Microreactor Technology as an Efficient Tool for Multicomponent Reactions

  • Ana Cukalovic
  • Jean-Christophe M. R. Monbaliu
  • Christian V. Stevens
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 23)

Abstract

Multicomponent reactions are an important tool in organic synthesis as they often allow the circumvention of multistep procedures by combining three or more molecules into one structure in a single step. An additional asset of the approach is the significant increase of the combinatorial possibilities, since a modification of the final product is easily accomplished by implementing minor changes in the reaction setup; this obviously allows considerable savings in time and resources. These advantages are of particular interest in pharmaceutical research for the construction of libraries. In order to increase the sustainability of chemical processes, the field is intensively explored, and novel reactions are frequently reported. Microreactor technology also offers a contemporary way of conducting chemical reactions in a more sustainable fashion due to the miniaturization and increased safety, and also in a technically improved manner due to intensified process efficiency. This relatively new technology is implemented in novel and improved applications and is getting more and more used in chemical research. The combination of the benefits from the two approaches clearly presents an attractive reaction design, and this chapter presents an overview of the reported examples in which the microreactor technology and the multicomponent approach are combined, usually with dramatically improved results compared to those previously reported.

Keywords

Continuous flow Heterocycles Microreactor Multicomponent reactions Sustainable processes 

Abbreviations

A-15

Amberlyst 15

A-21

Amberlyst 21

Bn

Benzyl

Boc

tert-Butoxycarbonyl

Bu

Butyl

CFC

Convection-flow coil

DABCO

1,4-Diazabicyclo[2.2.2]octane

DBU

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCM

Dichloromethane

DMF

Dimethylformamide

DPPA

Diphenylphosphoryl azide

ee

Enantiomeric excess

GC

Gas chromatography

HPLC

High pressure liquid chromatography/high performance liquid chromatography

i.d.

Internal diameter

MACOS

Microwave-assisted continuous flow organic synthesis

Me

Methyl

MNTS

N-Methyl-N-nitroso-p-toluenesulfonamide

MR

Microreactor

MW

Microwave

PEEK

Polyether ether ketone

PFA

Poly(fluoroacetate)

