Skip to main content

DNA Polymerases and Diseases

  • Chapter
  • First Online:
Genome Integrity

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 1))

Abstract

In this chapter, we would like to highlight the possible connections between DNA polymerases, the main enzymes in DNA metabolism, and human diseases, also critically evaluating those cases where the experimental data are not fully convincing. To this aim, we will first give a short overview of the three main DNA metabolic events, namely replication, repair and recombination, as well as of the checkpoint pathways acting in response to DNA damage. Besides a role in replication of the genome, DNA polymerases also have fundamental functions in other aspects of DNA metabolism, such as DNA repair, DNA recombination, translesion DNA synthesis and cell cycle checkpoint. In the last 10 years, numerous novel DNA polymerases have been revealed, but their exact cellular functions still await clarification. This review summarizes the known eukaryotic DNA polymerases and their relationships with human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboussekhra A et al. (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868

    PubMed  CAS  Google Scholar 

  2. Adams Martin A, Dionne I, Wellinger RJ, Holm C (2000) The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis. Mol Cell Biol 20:786–796

    PubMed  CAS  Google Scholar 

  3. Albertella MR, Lau A, O'Connor MJ (2005) The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst) 4:583–593

    CAS  Google Scholar 

  4. Aoufouchi S et al. (2000) Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res 28:3684–3693

    PubMed  CAS  Google Scholar 

  5. Bavoux C et al. (2005) Up-regulation of the error-prone DNA polymerase {κ} promotes pleiotropic genetic alterations and tumorigenesis. Cancer Res 65:325–330

    PubMed  CAS  Google Scholar 

  6. Bebenek K, Matsuda T, Masutani C, Hanaoka F, Kunkel TA (2001) Proofreading of DNA polymerase eta-dependent replication errors. J Biol Chem 276:2317–2320

    PubMed  CAS  Google Scholar 

  7. Bergoglio V, Ferrari E, Hubscher U, Cazaux C, Hoffmann JS (2003) DNA Polymerase beta can Incorporate Ribonucleotides during DNA Synthesis of Undamaged, CPD-damaged DNA. Mol J Biol 331:1017–1023

    CAS  Google Scholar 

  8. Bergoglio V et al. (2004) Evidence of finely tuned expression of DNA polymerase beta in vivo using transgenic mice. FEBS Lett 566:147–150

    PubMed  CAS  Google Scholar 

  9. Bertocci B, De Smet A, Berek C, Weill JC, Reynaud CA (2003) Immunoglobulin kappa light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. Immunity 19:203–211

    PubMed  CAS  Google Scholar 

  10. Bertocci B et al. (2002) Cutting edge: DNA polymerases mu and lambda are dispensable for Ig gene hypermutation. J Immunol 168:3702–3706

    PubMed  CAS  Google Scholar 

  11. Blanca G et al. (2003) Human DNA polymerase lambda diverged in evolution from DNA polymerase beta toward specific Mn(++) dependence: a kinetic and thermodynamic study. Biochemistry 42:7467–7476

    PubMed  CAS  Google Scholar 

  12. Boesen JJ et al. (1992) Stress response induced by DNA damage leads to specific, delayed and untargeted mutations. Mol Gen Genet 234:217–227

    PubMed  CAS  Google Scholar 

  13. Bollum FJ, Chang LM, Tsiapalis CM, Dorson JW (1974) Nucleotide polymerizing enzymes from calf thymus gland. Methods Enzymol 29:70–81

    PubMed  CAS  Google Scholar 

  14. Boule JB, Rougeon F, Papanicolaou C (2001) Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. J Biol Chem 276:31388–31393

    PubMed  CAS  Google Scholar 

  15. Boyd JB, Sakaguchi K, Harris PV (1990) mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics 125:813–819

    CAS  Google Scholar 

  16. Brautigam CA, Steitz TA (1998) Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol 8:54–63

    PubMed  CAS  Google Scholar 

  17. Burgers PM (1998) Eukaryotic DNA polymerases in DNA replication, DNA repair. Chromosoma 107:218–227

    PubMed  CAS  Google Scholar 

  18. Burgers PM et al. (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276:43487–43490

    PubMed  CAS  Google Scholar 

  19. Byrnes JJ, Downey KM, Black VL, So AG (1976) A new mammalian DNA polymerase with 3′to 5′exonuclease activity: DNA polymerase delta. Biochemistry 15:2817–2823

