Skip to main content

Input of Pharmaceuticals, Pesticides and Industrial Chemicals as a Consequence of Using Conventional and Non-conventional Sources of Water for Artificial Groundwater Recharge

  • Chapter
  • First Online:
Emerging Contaminants from Industrial and Municipal Waste

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5S/2))

  • 1517 Accesses

Abstract

Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational, and drinking purposes. In this context, the usage of groundwater has become essential, therefore its quality and quantity has to be carefully managed. Artificial recharge of aquifers can guarantee a sustainable level of groundwater, whilst strict quality control of waters intended for recharge will minimize contamination of both the groundwater and aquifer area. However, all water resources on the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast-growing interest. In addition to conventional sources of water for recharge, mainly surface water and drinking water surplus, non-conventional sources are attracting interest. Recently, the exploitation of alternative water sources for recharge including reclaimed municipal wastewater, treated industrial effluents, and storm water has been evaluated.

In this chapter an overview of the priority and emerging organic micropollutants found to be present in recharge, infiltrated, and recovered water at managed aquifer recharge sites is presented. Reported results indicated that the drug metabolite 1-acetyl-1-methyl-2-dimethyl-oxamoyl-2-phenylhydrazide (AMDOPH) was the compound found at the highest mean concentration (>1 000  ngL−1) in the drinking water supply in an artificial groundwater recharge plant in Berlin, replenishing groundwater from the Lake Tegel. A similar mean concentration was measured for the pesticide cyanazine (1 150 ngL−1). The pharmaceuticals diclofenac, indomethazine, and bezafibrate, and the industrial chemical tris(2-chloroisopropyl)-phosphate experienced a significant removal in the infiltration process, with elimination rates in the range 60–100%. In contrast, carbamazepine was found to be one of the most persistent contaminants in groundwater environments, with elimination rates below 10%. Different attenuation behaviors can be found depending on the recharge strategy, for instance bank filtration reduced 80% of the recharge water concentration of the antimicrobial sulfamethoxazole, meanwhile only 50% was decreased through infiltrations basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouwer H (2000) Agr Water Manage 45:217

    Article  Google Scholar 

  2. Postel S (1999) Pillar of sand. Worldwatch Institute, Washington DC

    Google Scholar 

  3. Bouwer H (1999) Artificial recharge of groundwater: Systems, designs and management. In: Mays LW (ed) Hydraulic design handbook. McGraw-Hill, New York, Chap 24

    Google Scholar 

  4. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121

    Article  CAS  Google Scholar 

  5. Community Research and Development Information Service (2006) Global change and ecosystems. Europa Publications Office, Brussels. http://cordis.europa.eu/sustdev/environment/ Last accessed: 25 Oct 2007

  6. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202

    Article  CAS  Google Scholar 

  7. Pitt RE, Field R, Lalor M, Brown M (1995) Water Environ Res 67:260

    Article  CAS  Google Scholar 

  8. Pinholster G (1995) Environ Sci Technol 29:174A

    Article  CAS  Google Scholar 

  9. National Research Council (1994) Groundwater recharge using waters of impaired quality. National Academy Press, Washington, DC

    Google Scholar 

  10. Asano T, Cotruvo JA (2004) Water Res 38:1941

    Article  CAS  Google Scholar 

  11. Heberer T, Mechlinski A, Franck B, Knappe A, Massmann G, Fritz B (2004) Ground Water Monitor Remed 24:70

    Article  CAS  Google Scholar 

  12. Bonné PAC, Hofman JAMH, van der Hoek JP (2002) Water Sci Technol 2:139

    Google Scholar 

  13. Barber LB, Thurman EM, Schroeder MP (1988) Environ Sci Technol 22:205

    Article  CAS  Google Scholar 

  14. Jjemba PK (2002) Agr Ecosyst Environ 93:267

    Article  Google Scholar 

  15. Daughton CG, Ternes TA (1999) Environ Health Persp 109:907

    Article  Google Scholar 

  16. Heberer T, Schmidt-Bäumler K, Stan HJ (1998) Acta Hydrochim Hydrobiol 26:272

    Article  CAS  Google Scholar 

  17. Bucheli TD, Müller SR, Heberle S, Schwarzenbach RP (1998) Environ Sci Technol 32:3457

    Article  CAS  Google Scholar 

  18. Pitt R, McLean J (1986) Toronto area watershed management strategy study: Humber River pilot watershed project. Water Resources Branch, Ministry of the Environment, Toronto, Ontario

    Google Scholar 

  19. Pitt R, Field R, Lalor M, Brown M (1995) Water Environ Res 67:260

    Article  CAS  Google Scholar 

  20. US Environmental Protection Agency (1983) Result of the nationwide urban runoff program. NTIS publication no. PB 84-185552. Water Planning Division, US EPA, Washington, DC

