyzed carbonylation in an ionic liquid using a multiphase microflow system. Chem Commun 21:2236–2238

    Article  Google Scholar 

  36. Fukuyama T, Rahman T, Kamata N et al (2009) Radical carbonylations using a continuous microflow system. Beilstein J Org Chem 5 No. 34

    Google Scholar 

  37. Curtius T (1894) 20. Hydrazide und Azide organischer Säuren I. Abhandlung. J Prakt Chem 50(1):275–294

    Article  CAS  Google Scholar 

  38. www.vapourtec.co.uk. Accessed 14 Sept 2009

  39. Baumann M, Baxendale IR, Ley SV et al (2008) A modular flow reactor for performingCurtius rearrangements as a continuous flow process. Org Biomol Chem 6(9):1577–1586

    Article  CAS  Google Scholar 

  40. Sahoo HR, Kralj JG, Jensen KF (2007) Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angew Chem Int Edit 46(30):5704–5708

    Article  CAS  Google Scholar 

  41. www.kinesis.co.uk. Accessed 14 Sept 2009

  42. Baxendale IR, Ley SV, Mansfield AC et al (2009) Multistep synthesis using modular flow reactors: Bestmann-Ohira reagent for the formation of alkynes and triazoles. Angew Chem Int Edit 48(22):4017–4021

    Article  CAS  Google Scholar 

  43. Muller S, Liepold B, Roth GJ et al (1996) An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett 6:521–522

    Article  Google Scholar 

  44. Smith CJ, Iglesias-Siguenza FJ, Baxendale IR et al (2007) Flow and batch mode focused microwave synthesis of 5-amino-4-cyanopyrazoles and their further conversion to 4-aminopyrazolopyrimidines. Org Biomol Chem 5(17):2758–2761

    Article  CAS  Google Scholar 

  45. Cablewski T, Faux AF, Strauss CR (1994) Development and application of a continuous microwave reactor for organic synthesis. J Org Chem 59(12):3408–3412

    Article  CAS  Google Scholar 

  46. Strauss CR (2009) A strategic, ‘green’ approach to organic chemistry with microwave assistance and predictive yield optimization as core, enabling technologies. Aust J Chem 62(1):3–15

    Article  CAS  Google Scholar 

  47. Groger H (2003) Catalytic enantioselective Strecker reactions and analogous syntheses. Chem Rev 103(8):2795–2827

    Article  Google Scholar 

  48. Wiles C, Watts P (2008) Evaluation of the heterogeneously catalyzed Strecker reaction conducted under continuous flow. Eur J Org Chem 33:5597–5613

    Article  Google Scholar 

  49. Enders D, Shilvock JP (2000) Some recent applications of alpha-amino nitrile chemistry. Chem Soc Rev 29(5):359–373

    Article  CAS  Google Scholar 

  50. Petasis N (2005) Multicomponent reactions with organoboron compounds. In: Zhu J, Bienaymé H (eds) Multicomponent reactions. Wiley-VCH, Weinheim, pp 199–223

    Chapter  Google Scholar 

  51. Yet L (2001) Recent developments in catalytic asymmetric Strecker-type reactions. Angew Chem Int Edit 40(5):875–877

    Article  CAS  Google Scholar 

  52. Seayad J, List B (2005) Catalytic asymmetric multicomponent reactions. In: Zhu J, Bienaymé H (eds) Multicomponent reactions. Wiley-VCH, Weinheim, pp 277–299

    Chapter  Google Scholar 

  53. Wiles C, Watts P (2008) An integrated microreactor for the multicomponent synthesis of alpha-aminonitriles. Org Process Res Dev 12(5):1001–1006

    Article  CAS  Google Scholar 

  54. Ugi I (1959) Versuche mit Isonitrilen. Angew Chem Int Edit 71(11):386–386

    Google Scholar 

  55. Hulme C (2005) Applications of multicomponent reactions in drug discovery – lead generation to process development. In: Zhu J, Bienaymé H (eds) Multicomponent reactions. Wiley-VCH, Weinheim, pp 311–341

    Chapter  Google Scholar 

  56. Mitchell MC, Spikmans V, Bessoth F et al (2000) Towards organic synthesis in microfluidic devices: multicomponent reactions for the construction of compound libraries. In: van den Berg A, Olthuis W, Bergveld P (eds) Micro total analysis systems, proceedings of the µTAS 2000 symposium. Springer, Netherlands, pp 463–466

    Google Scholar 

  57. Mitchell MC, Spikmans V, de Mello AJ (2001) Microchip-based synthesis and analysis: control of multicomponent reaction products and intermediates. Analyst 126(1):24–27

