Skip to main content

Computational Studies on the Synthesis of β-Lactams via [2+2] Thermal Cycloadditions

  • Chapter
  • First Online:
Heterocyclic Scaffolds I

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 22))

Abstract

The main computational studies on the formation of β-lactams through [2+2] cycloadditions published during 1992–2008 are reported with special emphasis on the mechanistic and selectivity aspects of these reactions. Disconnection of the N1-C2 and C3–C4 bonds of the azetidin-2-one ring leads to the reaction between ketenes and imines. Computational and experimental results point to a stepwise mechanism for this reaction. The first step consists of a nucleophilic attack of the iminic nitrogen on the sp-hybridized carbon atom of the ketene. The zwitterionic intermediate thus formed yields the corresponding β-lactam by means of a four-electron conrotatoty electrocyclization. The steroecontrol and the periselectivity of the reaction support this two-step mechanism. The [2+2] cycloaddition between isocyanates and alkenes takes place via a concerted (but asynchronous) mechanism that can be interpreted in terms of a [π2s + (π2s + π2s)] interaction between both reactants. Both the regio and the stereochemistry observed are compatible with this computational model. However, the combination of solvent and substituent effects can result in a stepwise mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM1:

Austin Model 1

B3LYP:

Hybrid three-parameter functional derived by Becke, Lee, Yang and Parr

CASSCF:

Completely active space self-consistent field

CI-HE:

Configuration interaction-half electron method

DFT:

Density-functional theory

ECP:

Effective core potential

MNDO:

Minor neglect of differential overlap

MO:

Molecular orbital

MPn :

n th order Møller-Plesset expansion

PCM:

Polarization continuum model

PM3:

Third parametrization of MNDO

RHF:

Restricted Hartree-Fock

SCF:

Self-consistent field

SCRF:

Self-consistent reaction field

UHF:

Unrestricted Hartree-Fock

ZPVE:

Zero-point vibrational energy

References

  1. Georg GI (1993) The organic chemistry of β-lactams. VCH, New York

    Google Scholar 

  2. Katritzky AR, Rees CW, Scriven EFV (eds) (1996) Comprehensive heterocyclic chemistry II. Vol. 1B. Pergamon, New York, pp 507–720

    Google Scholar 

  3. Bruggink A (ed) (2001) Synthesis of β-lactams antibiotics. Chemistry, biocatalysis and process integration. Kluwer, Dordrecht

    Google Scholar 

  4. Singh GS (2003) Tetrahedron 59:7631

    CAS  Google Scholar 

  5. Magriotis PA (2001) Angew Chem Int Ed 40:23

    Google Scholar 

  6. France S, Weatherwax A, Taggi AE, Lectka T (2004) Acc Chem Res 37:592

    CAS  Google Scholar 

  7. Palomo C, Aizpurua JM, Ganboa I, Oiarbide M (1999) Eur J Org Chem 3223

    Google Scholar 

  8. Palomo C, Aizpurua JM, Ganboa I, Oiarbide M (2004) Curr Med Chem 11:1837

    CAS  Google Scholar 

  9. Gómez-Gallego M, Mancheño MJ, Sierra MA (2000) Tetrahedron 56:5743

    Google Scholar 

  10. Audier HE, Fétizon M, Kagan HB, Luche JL (1967) Bull Soc Chim Fr 2297

    Google Scholar 

  11. Palomo C, Cossío FP, Odriozola JM, Oiarbide M, Ontoria JM (1991) J Org Chem 56:4418

    CAS  Google Scholar 

  12. Staudinger H (1908) Liebigs Ann Chem 356:51

    CAS  Google Scholar 

  13. Tidwell TT (2006) Ketenes II. Wiley, Hoboken, pp 500–513

    Google Scholar 

  14. Fu N, Tidwell TT (2008) Tetrahedron 64:10465

    CAS  Google Scholar 

  15. Cossío, FP, Arrieta A., Sierra MA (2008) Acc Chem Res 41:925

    Google Scholar 

  16. Graf R (1963) Ann 661:111

    CAS  Google Scholar 

  17. Moriconi EJ, Kelly JF (1986) J Am Chem Soc 88:3657

    Google Scholar 

  18. Oligaruso MA, Wolfe JF (1993) In: Patai S, Rappoport Z (eds) Synthesis of lactones and lactams. Wiley, Chichester, pp 162–168