    PubMed  CAS  Google Scholar 

  20. Carrodeguas JA, Theis K, Bogenhagen DF, Kisker C (2001) Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer. Mol Cell 7:43–54

    PubMed  CAS  Google Scholar 

  21. Carson DR, Christman MF (2001) Evidence that replication fork components catalyze establishment of cohesion between sister chromatids. Proc Natl Acad Sci USA 98:8270–8275

    PubMed  CAS  Google Scholar 

  22. Castano IB, Brzoska PM, Sadoff BU, Chen H, Christman MF (1996) Mitotic chromosome condensation in the rDNA requires TRF4, DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev 10:2564–2576

    PubMed  CAS  Google Scholar 

  23. Castano IB, Heath-Pagliuso S, Sadoff BU, Fitzhugh DJ, Christman MF (1996) A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res 24:2404–2410

    PubMed  CAS  Google Scholar 

  24. Chang S, DePinho RA (2002) Telomerase extracurricular activities. Proc Natl Acad Sci USA 99:12520–12522. Epub 12002 Sep 12523

    PubMed  CAS  Google Scholar 

  25. Chang S et al. (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882. Epub 2004 Jul 2004

    PubMed  CAS  Google Scholar 

  26. Chiu A et al. (2002) DNA polymerase mu gene expression in B-cell non-Hodgkin's lymphomas: an analysis utilizing in situ hybridization. Am J Pathol 161:1349–1355

    PubMed  CAS  Google Scholar 

  27. Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193:3–34

    PubMed  CAS  Google Scholar 

  28. Clark DR, Zacharias W, Panaitescu L, McGregor WG (2003) Ribozyme-mediated REV1 inhibition reduces the frequency of UV-induced mutations in the human HPRT gene. Nucleic Acids Res 31:4981–4988

    PubMed  CAS  Google Scholar 

  29. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329

    PubMed  CAS  Google Scholar 

  30. Cottrell DA, Blakely EL, Johnson MA, Ince PG, Borthwick GM, Turnbull DM (2001) Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 22:265–272

    PubMed  CAS  Google Scholar 

  31. Covo S, Blanco L, Livneh Z (2004) Lesion bypass by human DNA polymerase mu reveals a template-dependent, sequence-independent nucleotidyl transferase activity. J Biol Chem 279:859–865

    PubMed  CAS  Google Scholar 

  32. D'Urso G, Nurse P (1997) Schizosaccharomyces pombe cdc20+ encodes DNA polymerase epsilon and is required for chromosomal replication but not for the S phase checkpoint. Proc Natl Acad Sci USA 94:12491–12496

    PubMed  Google Scholar 

  33. Dianov GL, Prasad R, Wilson SH, Bohr VA (1999) Role of DNA polymerase beta in the excision step of long patch mammalian base excision repair. J Biol Chem 274:13741–13743

    PubMed  CAS  Google Scholar 

  34. Dominguez O et al. (2000) DNA polymerase mu (Pol mu), homologous to Td T, could act as a DNA mutator in eukaryotic cells. Embo J 19:1731–1742

    PubMed  CAS  Google Scholar 

  35. Dunham MA, Neumann AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nat Genet 26:447–450

    PubMed  CAS  Google Scholar 

  36. Duvauchelle JB, Blanco L, Fuchs RP, Cordonnier AM (2002) Human DNA polymerase mu (Pol mu) exhibits an unusual replication slippage ability at AAF lesion. Nucleic Acids Res 30:2061–2067

    PubMed  CAS  Google Scholar 

  37. Edwards S, Li CM, Levy DL, Brown J, Snow PM, Campbell JL (2003) Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Mol Cell Biol 23:2733–2748

    PubMed  CAS  Google Scholar 

  38. Efrati E, Tocco G, Eritja R, Wilson SH, Goodman MF (1997) Abasic translesion synthesis by DNA polymerase beta violates the A-rule. Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts. J Biol Chem 272:2559–2569

    PubMed  CAS  Google Scholar 

  39. Esposito G, Godindagger I, Klein U, Yaspo ML, Cumano A, Rajewsky K (2000) Disruption of the Rev3l-encoded catalytic subunit of polymerase zeta in mice results in early embryonic lethality. Curr Biol 10:1221–1224