    Google Scholar 

  21. US Environmental Protection Agency (1986) Quality criteria for water. EPA 440/5-86-001. US EPA, Washington, DC

    Google Scholar 

  22. Bull RJ, Gerba C, Trussell RR (1990) Crit Rev Environ Control 20:77

    Article  CAS  Google Scholar 

  23. Hiemstra P, Kolpa RJ, van Eekhout JM, van Kessel AL, Adamse ED, van Paassen JAM (2003) J Water Supply Res Technol 52:37

    CAS  Google Scholar 

  24. Verstraeten IM, Heberer T, Scheytt T (2002) Occurrence, characteristics and transport and fate of pesticides, pharmaceutical active compounds, and industrial and personal care products at bank-filtration sites. In: Ray C, Melin R, Linsky RB (eds) Riverbank filtration improving source water quality. Kluwer, Dordrecht

    Google Scholar 

  25. Heberer T (2002) Toxicol Lett 131:5

    Article  CAS  Google Scholar 

  26. Zoeteman BCJ, De Greef E, Brinkmann FJJ (1981) Sci Total Environ 21:187

    Article  CAS  Google Scholar 

  27. Cordy GE, Duran NL, Bouwer H, Rice RC, Furlong ET, Zaugg SD, Meyer MT, Barber LB, Kolpin DW (2004) Ground Water Monit R 24:58

    Article  CAS  Google Scholar 

  28. Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Environ Sci Technol 34:50

    Article  CAS  Google Scholar 

  29. Mansell J, Drewes J (2004) Ground Water Monit R 24:94

    Article  CAS  Google Scholar 

  30. Amy G, Drewes J (2007) Environ Monto Assess 129:19

    Article  CAS  Google Scholar 

  31. DiCorcia A, Cavallo R, Crescenzi C, Nazzari M (2000) Environ Sci Technol 34:3914

    Article  CAS  Google Scholar 

  32. Stüber M, Reemtsma T, Jekel M (2002) Vom Wasser 98:133

    Google Scholar 

  33. Heberer T, Adam M (2004) Environ Chem 1:22

    Article  CAS  Google Scholar 

  34. Grünheid S, Amy G, Jekel M (2005) Water Res 39:3219

    Article  CAS  Google Scholar 

  35. Heberer T, Dünnbier U, Reilich C, Stan HJ (1997) Fresen Environ Bull 6:438

    CAS  Google Scholar 

  36. Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) J Chrom A 938:199

    Article  CAS  Google Scholar 

  37. Heberer T, Verstraeten IM, Meyer MT, Mechlinski A, Reddersen K (2001) Water Res Update 120:4–17

    Google Scholar 

  38. Knepper PK, Kirschhöfer F, Lichter I, Maes A, Wilken RD (1999) Environ Sci Technol 33:945

    Article  CAS  Google Scholar 

  39. Zullei-Seibert N (1996) In: Kivimäki A-L, Suokko T (eds) Proceedings of an international symposium on artificial recharge of groundwater (ARG96), Helsinki, 3–5 June 1996. Nordic Hydrological Programme Report no 38, p 247

    Google Scholar 

  40. European Council (2001) Risk assessment of methyl tert-butyl ether (MTBE), EINECS No. 216-653-1, carried out in the framework of European Council Regulation (EEC) 793/93 on the evaluation and control of the risk of existing substances. Ministry of the Environment Finland, Helsinki (Final draft 06/2001)

    Google Scholar 

  41. Reiser RG, O'Brien AK (1998) Occurrence and seasonal variability of volatile organic compounds in seven New Jersey streams. Water Resources Investigations Report 98-4074. US Geological Survey, Denver. http://nj.usgs.gov/publications/WRIR/wrir98-4074.pdf . Last accessed: 25 Oct 2007

  42. Achten C, Püttmann W (2000) Environ Sci Technol 34:1359

    Article  CAS  Google Scholar 

  43. Grady SJ (1998) Volatile organic compounds in groundwater in the Connecticut, Housatonic and Thames river basins, 1993–1995. National Water Quality Assessment Fact Sheet 029-97. US Geological Survey, Denver

    Google Scholar 

  44. Achten C, Kolb A, Püttmann W (2002) Environ Sci Technol 36:3662

    Article  CAS  Google Scholar 

  45. Piazza F, Barbieri A, Violante FS, Roda A (2001) Chemosphere 44:539

    Article  CAS  Google Scholar 

  46. US Environmental Protection Agency (2006) Drinking water standards. US EPA, Washington, DC. http://www.epa.gov/waterscience/criteria/drinking/dwstandards.html . Last accessed: 25 Oct 2007