    Google Scholar 

  19. Borsuk K, Kazimierski A, Solecka J, Urbanczyk-Lipkowska Z, Chmieleswski M (2002) Carbohydrate Res 337:2005

    CAS  Google Scholar 

  20. Woodward RB, Hoffmann R (1969) Angew Chem Int Ed Engl 8:781

    CAS  Google Scholar 

  21. Cooper RDG, Daugherty BW, Boyd DB (1987) Pure Appl Chem 59:485

    CAS  Google Scholar 

  22. Fang DC, Fu XY (1992) Int J Quantum Chem 43:669

    CAS  Google Scholar 

  23. Xu ZF, Fang DC, Fu XY (1994) J Mol Struc (Theochem) 305:191

    Google Scholar 

  24. Assfeld X, Lopez R, Ruiz-Lopez MF, González J, Sordo TL, Sordo JA (1995) J Mol Struct (Theochem) 331:1

    CAS  Google Scholar 

  25. Sordo JA, González J, Sordo TL (1992) J Am Chem Soc 114:6249

    CAS  Google Scholar 

  26. Cossío FP, Ugalde JM, Lopez X, Lecea B, Palomo C (1993) J Am Chem Soc 115:995

    Google Scholar 

  27. Venturini A, González J (2002) J Org Chem 67:9089

    CAS  Google Scholar 

  28. Pancasky J, Chang JS, Brown DW, Schwarz WJ (1982) J Org Chem 47:2233

    Google Scholar 

  29. Couturier-Tamburelli I, Aycard J-P, Wong MW, Wentrup C (2000) J Phys Chem A 104:3466

    CAS  Google Scholar 

  30. Bandini E, Martelli G, Spunta G, Bongini A, Pannunzio M (1996) Tetrahedron Lett 37:4409

    CAS  Google Scholar 

  31. Bandini E, Martelli G, Spunta G, Bongini A, Pannunzio M (1996) Synlett 1017

    Google Scholar 

  32. Bandini E, Favi G, Martelli G, Pannunzio M, Piersanti G (2000) Org Lett 2:1077

    CAS  Google Scholar 

  33. Pannunzio M, Bongini A, Tamanini E, Campana E, Martelli G, Vicennati P, Zanardi I (2003) Tetrahedron 59:9577

    Google Scholar 

  34. Dolrier WR Jr, Korionak H, Houk KN, Sheu C (1996) Acc Chem Res 29:471

    Google Scholar 

  35. Kirmse W, Rondan NG, Houk KN (1984) J Am Chem Soc 106:7989

    CAS  Google Scholar 

  36. Rondan NG, Houk KN (1985) J Am Chem Soc 107:2099

    CAS  Google Scholar 

  37. Niwayama S, Kallel EA, Spellmeyer DC, Sheu C, Houk KN (1996) J Org Chem 61:2813

    CAS  Google Scholar 

  38. Assfeld X, Sordo JA, González J, Ruiz-López MF, Sordo TL (1993) J Mol Struct (Theochem) 287:193

    Google Scholar 

  39. Assfeld X, Ruiz-López MF, González J, López R, Sordo JA, Sordo TL (1994) J Comput Chem 15:479

    CAS  Google Scholar 

  40. Barcza MV, Carneiro JW de M, Serra AA, Barboza JCS (1997) J Mol Struct (Theochem) 394:281

    CAS  Google Scholar 

  41. Moore HW, Hughes G, Srinivasachar K, Fernandez M, Nguyen NV, Schoon D, Tranne A (1985) J Org Chem 50:4231

    CAS  Google Scholar 

  42. Arrrastia I, Arrieta A, Ugalde JM, Cossío FP, Lecea B (1994) Tetrahedron Lett 35:7825

    Google Scholar 

  43. Lecea B; Arrastia I, Arrieta A, Roa G, Lopez X, Arriortua MI, Ugalde JM, Cossío FP (1996) J Org Chem 61:3070

