Skip to main content

Microbial Transformation of Nitrogenous Compounds

  • Chapter
  • First Online:
Bioactive Heterocycles IV

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 10))

Abstract

Alkaloids are very much important molecules, not only for chemical reasons but also because of theirdiverse biological activities. Up to now several reviews have been published explaining the use of biotransformationor microbial transformation techniques to modify alkaloids, which added several advantages over the classicalchemical transformation systems. This chapter is a critical update of the microbial transformationsreported in the last couple of years, targeting novel biocatalysts from microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rathbone DA, Bruce NC (2002) Microbial transformation of alkaloids. Curr Opin Microbiol 5(3):274–281

    Article  CAS  Google Scholar 

  2. Julsing MK et al. (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23(6):265–279

    Article  CAS  Google Scholar 

  3. Naito A (2000) Tracing the past half century of my microbial transformation studies. Yakugaku Zasshi 120(10):839–848

    CAS  Google Scholar 

  4. Rathbone DA, Lister DL, Bruce NC (2001) Biotransformation of alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and biology, vol 57. Academic, San Diego, pp 1–74

    Google Scholar 

  5. Rathbone DA, Lister DL, Bruce NC (2003) Biotransformation of alkaloids. In: Cordell GA (ed) The alkaloids, vol 58. Elsevier, Amsterdam

    Google Scholar 

  6. Caponigro F, French RC, Kaye SB (1997) Protein kinase C: a worthwhile target for anticancer drugs? Anticancer Drugs 8(1):26–33

    Article  CAS  Google Scholar 

  7. Rosazza JP (1978) Antitumor antibiotic bioactivation, biotransformation and derivatization by microbial systems. Recent Results Cancer Res 63:58–68

    CAS  Google Scholar 

  8. Kieslich K (1986) Production of drugs by microbial biosynthesis and biotransformation. Possibilities, limits and future developments (1st communication). Arzneimittelforschung 36(4):774–778

    CAS  Google Scholar 

  9. Kieslich K (1986) Production of drugs by microbial biosynthesis and biotransformation. Possibilities, limits and future developments (3rd communication). Arzneimittelforschung 36(6):1006–1009

    CAS  Google Scholar 

  10. Kieslich K (1986) Production of drugs by microbial biosynthesis and biotransformation. Possibilities, limits and future developments (2nd communication). Arzneimittelforschung 36(5):888–892

    CAS  Google Scholar 

  11. Venisetty RK, Ciddi V (2003) Application of microbial biotransformation for the new drug discovery using natural drugs as substrate. Curr Pharmaceut Biotechnol 4:153–167

    Article  CAS  Google Scholar 

  12. Foster GR et al. (1991) Can J Microbiol 37(5):791–795

    Article  CAS  Google Scholar 

  13. Rosazza JP et al. (1975) Microbial models of mammalian metabolism. O-dealkylation of 10,11-dimethoxyaporphine. J Med Chem 18(8):791–794

    Article  CAS  Google Scholar 

  14. Smith RV, Rosazza JP (1975) Microbial models of mammalian metabolism. J Pharm Sci 64(11):1737–1759

    Article  CAS  Google Scholar 

  15. Smith RV et al. (1975) Gas–liquid and thin-layer chromatographic determinations of xylenols in microbial extracts. J Chromatogr 106(1):235–237

    Article  CAS  Google Scholar 

  16. Smith RV, Rosazza JP (1974) Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch Biochem Biophys 161(2):551–558

    Article  CAS  Google Scholar 

  17. Smith RV, Rosazza JP (1983) Microbial models of mammalian metabolism. J Nat Prod 46(1):79–91

    Article  CAS  Google Scholar 

  18. Izuka H, Naito A (1981) Microbial conversion of steroids and alkaloids. University of Tokyo Press/Springer, Berlin

    Google Scholar 

  19. Faber K (1995) Biotransformations in organic chemistry, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  20. Fonken GS, Johnson RA (1972) Chemical oxidations with microorganisms. In: Belew JS (ed) Oxidation in organic chemistry, vol 2. Marcel Dekker, New York, pp 185–212

    Google Scholar 

  21. Kieslich KC (1976) Microbial transformation of non-steroid cyclic compounds. Wiley Interscience, New York

    Google Scholar 

  22. De Raddt A et al. (1992) Microbial reagents in organic synthesis—microbial and enzymatic transformation of nitriles. In: Servi S (ed) NATO ASI Series C, vol 381. Kluwer, Dordrecht, pp 209–253