    PubMed  CAS  Google Scholar 

  40. Ferrari G et al. (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gamma. Brain A 128:723–731

    Google Scholar 

  41. Foiani M, Lucchini G, Plevani P (1997) The DNA polymerase alpha-primase complex couples DNA replication, cell-cycle progression, DNA-damage response. Trends Biochem Sci 22:424–427

    PubMed  CAS  Google Scholar 

  42. Francesconi S, Park H, Wang TS (1993) Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype. Nucleic Acids Res 21:3821–3828

    PubMed  CAS  Google Scholar 

  43. Franklin A, Milburn PJ, Blanden RV, Steele EJ (2004) Human DNA polymerase-eta, an A-T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase. Immunol Cell Biol 82:219–225

    PubMed  CAS  Google Scholar 

  44. Frechet M, Canitrot Y, Bieth A, Dogliotti E, Cazaux C, Hoffmann JS (2002) Deregulated DNA polymerase beta strengthens ionizing radiation-induced nucleotidic and chromosomal instabilities. Oncogene 21:2320–2327

    PubMed  CAS  Google Scholar 

  45. Frechet M, Canitrot Y, Cazaux C, Hoffmann JS (2001) DNA polymerase beta imbalance increases apoptosis and mutagenesis induced by oxidative stress. FEBS Lett 505:229–232

    PubMed  CAS  Google Scholar 

  46. Friedberg EC, Wagner R, Radman M (2002) Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296:1627–1630

    PubMed  CAS  Google Scholar 

  47. Garcia-Diaz M, Bebenek K, Kunkel TA, Blanco L (2001) Identification of an intrinsic 5′-deoxyribose-5-phosphate lyase activity in human DNA polymerase lambda: a possible role in base excision repair. J Biol Chem 276:34659–34663

    PubMed  CAS  Google Scholar 

  48. Garcia-Diaz M et al. (2002) DNA polymerase lambda, a novel DNA repair enzyme in human cells. J Biol Chem 277:13184–13191

    PubMed  CAS  Google Scholar 

  49. Garcia-Diaz M et al. (2000) DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis. J Mol Biol 301:851–867

    PubMed  CAS  Google Scholar 

  50. Giot L, Chanet R, Simon M, Facca C, Faye G (1997) Involvement of the yeast DNA polymerase delta in DNA repair in vivo. Genetics 146:1239–1251

    CAS  Google Scholar 

  51. Goldsby RE et al. (2002) High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading. Proc Natl Acad Sci USA 99:15560–15565

    PubMed  CAS  Google Scholar 

  52. Goldsby RE et al. (2001) Defective DNA polymerase-delta proofreading causes cancer susceptibility in mice. Nat Med 7:638–639

    PubMed  CAS  Google Scholar 

  53. Goodman MF (2002) Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71:17–50

    PubMed  CAS  Google Scholar 

  54. Graves SW, Johnson AA, Johnson KA (1998) Expression, purification, and initial kinetic characterization of the large subunit of the human mitochondrial DNA polymerase. Biochemistry 37:6050–6058

    PubMed  CAS  Google Scholar 

  55. Graziewicz MA, Longley MJ, Bienstock RJ, Zeviani M, Copeland WC (2004) Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat Struct Mol Biol 11:770–776

    PubMed  CAS  Google Scholar 

  56. Grey M, Dusterhoft A, Henriques JA, Brendel M (1996) Allelism of PSO4, PRP19 links pre-mRNA processing with recombination and error-prone DNA repair in Saccharomyces cerevisiae. Nucleic Acids Res 24:4009–4014

    PubMed  CAS  Google Scholar 

  57. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106

    PubMed  CAS  Google Scholar 

  58. Guo C et al. (2003) Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. Embo J 22:6621–6630

    PubMed  CAS  Google Scholar 

  59. Guo D, Wu X, Rajpal DK, Taylor JS, Wang Z (2001) Translesion synthesis by yeast DNA polymerase zeta from templates containing lesions of ultraviolet radiation and acetylaminofluorene. Nucleic Acids Res 29:2875–2883

    PubMed  CAS  Google Scholar 

  60. Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S (2003) Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEBS Lett 536:180–186

    PubMed  CAS  Google Scholar 

  61. Haracska L et al. (2001a) Targeting of human DNA polymerase iota to the replication machinery via interaction with PCN. Proc Natl Acad Sci USA 98:14256–14261