    CAS  Google Scholar 

  44. Rossi E, Abbiati G, Pini E (1997) Tetrahedron 44:14107

    Google Scholar 

  45. Mazumdar SN, Mahanan MP (1991) Tetrahedron 47:1473

    CAS  Google Scholar 

  46. Mazumdar SN, Mukherjee S, Sharma AK, Sengupta D, Mahajan MP (1994) Tetrahedron 50:7579

    CAS  Google Scholar 

  47. Dey PD, Sharma AK, Bharatam PV, Mahajan MP (1997) Tetrahedron 53:13829

    CAS  Google Scholar 

  48. Bharatam PV, Kumar RS, Mahajan MP (2000) Org Lett 2:2725

    CAS  Google Scholar 

  49. Hegedus LS, Montgomery J, Narukawa Y, Snustad DC (1991) J Am Chem Soc 113:5748

    Google Scholar 

  50. López R, Sordo TL, Sordo JA, González J (1993) J Org Chem 5A:7036

    Google Scholar 

  51. López R, Suárez D, Ruiz-López MF, González J, Sordo JA, Sordo TL (1995) J Chem Soc Chem Commun:1677

    Google Scholar 

  52. Arrieta A, Lecea B, Cossío FP (1998) J Org Chem 63:5869

    CAS  Google Scholar 

  53. Dumas S, Hegedus LS (1994) J Org Chem 59:4967

    CAS  Google Scholar 

  54. Evans DA, Sjögren EB (1985) Tetrahedron Lett 31:6317

    Google Scholar 

  55. Jackson BG, Gardner EB, Heath PC (1990) Tetrahedron Lett 31:6317

    CAS  Google Scholar 

  56. Muller M, Bur D, Tschamber T, Streith J (1991) Helv Chim Acta 74:767

    CAS  Google Scholar 

  57. Boger DL, Myers JB Jr (1991) J Org Chem 56:5385

    CAS  Google Scholar 

  58. Palomo C, Cossío FP, Cuevas C, Lecea B, Mielgo MA, Román P, Luque A, Martinez-Ripoll M (1992) J Am Chem Soc 114:9360

    CAS  Google Scholar 

  59. Hubschwerlen C, Schmid G (1983) Helv Chim Acta 66:2206

    CAS  Google Scholar 

  60. Banik BK, Manhas MS, Kaluza Z, Barakat KJ, Bose AK (1992) Tetrahedron Lett 33:3603

    CAS  Google Scholar 

  61. Evans DA, Williams JM (1988) Tetrahedron Lett 29:5065

    CAS  Google Scholar 

  62. Cossío FP, Arrieta A, Lecea B, Ugalde JM (1994) J Am Chem Soc 116:2085

    Google Scholar 

  63. Macías A, Alonso E, del Pozo C, Venturini A, González J (2004) J Org Chem 69:7004

    Google Scholar 

  64. Martín-Zamora E, Ferrete A, Llera JM, Muñoz JM, Pappalardo RR, Fernández R, Lassaletta JM (2004) Chem Eur J 10:6111

    Google Scholar 

  65. Jiao L, Liang Y, Xu JX (2006) J Am Chem Soc 128:6060

    CAS  Google Scholar 

  66. Arrieta A, Ugalde JM, Cossío FP, Lecea B (1994) Tetrahedron Lett 35:4465

    CAS  Google Scholar 

  67. Bose AK, Chiang YH, Manhas MS (1972) Tetrahedron Lett 4091

    Google Scholar 

  68. Banik BK, Lecea B, Arrieta A, de Cózar A, Cossío FP (2007) Angew Chem Int Ed 46:3028

    CAS  Google Scholar 

  69. Banik BK, Becker FF (2000) Tetrahedron Lett 41:6551

    CAS  Google Scholar 

  70. Banik I, Hackfield L, Banik BK (2003) Heterocycles 59:505