    Article  CAS  Google Scholar 

  58. Mitchell MC, Spikmans V, Manz A et al (2001) Microchip-based synthesis and total analysis systems (µSYNTAS): chemical microprocessing for generation and analysis of compound libraries. J Chem Soc Perkin Trans 1(5):514–518

    Article  Google Scholar 

  59. Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215

    Article  CAS  Google Scholar 

  60. Grant D, Dahl R, Cosford NDP (2008) Rapid multistep synthesis of 1, 2, 4-oxadiazoles in a single continuous microreactor sequence. J Org Chem 73(18):7219–7223

    Article  CAS  Google Scholar 

  61. Slassi A, Van Wagenen B, Stormann TM et al (2002) Heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists. NPS Pharmaceuticals, Inc. WO/2002/068417

    Google Scholar 

  62. Adib M, Jahromi AH, Tavoosi N et al (2006) Microwave-assisted efficient, one-pot, three-component synthesis of 3, 5-disubstituted 1, 2, 4-oxadiazoles under solvent-free conditions. Tetrahedron Lett 47(17):2965–2967

    Article  CAS  Google Scholar 

  63. Usutani H, Tomida Y, Nagaki A et al (2007) Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor. J Am Chem Soc 129(11):3046–3047

    Article  CAS  Google Scholar 

  64. Nagaki A, Tomida Y, Usutani H et al (2007) Integrated micro flow synthesis based on sequential Br-Li exchange reactions of p-, m-, and o-dibromobenzenes. Chem Asian J 2(12):1513–1523

    Article  CAS  Google Scholar 

  65. Nagaki A, Takabayashi N, Tomida Y et al (2009) Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems. Beilstein J Org Chem 5:11

    Article  Google Scholar 

  66. Ushiogi Y, Hase T, Iinuma Y et al (2007) Synthesis of photochromic diarylethenes using a microflow system. Chem Commun 28:2947–2949

    Article  Google Scholar 

  67. Peppercorn MA (1984) Sulfasalazine – pharmacology, clinical use, toxicity, and related new drug development. Ann Intern Med 101(3):377–386

    CAS  Google Scholar 

  68. Wootton RCR, Fortt R, de Mello AJ (2002) On-chip generation and reaction of unstable intermediates-monolithic nanoreactors for diazonium chemistry: azo dyes. Lab Chip 2(1):5–7

    Article  CAS  Google Scholar 

  69. McKervey MA, Miel H, Hodgson A (2008) Diazocarbonyls: versatile intermediates in chemical synthesis. SP2 7(9) http://www.almacgroup.com/papers/Papers/Diazocarbonyls%2024Oct2008.pdf. Accessed 17 Sept 2009

  70. Struempel M, Ondruschka B, Stark A (2009) Continuous production of the diazomethane precursor N-methyl-N-nitroso-p-toluenesulfonamide: batch optimization and transfer into a microreactor setup. Org Process Res Dev 13(5):1014–1021

    Article  CAS  Google Scholar 

  71. http://www.ltf-gmbh.de. Accessed 22 Sept 2009

  72. Struempel M, Ondruschka B, Daute R et al (2008) Making diazomethane accessible for R&D and industry: generation and direct conversion in a continuous micro-reactor set-up. Green Chem 10(1):41–43

    Article  CAS  Google Scholar 

  73. Suzuki M, Moriya T, Matsumoto K et al (1982) Synthesis of amino-acids and related compounds. 25. A new convenient synthesis of 5-amino-1, 3-thiazole-4-carboxylic acids. Synthesis 10:874–875

    Article  Google Scholar 

  74. Solomon DM, Rizvi RK, Kaminski JJ (1987) Observations on the reactions of isocyanoacetate esters with isothiocyanates and isocyanates. Heterocycles 26(3):651–674

    Article  CAS  Google Scholar 

  75. Baxendale IR, Ley SV, Smith CD et al (2008) A bifurcated pathway to thiazoles and imidazoles using a modular flow microreactor. J Comb Chem 10(6):851–857

    Article  CAS  Google Scholar 

  76. Baxendale IR, Deeley J, Griffiths-Jones CM et al (2006) A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. Chem Commun 24:2566–2568

    Article  Google Scholar 

  77. Weniger B, Italiano L, Beck JP et al (1995) Cytotoxic activity of Amaryllidaceae alkaloids. Planta Med 61(1):77–79

    Article  CAS  Google Scholar 

  78. Herrera MR, Machocho AK, Brun R et al (2001) Crinane and lycorane type alkaloids from Zephyranthes citrina. Planta Med 67(2):191–193