    Google Scholar 

  62. Haracska L, Prakash S, Prakash L (2002) Yeast Rev1 protein is a G template-specific DNA polymerase. J Biol Chem 277:15546–15551

    PubMed  CAS  Google Scholar 

  63. Haracska L et al. (2001b) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15:945–954

    Google Scholar 

  64. Harfe BD, Jinks-Robertson S (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34:359–399

    PubMed  CAS  Google Scholar 

  65. Harris PV, Mazina OM, Leonhardt EA, Case RB, Boyd JB, Burtis KC (1996) Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol Cell Biol 16:5764–5771

    PubMed  CAS  Google Scholar 

  66. Hoffmann JS, Pillaire MJ, Maga G, Podust V, Hubscher U, Villani G (1995) DNA polymerase beta bypasses in vitro a single d(GpG)-cisplatin adduct placed on codon 13 of the HRAS gene. Proc Natl Acad Sci USA 92:5356–5360

    PubMed  CAS  Google Scholar 

  67. Holm L, Sander C (1995) DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci 20:345–347

    PubMed  CAS  Google Scholar 

  68. Holmes AM, Haber JE (1999) Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96:415–424

    PubMed  CAS  Google Scholar 

  69. Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    PubMed  CAS  Google Scholar 

  70. Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25:143–147

    PubMed  CAS  Google Scholar 

  71. Idriss HT, Al-Assar O, Wilson SH (2002) DNA polymerase beta. Int J Biochem Cell Biol 34:321–324

    PubMed  CAS  Google Scholar 

  72. Jansen JG et al. (2005) The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis. Nucleic Acids Res 33:356–365. Print 2005

    PubMed  CAS  Google Scholar 

  73. Jin YH et al. (2005) The multiple biological roles of the 3′–5′exonuclease of Saccharomyces Cerevisiae DNA polymerase delta require switching between the polymerase and exonuclease domains. Mol Cell Biol 25:461–471

    PubMed  CAS  Google Scholar 

  74. Johnson RE, Kondratick CM, Prakash S, Prakash L (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285:263–265

    PubMed  CAS  Google Scholar 

  75. Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L (2000) Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406:1015–1019

    PubMed  CAS  Google Scholar 

  76. Joyce CM, Steitz TA (1994) Function and structure relationships in DNA polymerases. Annu Rev Biochem 63:777–822

    PubMed  CAS  Google Scholar 

  77. Kaguni LS (2004) DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem 73:293–320

    PubMed  CAS  Google Scholar 

  78. Kannouche P et al. (2003) Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. Embo J 22:1223–1233

    PubMed  CAS  Google Scholar 

  79. Kelman Z, O'Donnell M (1994) DNA replication: enzymology and mechanisms. Curr Opin Genet Dev 4:185–195

    PubMed  CAS  Google Scholar 

  80. Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685

    PubMed  CAS  Google Scholar 

  81. Kobayashi Y et al. (2002) Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 22:2769–2776

    PubMed  CAS  Google Scholar 

  82. Kodama EN, McCaffrey RP, Yusa K, Mitsuya H (2000) Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem Pharmacol 59:273–281

    PubMed  CAS  Google Scholar 

  83. Kokoska RJ, Stefanovic L, DeMai J, Petes TD (2000) Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta. Mol Cell Biol 20:7490–7504

    PubMed  CAS  Google Scholar 

  84. Krayevsky AA, Victorova LS, Arzumanov AA, Jasko MV (2000) Terminal deoxynucleotidyl transferase. catalysis of DNA (oligodeoxynucleotide) phosphorylation. Pharmacol Ther 85:165–173

    PubMed  CAS  Google Scholar 

  85. Kunkel TA, Pavlov YI, Bebenek K, Rogozin IB, Matsuda T (2003) Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair (Amst) 2:135–149