    Google Scholar 

  23. Cannell RJ et al. (1997) Xenobiotica 27(1):147–157

    Article  CAS  Google Scholar 

  24. Rosazza JP, Kammer M, Youel L (1977) Microbial models of mammalian metabolism: O-demethylations of papaverine. Xenobiotica 7(3):133–143

    Article  CAS  Google Scholar 

  25. Ronald EB, David EW, Rosazza JP (1974) J Med Chem 17(6):599–602

    Article  Google Scholar 

  26. Hartman RE et al. (1964) Microbial hydroxylation of indole alkaloids. Appl Microbiol 12:138–140

    CAS  Google Scholar 

  27. Groger D, Schumander HP (1969) Experientia 25(1):95–96

    Article  CAS  Google Scholar 

  28. Davis PJ, Rosazza JP (1976) J Org Chem 41:2548–2551

    Article  CAS  Google Scholar 

  29. Zeitler HJ, Niemer H (1969) Hoppe-Seyler's Z Physiol Chem 350(2):366–372

    Article  CAS  Google Scholar 

  30. Sinderlar RD, Rosazza JP, Barfknecht CF (1979) Appl Environ Microbiol 38(5):208–211

    Google Scholar 

  31. Khaled YO et al. (1999) J Nat Prod 62(7):988–992

    Article  Google Scholar 

  32. Soolee IR et al. (1989) J Nat Prod 52(2):337–341

    Article  Google Scholar 

  33. El Sayed KA (1998) J Nat Prod 61(1):149–151

    Article  Google Scholar 

  34. Shibuya H et al. (2003) Transformation of Cinchona alkaloids into 1-N-oxide derivatives by endophytic Xylaria sp. isolated from Cinchona pubescens. Chem Pharm Bull (Tokyo) 51(1):71–74

    Article  CAS  Google Scholar 

  35. Kupchan SM, Zimmerman JH, Afonso A (1961) Lloydia 24:1–26

    Google Scholar 

  36. Honerjager P (1982) Rev Physiol Biochem Pharmacol 92:1–74

    Article  CAS  Google Scholar 

  37. El Sayed KA et al. (1996) Int J Pharmacogn 34:161–173

    Article  Google Scholar 

  38. El Sayed KA, Dunbar DC (2002) Microbial transformation of rubijervine. Chem Pharm Bull (Tokyo) 50(11):1427–1429

    Article  Google Scholar 

  39. Wang SN et al. (2005) “Green” route to 6-hydroxy-3-succinoyl-pyridine from (S)-nicotine of tobacco waste by whole cells of a Pseudomonas sp. Environ Sci Technol 39(17):6877–6880

    Article  CAS  Google Scholar 

  40. Desmet P, Elferink F, Verpoorte R (1989) Left-turning tetrahydropalmatine in Chinese tablets. Ned Tijdschr Geneeskd 133:308

    CAS  Google Scholar 

  41. Picciotto A et al. (1998) Chronic hepatitis induced by jin bu huan. J Hepatol 28(1):165–167

    Article  CAS  Google Scholar 

  42. Woolf GM et al. (1994) Acute hepatitis associated with the Chinese herbal product jin bu huan. Ann Int Med 121(10):729–735

    Article  CAS  Google Scholar 

  43. Divinsky M (2002) Case report: jin bu huan—not so benign herbal medicine. Can Fam Physician 48:1640–1642

    Google Scholar 

  44. McRae CA et al. (2002) Hepatitis associated with Chinese herbs. Eur J Gastroenterol Hepatol 14(5):559–562

    Article  CAS  Google Scholar 

  45. Stickel F, Egerer G, Seitz HK (2000) Hepatotoxicity of botanicals. Public Health Nutr 3(2):113–124

    Article  CAS  Google Scholar 

  46. Li L et al. (2006) Liquid chromatography–tandem mass spectrometry for the identification of l-tetrahydropalmatine metabolites in Penicillium janthinellum and rats. Biomed Chromatogr 20(1):95–100

    Article  CAS  Google Scholar 

  47. Canonica L et al. (1983) The microbial oxygenation of the benzylisoquinoline alkaloid laudanosine. Cell Mol Life Sci 39(11):1273–1275