    Article  CAS  Google Scholar 

  79. Ley SV, Schucht O, Thomas AW et al (1999) Synthesis of the alkaloids (+/-)-oxomaritidine and (+/-)-epimaritidine using an orchestrated multi-step sequence of polymer supported reagents. J Chem Soc Perkin Trans 1(10):1251–1252

    Article  Google Scholar 

  80. Cordova A (2004) The direct catalytic asymmetric cross-Mannich reaction: a highly enantioselective route to 3-amino alcohols and alpha-amino acid derivatives. Chem Eur J 10(8):1987–1997

    Article  CAS  Google Scholar 

  81. Cordova A, Notz W, Zhong GF et al (2002) A highly enantioselective amino acid-catalyzed route to functionalized alpha-amino acids. J Am Chem Soc 124(9):1842–1843

    Article  CAS  Google Scholar 

  82. List B (2000) The direct catalytic asymmetric three-component Mannich reaction. J Am Chem Soc 122(38):9336–9337

    Article  CAS  Google Scholar 

  83. Notz W, Tanaka F, Barbas CF (2004) Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels-Alder reactions. Acc Chem Res 37(8):580–591

    Article  CAS  Google Scholar 

  84. Odedra A, Seeberger PH (2009) 5-(Pyrrolidin-2yl)tetrazole-catalyzed aldol and Mannich reactions: acceleration and lower catalyst loading in a continuous-flow reactor. Angew Chem Int Edit 48(15):2699–2702

    Article  CAS  Google Scholar 

  85. Morita K, Suzuki Z, Hirose H (1968) A tertiary phosphine-catalyzed reaction of acrylic compounds with aldehydes. Bull Chem Soc Jpn 41(11):2815–2815

    Article  CAS  Google Scholar 

  86. Baylis AB, Hillman MED (1972) Acrylic compounds. Celanese Corp. DE 2155113

    Google Scholar 

  87. Declerck V, Martinez J, Lamaty F (2009) Aza-Baylis-Hillman reaction. Chem Rev 109(1):1–48

    Article  CAS  Google Scholar 

  88. Shi Y-L, Shi M (2007) Aza-Baylis-Hillman reactions and their synthetic applications. Eur J Org Chem 18:2905–2916

    Article  Google Scholar 

  89. Acke D (2007) Evaluation of microreactor technology for multicomponent reactions. PhD thesis. Organic Chemistry Department, Faculty of Bioscience Engineering, Ghent University, Belgium

    Google Scholar 

  90. Perlmutter P, Teo CC (1984) A simple synthesis of 2-methylidene-3-aminopropanoates. Tetrahedron Lett 25(51):5951–5952

    Article  CAS  Google Scholar 

  91. Bertenshaw S, Kahn M (1989) Phosphine mediated synthesis of 2-methylidene-3-amino esters and ketones. Tetrahedron Lett 30(21):2731–2732

    Article  CAS  Google Scholar 

  92. Ribiere P, Yadav-Bhatnagar N, Martinez J et al (2004) Microwave-assisted aza-Baylis-Hillman reaction preparation of poly(ethylene glycol) supported alpha-methylene-beta-aminoester. QSAR Comb Sci 23(10):911–914

    Article  CAS  Google Scholar 

  93. Acke DRJ, Stevens CV (2006) Study of the Baylis-Hillman reaction in a microreactor environment: first continuous production of Baylis-Hillman adducts. Org Process Res Dev 10(3):417–422

    Article  CAS  Google Scholar 

  94. Kabachnik MI, Medved TY (1952) New synthesis of aminophosphonic acids. Dokl Akad Nauk SSSR 83:689–692

    CAS  Google Scholar 

  95. Fields EK (1952) The synthesis of esters of substituted amino phosphonic acids. J Am Chem Soc 74(6):1528–1531

    Article  CAS  Google Scholar 

  96. Pudovik AN (1952) Addition of dialkyl phosphites to imines. New method of synthesis of esters of amino phosphonic acids. Dokl Akad Nauk SSSR 83:865–868

    CAS  Google Scholar 

  97. Zefirov NS, Matveeva ED (2008) Catalytic Kabachnik-Fields reaction: new horizons for old reaction. ARKIVOC i:1–17

    Google Scholar 

  98. Van Meenen E, Moonen K, Acke D et al (2006) Straightforward continuous synthesis of alpha-aminophosphonates under microreactor conditions. ARKIVOC i:31–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian V. Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cukalovic, A., Monbaliu, JC.M.R., Stevens, C.V. (2010). Microreactor Technology as an Efficient Tool for Multicomponent Reactions. In: Orru, R., Ruijter, E. (eds) Synthesis of Heterocycles via Multicomponent Reactions I. Topics in Heterocyclic Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2009_22

Download citation

Publish with us

Policies and ethics