    CAS  Google Scholar 

  86. Lawrence CW (2002) Cellular roles of DNA polymerase zeta, Rev1 protein. DNA Repair (Amst) 1:425–435

    CAS  Google Scholar 

  87. Lawrence CW, Christensen R (1976) UV mutagenesis in radiation-sensitive strains of yeast. Genetics 82:207–232

    CAS  Google Scholar 

  88. Lawrence CW, Hinkle DC (1996) DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv 28:21–31

    CAS  Google Scholar 

  89. Lee GH, Nishimori H, Sasaki Y, Matsushita H, Kitagawa T, Tokino T (2003) Analysis of lung tumorigenesis in chimeric mice indicates the pulmonary adenoma resistance 2 (Par2) locus to operate in the tumor-initiation stage in a cell-autonomous manner: detection of polymorphisms in the Poli gene as a candidate for Par2. Oncogene 22:2374–2382

    PubMed  CAS  Google Scholar 

  90. Lee JW et al. (2004) Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 279:805–811

    PubMed  CAS  Google Scholar 

  91. Li L, Zou L (2005) Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J Cell Biochem 94:298–306

    PubMed  CAS  Google Scholar 

  92. Lin W, Xin H, Zhang Y, Wu X, Yuan F, Wang Z (1999) The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res 27:4468–4475

    PubMed  CAS  Google Scholar 

  93. Loeb KR, Loeb LA (2000) Significance of multiple mutations in cancer. Carcinogenesis 21:379–385

    PubMed  CAS  Google Scholar 

  94. Longley MJ, Pierce AJ, Modrich P (1997) DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem 272:10917–10921

    PubMed  CAS  Google Scholar 

  95. Louat T et al. (2001) Antitumor activity of 2′,3′-dideoxycytidine nucleotide analog against tumors up-regulating DNA polymerase beta. Mol Pharmacol 60:553–558

    PubMed  CAS  Google Scholar 

  96. Luoma P et al. (2004) Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364:875–882

    PubMed  CAS  Google Scholar 

  97. Maga G, Shevelev I, Ramadan K, Spadari S, Hubscher U (2002) DNA polymerase theta purified from human cells is a high-fidelity enzyme. J Mol Biol 319:359–369

    PubMed  CAS  Google Scholar 

  98. Maga G et al. (2002) Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis. J Biol Chem 3:3

    Google Scholar 

  99. Mahajan KN et al. (1999) Association of terminal deoxynucleotidyl transferase with Ku. Proc Natl Acad Sci USA 96:13926–13931

    PubMed  CAS  Google Scholar 

  100. Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA (2002) Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol Cell Biol 22:5194–5202

    PubMed  CAS  Google Scholar 

  101. Maloisel L, Bhargava J, Roeder GS (2004) A role for DNA polymerase delta in gene conversion and crossing over during meiosis in Saccharomyces cerevisiae. Genetics 167:1133–1142

    Article  CAS  Google Scholar 

  102. Mancuso M, Filosto M, Oh SJ, DiMauro S (2004) A novel polymerase gamma mutation in a family with ophthalmoplegia, neuropathy, Parkinsonism. Arch Neurol 61:1777–1779

    PubMed  Google Scholar 

  103. Marini F, Kim N, Schuffert A, Wood RD (2003) POLN, a nuclear PolA family DNA polymerase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem 278:32014–32019

    PubMed  CAS  Google Scholar 

  104. Marini F et al. (1997) A role for DNA primase in coupling DNA replication to DNA damage response. Embo J 16:639–650

    PubMed  CAS  Google Scholar 

  105. Masuda Y, Kamiya K (2002) Biochemical properties of the human REV1 protein. FEBS Lett 520:88–92

    PubMed  CAS  Google Scholar 

  106. Masutani C, Kusumoto R, Iwai S, Hanaoka F (2000) Mechanisms of accurate translesion synthesis by human DNA polymerase eta. Embo J 19:3100–3109

    PubMed  CAS  Google Scholar 

  107. Masutani C et al. (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399:700–704

    PubMed  CAS  Google Scholar 

  108. Masutomi K et al. (2003) Telomerase maintains telomere structure in normal human cells. Cell 114:241–253

    PubMed  CAS  Google Scholar 

  109. Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269:699–702

    PubMed  CAS  Google Scholar 

  110. McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA (2004) Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428:97–100

    PubMed  CAS  Google Scholar 

  111. McDonald JP et al. (1999) Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase eta. Genomics 60:20–30

    PubMed  CAS  Google Scholar 

  112. Murakumo Y (2002) The property of DNA polymerase zeta: REV7 is a putative protein involved in translesion DNA synthesis and cell cycle control. Mutat Res 510:37–44

    PubMed  CAS  Google Scholar 

  113. Murakumo Y et al. (2001) Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem 276:35644–35651

    PubMed  CAS  Google Scholar 

  114. Murakumo Y et al. (2000) A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem 275:4391–4397

    PubMed  CAS  Google Scholar 

  115. O-Wang J et al. (2001) DNA polymerase kappa, implicated in spontaneous, DNA damage-induced mutagenesis, is overexpressed in lung cancer. Cancer Res 61:5366–5369

    PubMed  CAS  Google Scholar 

  116. Ogi T, Mimura J, Hikida M, Fujimoto H, Fujii-Kuriyama Y, Ohmori H (2001) Expression of human and mouse genes encoding polkappa: testis-specific developmental regulation, AhR-dependent inducible transcription. Genes Cells 6:943–953

    PubMed  CAS  Google Scholar 

  117. Okochi E, Ichimura S, Sugimura T, Ushijima T (2002) The absence of Mth1 inactivation, DNA polymerase kappa overexpression in rat mammary carcinomas with frequent A:T to C:G transversions. Jpn J Cancer Res 93:501–506

    PubMed  CAS  Google Scholar 

  118. Pan Q, Fang Y, Xu Y, Zhang K, Hu X (2005) Down-regulation of DNA polymerases kappa, eta, iota, and zeta in human lung, stomach, and colorectal cancers. Cancer Lett 217:139–147

    CAS  Google Scholar 

  119. Poltoratsky V, Woo CJ, Tippin B, Martin A, Goodman MF, Scharff MD (2001) Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation. Proc Natl Acad Sci USA 98:7976–7981

    PubMed  CAS  Google Scholar 

  120. Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16:1872–1883

    PubMed  CAS  Google Scholar 

  121. Prasad R, Beard WA, Strauss PR, Wilson SH (1998) Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J Biol Chem 273:15263–15270

    PubMed  CAS  Google Scholar 

  122. Qi H, Zakian VA (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 14:1777–1788

    PubMed  CAS  Google Scholar 

  123. Radman M (2001) Fidelity and infidelity. Nature 413:115

    PubMed  CAS  Google Scholar 

  124. Ramadan K, Maga G, Shevelev IV, Villani G, Blanco L, Hubscher U (2003) Human DNA polymerase lambda possesses terminal deoxyribonucleotidyl transferase activity and can elongate RNA primers: implications for novel functions. J Mol Biol 328:63–72

    PubMed  CAS  Google Scholar 

  125. Ramadan K, Shevelev IV, Hubscher U (2004a) The DNA-polymerase-X family: controllers of DNA quality? Nat Rev Mol Cell Biol 5:1038–1043

    Google Scholar 

  126. Ramadan K, Shevelev IV, Maga G, Hubscher U (2002) DNA polymerase lambda from calf thymus preferentially replicates damaged DNA. J Biol Chem 277:18454–18458

    PubMed  CAS  Google Scholar 

  127. Ramadan K, Shevelev IV, Maga G, Hubscher U (2004b) De novo DNA synthesis by human DNA polymerase lambda, DNA polymerase mu and terminal deoxyribonucleotidyl transferase. J Mol Biol 339:395–404

    Google Scholar 

  128. Read RL, Martinho RG, Wang SW, Carr AM, Norbury CJ (2002) Cytoplasmic poly(A) polymerases mediate cellular responses to S phase arrest. Proc Natl Acad Sci USA 99:12079–12084

    PubMed  CAS  Google Scholar 

  129. Rechkoblit O et al. (2002) Trans-lesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG, N6-dA lesions catalyzed by DNA bypass polymerases. J Biol Chem 277:30488–30494

    PubMed  CAS  Google Scholar 

  130. Roychoudhury R (1972) Enzymic synthesis of polynucleotides. Oligodeoxynucleotides with one 3′-terminal ribonucleotide as primers for polydeoxynucleotide synthesis. J Biol Chem 247:3910–3917

    PubMed  CAS  Google Scholar 

  131. Ruiz JF, Dominguez O, Lain de Lera T, Garcia-Diaz M, Bernad A, Blanco L (2001) DNA polymerase mu, a candidate hypermutase? Philos Trans R Soc Lond B Biol Sci 356:99–109

    PubMed  CAS  Google Scholar 

  132. Ruiz JF et al. (2003) Lack of sugar discrimination by human Pol mu requires a single glycine residue. Nucleic Acids Res 31:4441–4449

    PubMed  CAS  Google Scholar 

  133. Sadoff BU, Heath-Pagliuso S, Castano IB, Zhu Y, Kieff FS, Christman MF (1995) Isolation of mutants of Saccharomyces cerevisiae requiring DNA topoisomerase. Genetics I 141:465–479

    CAS  Google Scholar 

  134. Saitoh S, Chabes A, McDonald WH, Thelander L, Yates JR, Russell P (2002) Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell 109:563–573

    PubMed  CAS  Google Scholar 

  135. Sancar A, Lindsey-Boltz LA, Unsal-Kaccmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    PubMed  CAS  Google Scholar 

  136. Seki M, Marini F, Wood RD (2003) POLQ (Pol theta), a DNA polymerase, DNA-dependent ATPase in human cells. Nucleic Acids Res 31:6117–6126

    PubMed  CAS  Google Scholar 

  137. Seki M et al. (2004) High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO J 23:4484–4494. Epub 2004 Oct 4421

    PubMed  CAS  Google Scholar 

  138. Semizarov DG et al. (1997) Stereoisomers of deoxynucleoside 5′-triphosphates as substrates for template-dependent and -independent DNA polymerases. J Biol Chem 272:9556–9560

    PubMed  CAS  Google Scholar 

  139. Sharief FS, Vojta PJ, Ropp PA, Copeland WC (1999) Cloning and chromosomal mapping of the human DNA polymerase theta (POLQ), the eighth human DNA polymerase. Genomics 59:90–96

    PubMed  CAS  Google Scholar 

  140. Shevelev IV, Hubscher U (2002) The 3′5′exonucleases. Nat Rev Mol Cell Biol 3:364–376

    PubMed  CAS  Google Scholar 

  141. Shima N, Hartford SA, Duffy T, Wilson LA, Schimenti KJ, Schimenti JC (2003) Phenotype-based identification of mouse chromosome instability mutants. Genetics 163:1031–1040

    CAS  Google Scholar 

  142. Shimazaki N, Yoshida K, Kobayashi T, Toji S, Tamai K, Koiwai O (2002) Over-expression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme. Genes Cells 7:639–651

    PubMed  CAS  Google Scholar 

  143. Simpson LJ, Sale JE (2003) Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J 22:1654–1664

    PubMed  CAS  Google Scholar 

  144. Sobol RW et al. (1996) Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379:183–186

    PubMed  CAS  Google Scholar 

  145. Sonoda E et al. (2003) Multiple roles of Rev3, the catalytic subunit of pol zeta in maintaining genome stability in vertebrates. Embo J 22:3188–3197

    PubMed  CAS  Google Scholar 

  146. Stucki M, Stagljar I, Jonsson ZO, Hubscher U (2001) A coordinated interplay: proteins with multiple functions in DNA replication, DNA repair, cell cycle/checkpoint control, and transcription. Prog Nucleic Acid Res Mol Biol 65:261–298

    CAS  Google Scholar 

  147. Sugino A (1995) Yeast DNA polymerases and their role at the replication fork. Trends Biochem Sci 20:319–323

    PubMed  CAS  Google Scholar 

  148. Suzuki N et al. (2002) Translesion synthesis by human DNA polymerase kappa on a DNA template containing a single stereoisomer of dG-(+)- or dG-(−)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry 41:6100–6106

    PubMed  CAS  Google Scholar 

  149. Thai TH, Kearney JF (2004) Distinct and opposite activities of human terminal deoxynucleotidyltransferase splice variants. J Immunol 173:4009–4019

    PubMed  CAS  Google Scholar 

  150. Thai TH, Purugganan MM, Roth DB, Kearney JF (2002) Distinct and opposite diversifying activities of terminal transferase splice variants. Nat Immunol 3:457–462

    PubMed  CAS  Google Scholar 

  151. Tissier A, Frank EG, McDonald JP, Iwai S, Hanaoka F, Woodgate R (2000) Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota. Embo J 19:5259–5266

    PubMed  CAS  Google Scholar 

  152. Tissier A, Kannouche P, Reck MP, Lehmann AR, Fuchs RP, Cordonnier A (2004) Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta, REVl protein. DNA Repair (Amst) 3:1503–1514