PMP

p-Methoxy-phenyl

PS-BEMP

Polymer-supported 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine

PSP

Polymer-supported tetra-N-alkylammonium perruthenate

PS-PIFA

Polymer-supported (ditrifluoroacetoxyiodo)benzene

PTFE

Polytetrafluoroethylene

TEMPO

2,2,6,6-Tetramethylpiperidine-1-oxyl

TMSCN

Trimethylsilyl cyanide

TOF-MS

Time-of-flight mass spectrometry

TTMSS

Tris(trimethylsilyl)silane

μSYNTAS

Miniaturised synthesis and total analysis system

References

  1. 1.
    Strecker A (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Ann Chem Pharm 75(1):27–45CrossRefGoogle Scholar
  2. 2.
    Hantzsch A (1882) Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Liebigs Ann Chem 215(1):1–82CrossRefGoogle Scholar
  3. 3.
    Biginelli P (1893) Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz Chim Ital 23:360–413Google Scholar
  4. 4.
    Mannich C, Krösche W (1912) Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch Pharm 250(1):647–667CrossRefGoogle Scholar
  5. 5.
    Passerini M, Simone L (1921) Sopra gli Isonitrili (I). Composto del p-Isonitrilazobenzolo con Acetone ed Acido Acetico. Gazz Chim Ital 51:126–129Google Scholar
  6. 6.
    Bienaymé H, Hulme C, Oddon G et al (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6(18):3321–3329CrossRefGoogle Scholar
  7. 7.
    Syamala M (2005) A decade of advances in three-component reactions. A review. Org Prep Proced Int 37(2):103–171CrossRefGoogle Scholar
  8. 8.
    Syamala M (2009) Recent progress in three-component reactions. An update. Org Prep Proced Int 41(1):1–68CrossRefGoogle Scholar
  9. 9.
    Zhu J, Bienaymé H (eds) (2005) Multicomponent reactions. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Löhder W, Bergann L (1986) Akademie der Wissenschaften der DDR. DD 246, 257Google Scholar
  11. 11.
    Watts P, Wiles C (2007) Recent advances in synthetic micro reaction technology. Chem Commun 5:443–467CrossRefGoogle Scholar
  12. 12.
    Roberge DM, Ducry L, Bieler N et al (2005) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol 28(3):318–323CrossRefGoogle Scholar
  13. 13.
    Roberge DM, Zimmermann B, Rainone F et al (2008) Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: is the revolution underway? Org Process Res Dev 12(5):905–910CrossRefGoogle Scholar
  14. 14.
    www.syrris.com/. Accessed 14 Sept 2009
  15. 15.
    Syrris Ltd (2007) Africa application notes, reaction optimisation (1) http://www.johnmorris.com.au/inetstore/item/321431_opt7.pdf. Accessed 10 Sept 2009
  16. 16.
    Gelens E, De Kanter FJJ, Schmitz RF et al (2006) Efficient library synthesis of imidazoles using a multicomponent reaction and microwave irradiation. Mol Divers 10(1):17–22CrossRefGoogle Scholar
  17. 17.
    Acke DRJ, Orru RVA, Stevens CV (2006) Continuous synthesis of tri- and tetrasubstituted imidazoles via a multicomponent reaction under microreactor conditions. QSAR Comb Sci 25(5–6):474–483CrossRefGoogle Scholar
  18. 18.
    Schwalbe T, Golbig K, Hohmann M et al (2001) Miniaturized reaction apparatus. YMC Co Ltd, EP 1,123,734Google Scholar
  19. 19.
    Opatz T, Ferenc D (2005) Facile preparation of 3-amino-4-(arylamino)-1H-isochromen-1-ones by a new multicomponent reaction. Eur J Org Chem 5:817–821CrossRefGoogle Scholar
  20. 20.
    Acke DRJ, Stevens CV (2007) A HCN-based reaction under microreactor conditions: industrially feasible and continuous synthesis of 3, 4-diamino-1H-isochromen-1-ones. Green Chem 9(4):386–390CrossRefGoogle Scholar
  21. 21.
    Acke DRJ, Stevens CV, Roman BI (2008) Microreactor technology: continuous synthesis of 1H-isochromeno[3, 4-d]imidazol-5-ones. Org Process Res Dev 12(5):921–928CrossRefGoogle Scholar