    Article  CAS  Google Scholar 

  48. Shamma M (1972) The isoquinoline alkaloids. Academic Press, New York

    Google Scholar 

  49. Dhingra P (1978) In: Trahanovsky WS (ed) Oxidations in organic chemistry. Academic Press, New York

    Google Scholar 

  50. Stabler PJ, Holt PJ, Bruce NC (2001) Transformation of 2,2′-bimorphine to the novel compounds 10-alpha-S-monohydroxy-2,2′-bimorphine and 10,10′-alpha,alpha′-S,S′-dihydroxy-2,2′-bimorphine by Cylindrocarpon didymum. Appl Environ Microbiol 67(8):3716–3719

    Article  CAS  Google Scholar 

  51. French CE et al. (1995) Biological production of semisynthetic opiates using genetically engineered bacteria. Biotechnology (NY) 13(7):674–676

    Article  CAS  Google Scholar 

  52. Long MT et al. (1995) Transformations of morphine alkaloids by Pseudomonas putida M10. Appl Environ Microbiol 61(10):3645–3649

    CAS  Google Scholar 

  53. Melmon KL, Morrelli HF (1972) Clinical pharmacology: basic principles in therapeutics. Macmillan, New York

    Google Scholar 

  54. Moffat AC et al. (1986) Clarke's isolation and identification of drugs. The Pharmaceutical Press, London

    Google Scholar 

  55. Stabler PJ, Bruce NC (1998) Oxidation of morphine to 2,2′-bimorphine by cylindrocarpon didymum. Appl Environ Microbiol 64(10):4106–4108

    CAS  Google Scholar 

  56. El Sayed KA (2000) Microbial transformation of papaveraldine. Phytochemistry 53(6):675–678

    Article  Google Scholar 

  57. Takayama H et al. (2003) Gluco-indole alkaloids from Nauclea cadamba in Thailand and transformation of 3alpha-dihydrocadambine into the indolopyridine alkaloid, 16-carbomethoxynaufoline. Chem Pharm Bull (Tokyo) 51(2):232–233

    Article  CAS  Google Scholar 

  58. Orabi KY, Clark AM, Hufford CD (2000) Microbial transformation of benzosampangine. J Nat Prod 63(3):396–398

    Article  CAS  Google Scholar 

  59. Orabi KY et al. (1999) Microbial transformation of sampangine. J Nat Prod 62(7):988–992

    Article  CAS  Google Scholar 

  60. Peczyfiska-Czoch W et al. (1996) Microbial transformation of azacarbazoles X: regioselective hydroxylation of 5,11-dimethyl-5H-indolo[2,3-b]quinoline, a novel DNA topoisomerase II inhibitor, by Rhizopus arrhizus. Biotechnol Lett 18(2):123–128

    Article  Google Scholar 

  61. Azerad R (1999) Microbial models for drug metabolism. Adv Biochem Eng Biotechnol 63:169–218

    CAS  Google Scholar 

  62. Lacroix I, Biton J, Azerad R (1999) Microbial models of drug metabolism: microbial transformations of trimegestone (RU 27987), a 3-keto-delta(4,9(10))-19-norsteroid drug. Bioorg Med Chem 7(11):2329–2341

    Article  CAS  Google Scholar 

  63. Maurs M et al. (1999) Microbial hydroxylation of natural drimenic lactones. Phytochemistry 52(2):291–296

    Article  CAS  Google Scholar 

  64. Isabelle L, Jacques B, Robert A (1999) Microbial models of drug metabolism: microbial transformations of trimegestone (RU 27987), a 3-keto-4,9(10)-19-norsteroid drug. Bioorg Med Chem 7:2329–2341

    Article  Google Scholar 

  65. Moussa C et al. (1997) Microbial models of mammalian metabolism. Fungal metabolism of phenolic and nonphenolic p-cymene-related drugs and prodrugs. II. Metabolites of nonphenolic derivatives. Drug Metab Dispos 25(3):311–316

    CAS  Google Scholar 

  66. Moussa C et al. (1997) Microbial models of mammalian metabolism. Fungal metabolism of phenolic and nonphenolic p-cymene-related drugs and prodrugs. I. Metabolites of thymoxamine. Drug Metab Dispos 25(3):301–310

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmud Tareq Hassan Khan .

Editor information

Mahmud Tareq Hassan Khan

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khan, M.T.H., Ather, A. (2007). Microbial Transformation of Nitrogenous Compounds. In: Khan, M.T.H. (eds) Bioactive Heterocycles IV. Topics in Heterocyclic Chemistry, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2007_068

Download citation

Publish with us

Policies and ethics