    CAS  Google Scholar 

  71. Liang Y, Jiao L, Zhang S, Xu J (2005) J Org Chem 70:334

    CAS  Google Scholar 

  72. Wang Y, Liang Y, Jiao J, Du D-M, Xu J (2006) J Org Chem 71:6983

    CAS  Google Scholar 

  73. Li B, Wang Y, Du D-M, Xu J (2007) J Org Chem 72:990

    CAS  Google Scholar 

  74. Arrieta A, Lecea B, Palomo C (1987) J Chem Soc Perkin Trans I 845

    Google Scholar 

  75. Bose AK, Anjaneyulu B, Bhattacharaya SK, Manhas MS (1967) Tetrahedron 23:4769

    CAS  Google Scholar 

  76. Oshiro Y, Komatsu M, Vesaka M, Agawa T (1984) Heterocycles 22:549

    Google Scholar 

  77. Pérez-Faginas P, Alkorta I, García-López MI, González-Muñiz R (2008) Tetrahedron Lett 49:215

    Google Scholar 

  78. Allen AD, Godoy J, Fu N, Nagy M, Spadaro S, Tidwell TT, Vukovic S (2008) J Am Chem Soc 130:2386

    CAS  Google Scholar 

  79. López R, Suárez D, Sordo TL, Ruiz-López MF (1998) Chem Eur J 4:328

    Google Scholar 

  80. Schaumann E (1976) Chem Ber 109:906

    CAS  Google Scholar 

  81. De Poortere M, Marchand-Brynaert J, Ghosez L (1974) Angew Chem Int Ed Engl 13:267

    Google Scholar 

  82. Ghosez L, Bogdan S, Cérésiat M, Frydrych C, Marchand-Brynaert J, Moya-Portuguez M, Huber I (1987) 59:393

    Google Scholar 

  83. Ghosez L, Marchand-Brynaert J (1991) In: Trost BM, Fleming I, Paquette LA (eds) Comprehensive organic synthesis. Pergamon Press, Oxford, pp 85–122

    Google Scholar 

  84. Arrieta A, Cossío FP, Lecea B (1999) J Org Chem 64:1831

    CAS  Google Scholar 

  85. Van Camp A, Grossens D, Moya-Portuguez M, Marchand-Brynaert J, Ghosez L (1980) Tetrahedron Lett 21:3081

    Google Scholar 

  86. Arnold B, Regitz M (1979) Angew Chem Int Ed Engl 18:320

    Google Scholar 

  87. Alajarín M, Molina P, Vidal A (1996) Tetrahedron Lett 37:8945

    Google Scholar 

  88. Alajarín M, Molina P, Vidal A, Tovar F (1997) Tetrahedron 53:13449

    Google Scholar 

  89. Alajarín M, Vidal A, Tovar F, Arrieta A, Lecea B, Cossío FP (1999) Chem Eur J 5:1106

    Google Scholar 

  90. Cossío FP, Arrieta A, Lecea B, Alajarín M, Vidal A, Tovar F (2000) J Org Chem 65:3633

    Google Scholar 

  91. Alajarín M, Vidal A, Tovar F, Ramírez de Arellano MC, Cossío FP, Arrieta A, Lecea B (2000) J Org Chem 65:7512

    Google Scholar 

  92. Arrieta A, Cossío, FP, Lecea B (2000) J Org Chem 65:8458

    CAS  Google Scholar 

  93. Bongini A, Pannunzio M, Piersanti G, Bandini E, Martelli G, Spunta G, Venturini A (2000) J Org Chem 65:2379

    Google Scholar 

  94. Campomames P, Menéndez MI, Sordo TL (2005) J Phys Chem A 109:11022

    Google Scholar 

  95. Hevia E, Pérez J, Riera V, Miguel D, Campomames P, Menéndez MI, Sordo TL, García-Granda S (2003) J Am Chem Soc 125:3706