  22. 22.
    Quiroga J, Mejia D, Insuasty B et al (2001) Regioselective synthesis of 4, 7, 8, 9-tetrahydro-2H-pyrazolo[3, 4-b]-quinolin-5(6H)-ones. Mechanism and structural analysis. Tetrahedron 57(32):6947–6953CrossRefGoogle Scholar
  23. 23.
    Lipson VV, Shirobokova MG, Shishkin OV et al (2006) Synthesis of partially hydrogenated pyrazolo[3, 4-b]quinolinones by condensation of 3-amino-5-methylpyrazole with aromatic aldehydes and dimedone. Russ J Org Chem 42(7):1015–1021CrossRefGoogle Scholar
  24. 24.
    Jairo Q, Braulio I, Angelina H et al (1998) Synthesis of 4-aryl-4, 7, 8, 9-tetrahydro-6H-pyrazolo[3, 4-b]quinolin-5-ones. J Heterocycl Chem 35(3):575–578CrossRefGoogle Scholar
  25. 25.
    Bremner WS, Organ MG (2007) Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9(1):14–16CrossRefGoogle Scholar
  26. 26.
    Nair V, Vinod AU, Abhilash N et al (2003) Multicomponent reactions involving zwitterionic intermediates for the construction of heterocyclic systems: one pot synthesis of aminofurans and iminolactones. Tetrahedron 59(51):10279–10286CrossRefGoogle Scholar
  27. 27.
    Skoda-Foldes R, Kollar L (2002) Synthetic applications of palladium catalysed carbonylation of organic halides. Curr Org Chem 6(12):1097–1119CrossRefGoogle Scholar
  28. 28.
    Boyarskii VP (2008) Catalytic systems for carbonylation of aryl halides. Russ J Gen Chem 78(9):1742–1753CrossRefGoogle Scholar
  29. 29.
    des Abbayes H, Salaun JY (2003) Double carbonylation and beyond: systems at work and their organometallic models. Dalton Trans 6:1041–1052CrossRefGoogle Scholar
  30. 30.
    Miller PW, Long NJ, de Mello AJ et al (2006) Rapid formation of amides via carbonylative coupling reactions using a microfluidic device. Chem Commun 5:546–548CrossRefGoogle Scholar
  31. 31.
    Murphy ER, Martinelli JR, Zaborenko N et al (2007) Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. Angew Chem Int Ed 46(10):1734–1737CrossRefGoogle Scholar
  32. 32.
    www.thalesnano.com/#. Accessed 15 Sept 2009
  33. 33.
    Csajagi C, Borcsek B, Niesz K et al (2008) High-efficiency aminocarbonylation by introducing CO to a pressurized continuous flow reactor. Org Lett 10(8):1589–1592CrossRefGoogle Scholar
  34. 34.
    Balogh J, Kuik Á, Ürge L et al (2009) Double carbonylation of iodobenzene in a microfluidics-based high throughput flow reactor. J Mol Catal A Chem 302(1–2):76–79CrossRefGoogle Scholar
  35. 35.
    Rahman MT, Fukuyama T, Kamata N et al (2006) Low pressure Pd-catalyzed carbonylation in an ionic liquid using a multiphase microflow system. Chem Commun 21:2236–2238CrossRefGoogle Scholar
  36. 36.
    Fukuyama T, Rahman T, Kamata N et al (2009) Radical carbonylations using a continuous microflow system. Beilstein J Org Chem 5 No. 34Google Scholar
  37. 37.
    Curtius T (1894) 20. Hydrazide und Azide organischer Säuren I. Abhandlung. J Prakt Chem 50(1):275–294CrossRefGoogle Scholar
  38. 38.
    www.vapourtec.co.uk. Accessed 14 Sept 2009
  39. 39.
    Baumann M, Baxendale IR, Ley SV et al (2008) A modular flow reactor for performingCurtius rearrangements as a continuous flow process. Org Biomol Chem 6(9):1577–1586CrossRefGoogle Scholar
  40. 40.
    Sahoo HR, Kralj JG, Jensen KF (2007) Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angew Chem Int Edit 46(30):5704–5708CrossRefGoogle Scholar
  41. 41.
    www.kinesis.co.uk. Accessed 14 Sept 2009
  42. 42.
    Baxendale IR, Ley SV, Mansfield AC et al (2009) Multistep synthesis using modular flow reactors: Bestmann-Ohira reagent for the formation of alkynes and triazoles. Angew Chem Int Edit 48(22):4017–4021CrossRefGoogle Scholar