  47. Ternes TA, Hirsch R (2000) Environ Sci Technol 34:2741

    Article  CAS  Google Scholar 

  48. Putschew A, Wischnack S, Jekel M (2000) Sci Total Environ 255:129

    Article  CAS  Google Scholar 

  49. Verstraeten IM, Thurman EM, Lindsey ME, Lee EC, Smith RD (2002) J Hydrology 266:190

    Article  CAS  Google Scholar 

  50. Roberts PV, Valocchi AJ (1981) Sci Total Environ 21:161

    Article  CAS  Google Scholar 

  51. Yun G, Cheng X, Jian X, Wu T, Pi Y (2000) Tsingua Sci Technol 5:333

    CAS  Google Scholar 

  52. Hrubec J, den Engeslam G, de Groot AC, den Hartog RS (1995) Int J Environ Anal Chem 58:185

    Article  CAS  Google Scholar 

  53. Grünheid S, Amy G, Jekel M (2005) Water Res 39:3219

    Article  CAS  Google Scholar 

  54. Prommer H, Stuyfzand PJ (2005) Environ Sci Technol 39:2200

    Article  CAS  Google Scholar 

  55. Massmann G, Greskowiak J, Dünnbier U, Zuehlke S, Knappe A, Pekdeger A (2006) J Hydrology 328:141

    Article  CAS  Google Scholar 

  56. Greskowiak J, Prommer H, Massmann G, Nützmann G (2006) Environ Sci Technol 40:6615

    Article  CAS  Google Scholar 

  57. Preuss G, Willme U, Zullei-Seibert N (2002) Acta Hydrochim Hydrobiol 29:269

    Article  CAS  Google Scholar 

  58. Kuehn W, Mueller UJ (2000) J AWWA 92:60

    CAS  Google Scholar 

  59. Drewes J, Heberer T, Rauch T, Reddersen K (2003) Ground Water Monit R 23:64

    Article  CAS  Google Scholar 

  60. Ternes TA, Bonerz M, Hermann N, Teiser B, Andersen HR (2007) Chemosphere 66:894

    Article  CAS  Google Scholar 

  61. Scheytt TJ, Mersmann P, Rejman-Rasinski E, These A (2007) J Soil Sediment 7:75

    Article  CAS  Google Scholar 

  62. Buser HR, Müller MD, Theobald N (1998) Env Sci Technol 32:188

    Article  CAS  Google Scholar 

  63. Scheytt TJ, Grams S, Rejman-Rasinski E, Heberer T, Stan HJ (2001) Pharmaceuticals in groundwater: chlofibric acid beneath sewage farms south of Berlin, Germany. In: Daughton CG, Jones-Lepp TL (eds) Pharmaceuticals and personal care products in the environment – scientific and regulatory issues. ACS Symposium series 791:84

    Google Scholar 

  64. Mersmann P, Scheytt TJ, Heberer T (2002) Acta Hydrochim Hydrobiol 30:275

    Article  Google Scholar 

  65. Zuehlke S, Heberer T, Duennbier U, Fritz B (2004) Ground Water Monit R 24:78

    Article  CAS  Google Scholar 

  66. Schaffner C, Ahel M, Giger W (1987) Water Sci Technol 19:1195

    CAS  Google Scholar 

  67. Montgomery-Brown J, Drewes JE, Foz P, Reinhard M (2003) Water Res 37:3672

    Article  CAS  Google Scholar 

  68. US Geological Survey (2007) Artificial recharge. USGS, Denver. http://water.usgs.gov/ogw/artificial_recharge.html . Last accessed: 25 Oct 2007

  69. Barber LB (1994) Environ Sci Technol 28:890

    Article  CAS  Google Scholar 

  70. Thurman EM, Willoughby T, Barber LB, Thorn KA (1987) Anal Chem 59:1798

    Article  CAS  Google Scholar 

  71. Field JA, Barber LB, Thurman EM, Moore BL, Lawrence DL, Peake DA (1992) Environ Sci Technol 26:1140

    Article  CAS  Google Scholar 

  72. US Geological Survey (2007) Atrazine in source water intended for artificial ground-water recharge, south-central Kansas. USGS, Denver. http://ks.water.usgs.gov/Kansas/pubs/fact-sheets/fs.074-98.html . Last accessed: 25 Oct 2007

  73. Rostad CE, Leenheer JA, Katz BG, Martin BS, Noyes TI (2000) Characterization and disinfection by-product formation potential of natural organic matter in surface and ground waters from northern Florida. In: Natural organic matter and disinfection by-products: characterization and control in drinking water. American Chemical Society Symposium Series 761. American Chemical Society, Washington, DC, pp 154–172

    Chapter  Google Scholar 

  74. Leenheer JA, Rostad CE, Barber LB, Schroeder RA, Anders R, Davisson ML (2001) Environ Sci Technol 35:3869

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Silvia Díaz-Cruz .

Editor information

Damià Barceló Mira Petrovic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Díaz-Cruz, M.S., Barceló, D. (2007). Input of Pharmaceuticals, Pesticides and Industrial Chemicals as a Consequence of Using Conventional and Non-conventional Sources of Water for Artificial Groundwater Recharge. In: Barceló, D., Petrovic, M. (eds) Emerging Contaminants from Industrial and Municipal Waste. The Handbook of Environmental Chemistry, vol 5S/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_5_099

Download citation

Publish with us

Policies and ethics