    CAS  Google Scholar 

  153. Tissier A, McDonald JP, Frank EG, Woodgate R (2000) poliota, a remarkably error-prone human DNA polymerase. Genes Dev 14:1642–1650

    PubMed  CAS  Google Scholar 

  154. Trifunovic A et al. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    PubMed  CAS  Google Scholar 

  155. Vaisman A, Chaney SG (2000) The efficiency and fidelity of translesion synthesis past cisplatin and oxaliplatin GpG adducts by human DNA polymerase beta. J Biol Chem 275:13017–13025

    PubMed  CAS  Google Scholar 

  156. Velasco-Miguel S et al. (2003) Constitutive and regulated expression of the mouse Dinb (Polkappa) gene encoding DNA polymerase kappa. DNA Repair (Amst) 2:91–106

    CAS  Google Scholar 

  157. Walowsky C, Fitzhugh DJ, Castano IB, Ju JY, Levin NA, Christman MF (1999) The topoisomerase-related function gene TRF4 affects cellular sensitivity to the antitumor agent camptothecin. J Biol Chem 274:7302–7308

    PubMed  CAS  Google Scholar 

  158. Wang M et al. (2004) Pol iota is a candidate for the mouse pulmonary adenoma resistance 2 locus, a major modifier of chemically induced lung neoplasia. Cancer Res 64:1924–1931

    PubMed  CAS  Google Scholar 

  159. Wang Y et al. (2004) Elevated expression of DNA polymerase kappa in human lung cancer is associated with p53 inactivation: negative regulation of POLK promoter activity by p53. Int J Oncol 25:161–165

    PubMed  Google Scholar 

  160. Wang Z, Castano IB, De Las Penas A, Adams C, Christman MF (2000) Pol kappa: A DNA polymerase required for sister chromatid cohesion. Science 289:774–779

    PubMed  CAS  Google Scholar 

  161. Wang Z, Wu X, Friedberg EC (1993) DNA repair synthesis during base excision repair in vitro is catalyzed by DNA polymerase epsilon and is influenced by DNA polymerases alpha and delta in Saccharomyces cerevisiae. Mol Cell Biol 13:1051–1058

    PubMed  CAS  Google Scholar 

  162. Washington MT, Johnson RE, Prakash L, Prakash S (2004) Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base. Mol Cell Biol 24:936–943

    PubMed  CAS  Google Scholar 

  163. Yang J, Chen Z, Liu Y, Hickey RJ, Malkas LH (2004) Altered DNA polymerase iota expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res 64:5597–5607

    PubMed  CAS  Google Scholar 

  164. Zeng X, Negrete GA, Kasmer C, Yang WW, Gearhart PJ (2004) Absence of DNA polymerase eta reveals targeting of C mutations on the nontranscribed strand in immunoglobulin switch regions. J Exp Med 199:917–924. Epub 2004 Mar 2029

    PubMed  CAS  Google Scholar 

  165. Zhang X, Yu Y, Chen X (1994) Evidence for nontargeted mutagenesis in a monkey kidney cell line and analysis of its sequence specificity using a shuttle-vector plasmid. Mutat Res 323:105–112

    PubMed  CAS  Google Scholar 

  166. Zhang Y et al. (2002) Lesion bypass activities of human DNA polymerase mu. J Biol Chem 277:44582–44587

    PubMed  CAS  Google Scholar 

  167. Zhang Y, Yuan F, Wu X, Wang Z (2000) Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Mol Cell Biol 20:7099–7108

    PubMed  CAS  Google Scholar 

  168. Zhu F, Jin CX, Song T, Yang J, Guo L, Yu YN (2003) Response of human REV3 gene to gastric cancer inducing carcinogen N-methyl-N′-nitro-N-nitrosoguanidine and its role in mutagenesis. World J Gastroenterol 9:888–893

    PubMed  CAS  Google Scholar 

  169. Zhu F, Zhang M (2003) DNA polymerase zeta: new insight into eukaryotic mutagenesis and mammalian embryonic development. World J Gastroenterol 9:1165–1169

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Hübscher .

Editor information

Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramadan, K., Maga, G., Hübscher, U. (2005). DNA Polymerases and Diseases. In: Lankenau, DH. (eds) Genome Integrity. Genome Dynamics and Stability, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7050_005

Download citation

Publish with us

Policies and ethics