  43. 43.
    Muller S, Liepold B, Roth GJ et al (1996) An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett 6:521–522CrossRefGoogle Scholar
  44. 44.
    Smith CJ, Iglesias-Siguenza FJ, Baxendale IR et al (2007) Flow and batch mode focused microwave synthesis of 5-amino-4-cyanopyrazoles and their further conversion to 4-aminopyrazolopyrimidines. Org Biomol Chem 5(17):2758–2761CrossRefGoogle Scholar
  45. 45.
    Cablewski T, Faux AF, Strauss CR (1994) Development and application of a continuous microwave reactor for organic synthesis. J Org Chem 59(12):3408–3412CrossRefGoogle Scholar
  46. 46.
    Strauss CR (2009) A strategic, ‘green’ approach to organic chemistry with microwave assistance and predictive yield optimization as core, enabling technologies. Aust J Chem 62(1):3–15CrossRefGoogle Scholar
  47. 47.
    Groger H (2003) Catalytic enantioselective Strecker reactions and analogous syntheses. Chem Rev 103(8):2795–2827CrossRefGoogle Scholar
  48. 48.
    Wiles C, Watts P (2008) Evaluation of the heterogeneously catalyzed Strecker reaction conducted under continuous flow. Eur J Org Chem 33:5597–5613CrossRefGoogle Scholar
  49. 49.
    Enders D, Shilvock JP (2000) Some recent applications of alpha-amino nitrile chemistry. Chem Soc Rev 29(5):359–373CrossRefGoogle Scholar
  50. 50.
    Petasis N (2005) Multicomponent reactions with organoboron compounds. In: Zhu J, Bienaymé H (eds) Multicomponent reactions. Wiley-VCH, Weinheim, pp 199–223CrossRefGoogle Scholar
  51. 51.
    Yet L (2001) Recent developments in catalytic asymmetric Strecker-type reactions. Angew Chem Int Edit 40(5):875–877CrossRefGoogle Scholar
  52. 52.
    Seayad J, List B (2005) Catalytic asymmetric multicomponent reactions. In: Zhu J, Bienaymé H (eds) Multicomponent reactions. Wiley-VCH, Weinheim, pp 277–299CrossRefGoogle Scholar
  53. 53.
    Wiles C, Watts P (2008) An integrated microreactor for the multicomponent synthesis of alpha-aminonitriles. Org Process Res Dev 12(5):1001–1006CrossRefGoogle Scholar
  54. 54.
    Ugi I (1959) Versuche mit Isonitrilen. Angew Chem Int Edit 71(11):386–386Google Scholar
  55. 55.
    Hulme C (2005) Applications of multicomponent reactions in drug discovery – lead generation to process development. In: Zhu J, Bienaymé H (eds) Multicomponent reactions. Wiley-VCH, Weinheim, pp 311–341CrossRefGoogle Scholar
  56. 56.
    Mitchell MC, Spikmans V, Bessoth F et al (2000) Towards organic synthesis in microfluidic devices: multicomponent reactions for the construction of compound libraries. In: van den Berg A, Olthuis W, Bergveld P (eds) Micro total analysis systems, proceedings of the µTAS 2000 symposium. Springer, Netherlands, pp 463–466Google Scholar
  57. 57.
    Mitchell MC, Spikmans V, de Mello AJ (2001) Microchip-based synthesis and analysis: control of multicomponent reaction products and intermediates. Analyst 126(1):24–27CrossRefGoogle Scholar
  58. 58.
    Mitchell MC, Spikmans V, Manz A et al (2001) Microchip-based synthesis and total analysis systems (µSYNTAS): chemical microprocessing for generation and analysis of compound libraries. J Chem Soc Perkin Trans 1(5):514–518CrossRefGoogle Scholar
  59. 59.
    Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215CrossRefGoogle Scholar
  60. 60.
    Grant D, Dahl R, Cosford NDP (2008) Rapid multistep synthesis of 1, 2, 4-oxadiazoles in a single continuous microreactor sequence. J Org Chem 73(18):7219–7223CrossRefGoogle Scholar
  61. 61.