    CAS  Google Scholar 

  96. McGuire MA, Hegedus LS (1982) J Am Chem Soc 104:5538

    CAS  Google Scholar 

  97. Hegedus LS (1997) Tetrahedron 53:4105

    CAS  Google Scholar 

  98. Hegedus LS, de Weck G, D’Andrea S (1988) J Am Chem Soc 110:2122

    CAS  Google Scholar 

  99. Hegedus LS (1995) In: Abel EW, Stone FGA, Wilkinson G (eds) Comprehensive organometallic chemistry II, vol 12. Pergamon Press, Oxford, p 549

    Google Scholar 

  100. Hegedus LS (1995) Acc Chem Res 28:299

    CAS  Google Scholar 

  101. Arrieta A, Cossío FP, Fernández I, Gómez-Gallego M, Lecea B, Mancheño MJ, Sierra MA (2000) J Am Chem Soc 122:11509

    CAS  Google Scholar 

  102. Fernández I, Sierra MA, Mancheño MJ, Gómez-Gallego M, Cossío FP (2008) J Am Chem Soc 130:13892

    Google Scholar 

  103. Pelotier B, Rajzmann M, Pons J-M, Campomames P, López R, Sordo TL (2005) Eur J Org Chem 2599

    Google Scholar 

  104. Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T (2002) J Am Chem Soc 124:6626

    CAS  Google Scholar 

  105. Taggi AE, Hafez AM, Dudding T, Lectka T (2002) Tetrahedron 58:8351

    CAS  Google Scholar 

  106. Graf R (1968) Angew Chem Int Ed Engl 7:172

    CAS  Google Scholar 

  107. Moriconi EJ, Crawford WC (1968) J Org Chem 33:370

    CAS  Google Scholar 

  108. Pasto DJ (1979) J Am Chem Soc 101:37

    CAS  Google Scholar 

  109. Cossío FP, Roa G, Lecea B, Ugalde JM (1995) J Am Chem Soc 117:12306

    Google Scholar 

  110. Cossío FP, Lecea B, Lopez X, Roa G, Arrieta A, Ugalde JM (1993) J Chem Soc Chemm Commun 1450

    Google Scholar 

  111. Fang D-C, Xu Z-F, Fu X-Y (1995) J Mol Struc (Theochem) 333:159

    CAS  Google Scholar 

  112. Williams CI, Whitehead MA (1999) J Mol Struc (Theochem) 491:93

    CAS  Google Scholar 

  113. Buynak JD, Rao MN, Pajouhesh H, Chandrasekran RY, Finn K (1985) J Org Chem 50:4245

    CAS  Google Scholar 

  114. Lysek R, Furman B, Kaluza Z, Frelek J, Suwinska K, Urbanczyk-Lipowska Z, Chmielewski M (2000) Tetrahedron:Asymmetry 11:3131

    CAS  Google Scholar 

  115. Lysek R, Krajewski P, Urbanczyk-Lipowska Z, Furman B, Kaluza Z, Kozerski L, Chmielewski M (2000) J Chem Soc Perkin Trans 2:61

    Google Scholar 

  116. Freitag D, Drees M, Goutal S, Strassner T, Metz P (2005) Tetrahedron 61:5615

    CAS  Google Scholar 

  117. Furman B, Borsuk K, Kaluza Z, Lysek R, Chmielewski M (2004) Curr Org Chem 8:463

    CAS  Google Scholar 

  118. Effenberger F, Kiefer G (1967) Angew Chem Int Ed Engl 6:951

    CAS  Google Scholar 

  119. Furman B, Krajewski P, Kaluza Z, Thürmer R, Voelter W, Kozerski L, Williamson M, Chmielewski M (1999) J Chem Soc Perkin Trans 2:217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando P. Cossío .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arrieta, A., Lecea, B., Cossío, F.P. (2010). Computational Studies on the Synthesis of β-Lactams via [2+2] Thermal Cycloadditions. In: Banik, B. (eds) Heterocyclic Scaffolds I. Topics in Heterocyclic Chemistry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2009_10

Download citation

Publish with us

Policies and ethics