    Slassi A, Van Wagenen B, Stormann TM et al (2002) Heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists. NPS Pharmaceuticals, Inc. WO/2002/068417Google Scholar
  62. 62.
    Adib M, Jahromi AH, Tavoosi N et al (2006) Microwave-assisted efficient, one-pot, three-component synthesis of 3, 5-disubstituted 1, 2, 4-oxadiazoles under solvent-free conditions. Tetrahedron Lett 47(17):2965–2967CrossRefGoogle Scholar
  63. 63.
    Usutani H, Tomida Y, Nagaki A et al (2007) Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor. J Am Chem Soc 129(11):3046–3047CrossRefGoogle Scholar
  64. 64.
    Nagaki A, Tomida Y, Usutani H et al (2007) Integrated micro flow synthesis based on sequential Br-Li exchange reactions of p-, m-, and o-dibromobenzenes. Chem Asian J 2(12):1513–1523CrossRefGoogle Scholar
  65. 65.
    Nagaki A, Takabayashi N, Tomida Y et al (2009) Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems. Beilstein J Org Chem 5:11CrossRefGoogle Scholar
  66. 66.
    Ushiogi Y, Hase T, Iinuma Y et al (2007) Synthesis of photochromic diarylethenes using a microflow system. Chem Commun 28:2947–2949CrossRefGoogle Scholar
  67. 67.
    Peppercorn MA (1984) Sulfasalazine – pharmacology, clinical use, toxicity, and related new drug development. Ann Intern Med 101(3):377–386Google Scholar
  68. 68.
    Wootton RCR, Fortt R, de Mello AJ (2002) On-chip generation and reaction of unstable intermediates-monolithic nanoreactors for diazonium chemistry: azo dyes. Lab Chip 2(1):5–7CrossRefGoogle Scholar
  69. 69.
    McKervey MA, Miel H, Hodgson A (2008) Diazocarbonyls: versatile intermediates in chemical synthesis. SP2 7(9) http://www.almacgroup.com/papers/Papers/Diazocarbonyls%2024Oct2008.pdf. Accessed 17 Sept 2009
  70. 70.
    Struempel M, Ondruschka B, Stark A (2009) Continuous production of the diazomethane precursor N-methyl-N-nitroso-p-toluenesulfonamide: batch optimization and transfer into a microreactor setup. Org Process Res Dev 13(5):1014–1021CrossRefGoogle Scholar
  71. 71.
    http://www.ltf-gmbh.de. Accessed 22 Sept 2009
  72. 72.
    Struempel M, Ondruschka B, Daute R et al (2008) Making diazomethane accessible for R&D and industry: generation and direct conversion in a continuous micro-reactor set-up. Green Chem 10(1):41–43CrossRefGoogle Scholar
  73. 73.
    Suzuki M, Moriya T, Matsumoto K et al (1982) Synthesis of amino-acids and related compounds. 25. A new convenient synthesis of 5-amino-1, 3-thiazole-4-carboxylic acids. Synthesis 10:874–875CrossRefGoogle Scholar
  74. 74.
    Solomon DM, Rizvi RK, Kaminski JJ (1987) Observations on the reactions of isocyanoacetate esters with isothiocyanates and isocyanates. Heterocycles 26(3):651–674CrossRefGoogle Scholar
  75. 75.
    Baxendale IR, Ley SV, Smith CD et al (2008) A bifurcated pathway to thiazoles and imidazoles using a modular flow microreactor. J Comb Chem 10(6):851–857CrossRefGoogle Scholar
  76. 76.
    Baxendale IR, Deeley J, Griffiths-Jones CM et al (2006) A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. Chem Commun 24:2566–2568CrossRefGoogle Scholar
  77. 77.
    Weniger B, Italiano L, Beck JP et al (1995) Cytotoxic activity of Amaryllidaceae alkaloids. Planta Med 61(1):77–79CrossRefGoogle Scholar
  78. 78.
    Herrera MR, Machocho AK, Brun R et al (2001) Crinane and lycorane type alkaloids from Zephyranthes citrina. Planta Med 67(2):191–193CrossRefGoogle Scholar
  79. 79.
    Ley SV, Schucht O, Thomas AW et al (1999) Synthesis of the alkaloids (+/-)-oxomaritidine and (+/-)-epimaritidine using an orchestrated multi-step sequence of polymer supported reagents. J Chem Soc Perkin Trans 1(10):1251–1252CrossRefGoogle Scholar
  80. 80.
    Cordova A (2004) The direct catalytic asymmetric cross-Mannich reaction: a highly enantioselective route to 3-amino alcohols and alpha-amino acid derivatives. Chem Eur J 10(8):1987–1997CrossRefGoogle Scholar
  81. 81.
    Cordova A, Notz W, Zhong GF et al (2002) A highly enantioselective amino acid-catalyzed route to functionalized alpha-amino acids. J Am Chem Soc 124(9):1842–1843CrossRefGoogle Scholar
  82. 82.
    List B (2000) The direct catalytic asymmetric three-component Mannich reaction. J Am Chem Soc 122(38):9336–9337CrossRefGoogle Scholar
  83. 83.
    Notz W, Tanaka F, Barbas CF (2004) Enamine-based organocatalysis with proline and diamines: the development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels-Alder reactions. Acc Chem Res 37(8):580–591CrossRefGoogle Scholar
  84. 84.
    Odedra A, Seeberger PH (2009) 5-(Pyrrolidin-2yl)tetrazole-catalyzed aldol and Mannich reactions: acceleration and lower catalyst loading in a continuous-flow reactor. Angew Chem Int Edit 48(15):2699–2702CrossRefGoogle Scholar
  85. 85.
    Morita K, Suzuki Z, Hirose H (1968) A tertiary phosphine-catalyzed reaction of acrylic compounds with aldehydes. Bull Chem Soc Jpn 41(11):2815–2815CrossRefGoogle Scholar
  86. 86.
    Baylis AB, Hillman MED (1972) Acrylic compounds. Celanese Corp. DE 2155113Google Scholar
  87. 87.
    Declerck V, Martinez J, Lamaty F (2009) Aza-Baylis-Hillman reaction. Chem Rev 109(1):1–48CrossRefGoogle Scholar
  88. 88.
    Shi Y-L, Shi M (2007) Aza-Baylis-Hillman reactions and their synthetic applications. Eur J Org Chem 18:2905–2916CrossRefGoogle Scholar
  89. 89.
    Acke D (2007) Evaluation of microreactor technology for multicomponent reactions. PhD thesis. Organic Chemistry Department, Faculty of Bioscience Engineering, Ghent University, BelgiumGoogle Scholar
  90. 90.
    Perlmutter P, Teo CC (1984) A simple synthesis of 2-methylidene-3-aminopropanoates. Tetrahedron Lett 25(51):5951–5952CrossRefGoogle Scholar
  91. 91.
    Bertenshaw S, Kahn M (1989) Phosphine mediated synthesis of 2-methylidene-3-amino esters and ketones. Tetrahedron Lett 30(21):2731–2732CrossRefGoogle Scholar
  92. 92.
    Ribiere P, Yadav-Bhatnagar N, Martinez J et al (2004) Microwave-assisted aza-Baylis-Hillman reaction preparation of poly(ethylene glycol) supported alpha-methylene-beta-aminoester. QSAR Comb Sci 23(10):911–914CrossRefGoogle Scholar
  93. 93.
    Acke DRJ, Stevens CV (2006) Study of the Baylis-Hillman reaction in a microreactor environment: first continuous production of Baylis-Hillman adducts. Org Process Res Dev 10(3):417–422CrossRefGoogle Scholar
  94. 94.
    Kabachnik MI, Medved TY (1952) New synthesis of aminophosphonic acids. Dokl Akad Nauk SSSR 83:689–692Google Scholar
  95. 95.
    Fields EK (1952) The synthesis of esters of substituted amino phosphonic acids. J Am Chem Soc 74(6):1528–1531CrossRefGoogle Scholar
  96. 96.
    Pudovik AN (1952) Addition of dialkyl phosphites to imines. New method of synthesis of esters of amino phosphonic acids. Dokl Akad Nauk SSSR 83:865–868Google Scholar
  97. 97.
    Zefirov NS, Matveeva ED (2008) Catalytic Kabachnik-Fields reaction: new horizons for old reaction. ARKIVOC i:1–17Google Scholar
  98. 98.
    Van Meenen E, Moonen K, Acke D et al (2006) Straightforward continuous synthesis of alpha-aminophosphonates under microreactor conditions. ARKIVOC i:31–45Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ana Cukalovic
    • 1
  • Jean-Christophe M. R. Monbaliu
    • 1
  • Christian V. Stevens
    • 1
  1. 1.Research Group SynBioC, Organic Chemistry Department, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations