Skip to main content

Pesticides in the Great Lakes

  • Chapter
  • First Online:
Persistent Organic Pollutants in the Great Lakes

Part of the book series: The Handbook of Environmental Chemistry ((HEC5,volume 5N))

Abstract

Pesticides have been widely and heavily used in agriculture in the Great Lakes Basin (approximately 93000 tons were used in 1995 alone). Herbicides account for two-thirds of the total pesticides used. Herbicide usage in seven of the Great Lakes states (Illinois, Indiana, Michigan, Minnesota, Ohio, Pennsylvania, and Wisconsin) constituted approximately 50% of the total usage in the USA. The pesticide use is concentrated in the corn- and soybean-growing areas of the southern Lake Michigan Basin and western Lake Erie Basin of the Great Lakes. Organochlorines (OC) such as DDT and dieldrin were the major pesticides used in the Great Lakes Basin prior to 1970s. The past usage of OC insecticides was large enough to cause effects on the Great Lakes ecosystem. Whereas environmental concentrations of OC pesticides in the Great Lakes Basin have generally declined during the past 20 years, concerns nevertheless remain, because these substances persist in the environment and accumulate in the food chain. There continue to be fish consumption advisories based on unacceptable levels of OC pesticides in sport and commercial fish from the Great Lakes. Atmospheric transport from agricultural regions in the USA and Canada, where these pesticides were used extensively in the past, continues to be a source of contamination in the Great Lakes. Hazardous waste sites with elevated levels of OC pesticides represent another source. In the 1980s and the 1990s, OC pesticides were replaced with new-generation pesticides, which are more target-specific and less persistent. Among herbicides, atrazine, metolachlor, cyanazine, acetolachlor, and alachlor account for about 53% of the total usage, and among insecticides, organophosphates (OP) such as malathion, chlorpyrifos, terbufos, diazinon, and methyl-parathion account for 72% of the total usage in the late 1990s. Various monitoring programs have shown that the levels of OC pesticides have declined steadily until the 1980s, and thereafter the rate of this decline has slowed. The relative slow decline or steady state in OC levels in the 1990s was thought to be due to release/re-suspension and/or recycling of these compounds through the Great Lakes ecosystem. Atmospheric deposition has become an increasingly significant route of entry of OC pesticides into the Great Lakes ecosystem, although such depositions have decreased recently, and the lakes are now acting as a source via the degassing of these compounds. Most of the current-use pesticides are not bioaccumulative; however, because of the high volume of their usage, these compounds are present in Great Lakes waters. The most frequently detected herbicides in waters include several triazines (atrazine, cyanazine, and simazine), acetanilides (metolachlor and alachlor), and 2,4-D. In addition to streams and rivers, atmospheric transport is a pathway for current-use pesticides in the Great Lakes. The occurrence of in-use pesticides in surface waters follows broad and complex patterns in land use and associated pesticide use. In general, concentrations showed an increasing gradient from north to south, with Superior < Huron < Ontario < Erie. Although most of the current-use pesticides are not bioaccumulative, exposure of aquatic organisms to these compounds can be deleterious. Current-use pesticides can undergo environmental and biological transformations, although the degradates of the most heavily used herbicides found in surface water have not been studied widely. In many cases, methods to assess the fate of current-use pesticides and their degradates in the environment are not available. Future investigations should focus on the fate and effects of current-use pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2,4-DB:

2,4-Dichlorophenoxybutyric acid

2,4-DP:

2,4-Dichlorophenoxybutyric acid

2,4,5-T:

2,4,5-Trichlorophenoxyacetic acid

2,3,6-TBA:

2,3,6-Trichlorobenzoic acid

2,4,5-TP:

2,4,5-Trichlorophenoxyacetic acid

AOC:

Areas of Concern

p,p′-DDE:

1,1-dichloro-2,2-bis(p-dichlorodiphenyl)ethylene

DDT:

Dichlorodiphenyltrichloroethane

FDA:

Food and Drug Administration

GLNPO:

Great Lakes National Program Office

IADN:

Integrated Atmospheric Deposition Network

IJC:

International Joint Commission

HCB:

Hexachlorobenzene

γ-HCH:

γ-Hexachlorocyclohexane

MCPA:

4-chloro-2-methylphenoxyacetic acid

MCPB:

4(4-chloro-2-methylphenoxy)butyric acid

NASS:

National Agricultural Statistics Survey

NAWQA:

National Water Quality Assessment Program

OC:

Organochlorine

OP:

Organophosphorus

USDA:

United States Department of Agriculture

USEPA:

United States Environmental Protection Agency

USGS:

United States Geological Survey

References

  1. USEPA (1996) http://www.epa.gov/glnpo/solec/96/landuse/introduction.html Cited 15 June 2005

  2. OMAFRA (1999) Pesticide Use in Ontario, 1998. Ontario Ministry of Agriculture, Food and Rural Affairs, Toronto

    Google Scholar 

  3. Gianessi LP, Anderson JE (1995) Pesticide use in Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, and Wisconsin crop production. National Center for Food and Agricultural Policy, Washington

    Google Scholar 

  4. Aspelin AL (1994) Pesticides industry sales and usage, 1992 and 1993 market estimates: US Environmental Protection Agency, office of pesticide programs, biological and economic analysis division, economic analysis branch report 733-K-92-001, p 33

    Google Scholar 

  5. Frank R, Logan L, Clegg BS (1991) Arch Environ Contam Toxicol 21:585–595

    Article  CAS  Google Scholar 

  6. Stevens RJJ, Neilson MA (1989) J Great Lakes Res 15:377–393

    CAS  Google Scholar 

  7. Allan RJ, Ball AJ (1990) Wat Poll Res J Canada 25:387–505

    CAS  Google Scholar 

  8. Gianessi LP, Puffer C (1992) Insecticide use in US crop production: resources for the future. Quality of the Environment Division, Washington, p 180

    Google Scholar 

  9. Statistics Canada (1987) Ontario Agriculture, census Canada 1986. Ministry of Supply and Services, Ottawa, p 281

    Google Scholar 

  10. Agriculture Canada (1974) Memorandum regarding proposed revision in acceptable use claims for DDT. Plant Products Division, Ottawa

    Google Scholar 

  11. USGS (1999) The quality of our nation's waters—nutrients and pesticides: US Geological Survey circular 1225, p 82. http://water.usgs.gov/pubs/circ/circ1225/html/wq_urban.html . Cited 15 June 2005

  12. USGS (2000) Water quality in the Lake Erie–Lake St. Clair drainages. 1996–98 US Geological Survey, circular 1203, Denver

    Google Scholar 

  13. Senthilkumar K, Kannan K, Giesy JP, Masunaga S (2002) Environ Sci Technol 36:2789–2796

    Article  CAS  Google Scholar 

  14. Donaldson GM, Shutt JL, Hunter P (1999) Arch Environ Contam Toxicol 36:70–80

    Article  CAS  Google Scholar 

  15. Brody TM, Furio BA, Macarus DP (1998) Agricultural pesticide use in the Great Lakes Basin: estimates of major active ingredients applied during 1994–95 for the Lake Erie, Michigan, and Superior Basins: US Environmental Protection Agency, Region V, p 15. http://www.epa.gov/reg5rcra/ptb/pest/documents/pest_use.pdf

  16. Kuntz KW, Hanau M (1995) Joint evaluation of upstream/downstream Niagara river monitoring data for the period April 1992 to March 1993. Ecosystem Health Division, Environment Canada, p 84

    Google Scholar 

  17. Marvin C, Painter S, Williams D, Richardson V, Rossmann R, van Hoof P (2004) Environ Pollut 129:131–144

    Article  CAS  Google Scholar 

  18. Jorgensen JL (2001) Environ Health Perspect 109:113–139

    Google Scholar 

  19. Environment Canada (1997) Contaminants in herring gull eggs from the Great Lakes: 25 years of monitoring levels and effects. Great Lakes fact sheet, p 12. http://on.ec.gc.ca/wildlife/factsheets/fs_herring_gulls-e.html . Cited on 15 June 2005

  20. Harner T, Bidleman TF, Wideman JL, Parkhurst WJ (1999) Environ Pollut 106:323–332

    Article  CAS  Google Scholar 

  21. Hafner WD, Hites RA (2003) Environ Sci Technol 37:3764–3773

    Article  CAS  Google Scholar 

  22. USEPA (2003) NPL fact sheets for Michigan. US Environmental Protection Agency, Region V. http://www.epa.gov/region5superfund/npl/michigan/MID000722439.htm . Cited 15 June 2005:

  23. USEPA (1998) Great Lakes pesticide report, 1998. US Environmental Protection Agency, Region V. http://www.epa.gov/glnpo/bnsdocs/98summ/pest4.pdf and http://www.epa.gov/glnpo/aoc . Cited 15 June 2005

  24. Buehler SS, Basu I, Hites RA (2004) Environ Sci Technol 38:414–422

    Article  CAS  Google Scholar 

  25. Ma J, Daggupaty S, Harner T, Li Y (2003) Environ Sci Technol 37:3774–3781

    Article  CAS  Google Scholar 

  26. Hunter C, McGee B (1999) Survey of pesticide use in Ontario, 1998. Estimates of pesticide used on field crops, fruit and vegetable crops, and other agricultural crops. Policy Analysis Branch, Guelph

    Google Scholar 

  27. USGS (1998) Maps of annual pesticide use. National water quality assessment pesticide national synthesis project. US Geological Survey. http://ca.water.usgs.gov/pnsp/use92/mapex.html . Cited 15 June 2005

  28. Keith JA (1966) J Appl Ecol 3:57–70

    Article  Google Scholar 

  29. Ludwig JP, Tomoff CS (1966) Jack-Pine Warbler 44:77–84

    Google Scholar 

  30. Williams DJ, Kuntz KW, L'Italien S, Richardson V (2001) Organic contaminants in the Great Lakes 1992–1998. Intra- and inter-lake spatial distributions and temporal trends. Ecosystem Health Division, Environmental Conservation Branch, Ontario Region, Burlington, Ontario, Report No. EHD/ECB-OR/01–01/I

    Google Scholar 

  31. USEPA/USGS (1977) Memoranda of understanding/cooperative agreement for Great Lakes fish monitoring program (GLFMP) between EPA/CRL and USFWS/GLFL, updated July 13, 1989 between USEPA/GLNPO and USFWS/NFRC-GL and June 10, 1996 between USEPA/GLNPO and NBS/GLSC. Ann Arbor, MI and Chicago, IL

    Google Scholar 

  32. DeVault DS, Hesselberg R, Rodgers PW, Feist TJ (1996) J Great Lakes Res. 22:884–895

    CAS  Google Scholar 

  33. Hickey JP, Batterman SA, Chernyak SM (2006) Arch Environ Contam Toxicol (in press)

    Google Scholar 

  34. Fox GA, Trudeau S, Won H, Grasman KA (1998) Environ Monit Assess 53:147–168

    Article  CAS  Google Scholar 

  35. Scheider WA, Cox C, Hayton A, Hitchin G, Vaillancourt A (1998) Environ Monitor Assess 53:57–76

    Article  Google Scholar 

  36. Suns KR, Hitchin GG, Toner D (1993) J Great Lakes Res 19:703–714

    CAS  Google Scholar 

  37. Huestes SY, Servos MR, Whittle DM, Dixon DG (1996) J Great Lakes Res 22:310–330

    Google Scholar 

  38. Ryckman DP, Weseloh DV, Hamr P, Fox GA, Collins B, Ewins PJ, Norstrom RJ (1998) Environ Monitor Assess 53:169–195

    Article  CAS  Google Scholar 

  39. Loganathan BG, Kannan K (1991) Mar Pollut Bull 22:582–584

    Article  CAS  Google Scholar 

  40. Makarewicz JC, Damaske E, Lewis TW, Merner M (2003) Environ Sci Technol 37:1521–1527

    Article  CAS  Google Scholar 

  41. Glassmeyer ST, Meyers TR, Devault DS, Hites RA (1996) Environ Sci Technol 31:84–88

    Article  Google Scholar 

  42. Hoff RM, Strachan WMJ, Sweet CW, Chan CH, Shackelton M, Bidleman TF, Brice E, Burniston DA, Cussion S, Gatz DF, Harlin K, Schroeder WH (1996) Atmos Environ 30:3505–3527

    Article  CAS  Google Scholar 

  43. Ridal JJ, Kerman BR, Durham L, Fox ME (1996) Environ Sci Technol 30:845–851

    Article  Google Scholar 

  44. McConnell LL, Bidleman TF, Cotham WE, Walla MD (1998) Environ Pollut 101:391–399

    Article  CAS  Google Scholar 

  45. Baker JE (1997) Atmospheric deposition of contaminants to the Great Lakes and coastal waters. SETAC Press, Pensacola, p 442

    Google Scholar 

  46. Bidleman TF (1999) Water Air Soil Pollut 115:115–166

    Article  CAS  Google Scholar 

  47. Van Pul WAJ, Bidleman TF, Brorstrom-Lunden E, Builtjes PJH, Dutchak S, Duyzer JH, Gryning SE, Jones KC, van Dijk HFG, Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PVM, Burt JP (1992) Rev Environ Contam Toxicol 123:1–156

    Google Scholar 

  48. Hafner WD, Hites RA (2004) Environ Sci Technol 37:3764–3773

    Article  CAS  Google Scholar 

  49. Hornbuckle KC, Green ML (2003) Ambio 32:406–411

    Google Scholar 

  50. Buehler SS, Basu I, Hites RA (2001) Environ Sci Technol 35:2417–2422

    Article  CAS  Google Scholar 

  51. USEPA (1998) Atmospheric deposition of toxic substances to the Great Lakes: IADN results through 1998. Environment Canada and the USEPA docket # EPA905-R-01–007

    Google Scholar 

  52. Bidleman TF, Harner T, Muir D, Ridal JJ, Ripley B, Strachan WJM, Struger J, Van Vliet L, Waite D (2002) Sources of agrochemicals to the atmosphere and delivery to the Canadian environment. Final report, Toxic Substances Research Consortium, Downsview

    Google Scholar 

  53. Harris ML, van den Heuvel MR, Rouse J, Martin PA, Struger J, Bishop CA, Takacs P (2000) Pesticides in ontario: a critical assessment of potential toxicity of agricultural products to wildlife with consideration for endocrine disruption. vol 1. Canadian Wildlife Service, Environmental Conservation Branch, Ontario Region, Technical report Series No. 340, Ministry of Governmental Services, Cat. No. CW69-5/340E.

    Google Scholar 

  54. Cortes DR, Basu I, Sweet CW, Brice KA, Hoff RM, Hites RA (1998) Environ Sci Technol 32:1920–1927

    Article  CAS  Google Scholar 

  55. Cortes DR, Hoff RM, Brice KA, Hites RA (1999) Environ Sci Technol 33:2145–2150

    Article  CAS  Google Scholar 

  56. Simcik MF, Hoff RM, Strachan WMJ, Sweet CW, Basu I, Hites RA (2000) Environ Sci Technol 34:361–367

    Article  CAS  Google Scholar 

  57. Mackay D, Bentzen E (1997) Atmos Environ 31:4045–4047

    Article  CAS  Google Scholar 

  58. Bergeron M, Poissant L (2000) Contribution relative de l'atmosphere a la masse toxique transportée par le fleuve saint-laurent. Meteorological Service of Canada, Environment Canada, Centre St. Laurent, Montreal

    Google Scholar 

  59. Schottler SP, Eisenreich SJ (1994) Environ Sci Technol 28:2228–2232

    Article  CAS  Google Scholar 

  60. Richards RP, Baker DB (1993) Environ Toxicol Chem 12:13–26

    CAS  Google Scholar 

  61. Pesticides in surface waters. U.S Geological Survey Fact Sheet FS-039-97. http://ca.water.usgs.gov/pnsp/rep/fs97039/sw4.html , Cited 15 June 2005

  62. Kannan K, Battula S, Loganathan BG, Hong C-S, Lam WH, Villeneuve DL, Sajwan K, Giesy JP, Aldous KM (2003) Arch Environ Contam Toxicol 45:30–36

    Article  CAS  Google Scholar 

  63. Smith AE, Kerr LA, Caldwell B (1997) J Agric Food Chem 45:1473–1478

    Article  CAS  Google Scholar 

  64. Hopkins EH, Hippe DJ, Frick EA, Buell GR (2000) Organophosphorus pesticide occurrence in surface and ground water of the United States, 1992–97. US Geological Survey Report 00-187

    Google Scholar 

  65. Struger J, L'Italien S, Sverko E (2003) In-use pesticide concentrations in surface waters of the Laurentian Great Lakes, 1994–2000. Environment Canada, Ecosystem Health Division, Environmental Conservation Branch-Ontario Region, Burlington, 2003. Report No.: EHD/ECB-OR/03-04/I

    Google Scholar 

  66. Struger J, L'Italien S, Sverko E (2004) J Great Lakes Res 30:435–450

    Article  CAS  Google Scholar 

  67. Struger J (1998) Organophosphorous insecticides and endosulfan in surface waters of the Niagara fruit belt, Ontario, Canada. Presented at the Society of Environmental Toxicology and Chemistry meeting, Charlotte, North Carolina

    Google Scholar 

  68. Struger J, Boyd D,Wilson M, Martos P, Ripley B (2002) In-use pesticide concentrations of Canadian tributaries of Lakes Erie and Ontario. International Association of Great Lakes Research Meeting, Winnipeg

    Google Scholar 

  69. Goss DW (1992) Weed Technol 6:701–708

    CAS  Google Scholar 

  70. Muir DCG (1991) Dissipation and transformation in water and sediment. In: Grover R (ed). Environmental Chemistry of Herbicides, Volume 2. CRC Press, Boca Raton, pp 3–88

    Google Scholar 

  71. Moxley J (1989) Survey of pesticide use in Ontario, 1988. Economics Information Report 89-08, Ontario Ministry of Agriculture and Food, Legislative Buildings, Queen's Park, Toronto

    Google Scholar 

  72. Frank R, Clegg BS, Sherman C, Chapman ND (1990) Arch Environ Contam Toxicol 19:319–324

    Article  CAS  Google Scholar 

  73. Richards RP, Baker DB, Kramer JW, Ewing DE (1996) J Great Lakes Res 22:414–428

    CAS  Google Scholar 

  74. Goolsby DA, Thurman EM, Pomes ML, Meyer MT, Battaglin WA (1997) Environ Sci Technol 31:1325–1333

    Article  CAS  Google Scholar 

  75. Frey JW (2001) Occurrence, distribution, and loads of selected pesticides in streams in the Lake Erie-Lake St. Clair Basin, 1996–98. Water-Resources Investigations Report 00–4169. National Water-Quality Assessment Program (NAWQA), Indianapolis 2001. US Geological Survey

    Google Scholar 

  76. OMAFRA (1994) Survey of pesticide use in Ontario, 1993. Ontario Ministry of Agriculture, Food and Rural Affairs, Economics Information Report No. 94-01, Toronto

    Google Scholar 

  77. Hall JC, Van Deynze TD, Struger J, Chan CH (1993) J Environ Sci Health B28:577–598

    CAS  Google Scholar 

  78. Nowell LH, Resek EA (1994) Rev Environ Contam Toxicol 140:1–164

    CAS  Google Scholar 

  79. Larson SJ, Capel PD, Majewski MS (1997) Pesticides in Surface Waters—Distribution, Trends and Governing Factors. In: Gilliom RJ (ed) Pesticides in the Hydrologic System, Volume 3, U.S. Geological Survey, National Water Quality Assessment Program. Ann Arbor Press, Inc., Chelsea

    Google Scholar 

  80. Canadian Council of Ministers of the Environment (1998) Canadian sediment quality guidelines for the protection of aquatic life: introduction and summary tables. CCME EPC-98E. Winnipeg, Manitoba

    Google Scholar 

  81. Health Canada (1996) Guidelines for Canadian drinking water quality. Public Works and Government Services. Canada Cat. No. H48–10/1996-1E

    Google Scholar 

  82. International Joint Commission (1987) Revised Great Lakes water quality agreement of 1978—agreement with annexes and terms of reference, between the United States and Canada signed at Ottawa October 16, 1983 as amended by protocol signed November 18, 1987. International Joint Commission Canada and United States, Windsor

    Google Scholar 

  83. USEPA (1999) National recommended water quality criteria. U.S. Environmental Protection Agency Document # 822-Z-99–001. Washington, DC

    Google Scholar 

  84. Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) Handbook of environmental degradation rates. Lewis Publishers, Chelsea, p 725

    Google Scholar 

  85. Glooschenko WA, Strachan WMJ, Sampson RCJ (1976) Pest Monit J 10:61–67

    CAS  Google Scholar 

  86. Norris LA, Montgomery ML (1975) Bull Environ Contam Toxicol 13:1–8

    Article  CAS  Google Scholar 

  87. Que Hee SS, Sutherland RG (1981) Chemistry, analysis, and environmental pollution, the phenoxyalkanoic herbicides, vol 1. In: CRC Series in Pesticide Chemistry. CRC Press, Boca Raton

    Google Scholar 

  88. Waite DT, Bailey P, Sproull JF, Quiring DV, Chau DF, Bailey J, Cessna AJ (2005) Chemosphere 58:693–703

    Article  CAS  Google Scholar 

  89. Myers DN, Thomas MA, Frey JW, Rheaume SJ, Button DT (2000) Water quality in the Lake Erie–Lake Saint Clair drainages, 1996–1998. National Water Quality Assessment Program, Lake Erie-Lake Saint Clair Drainages, USGS Circular 1203

    Google Scholar 

  90. Fenelon JM, Moore RC (1998) J Environ Qual 27:884–894

    Article  CAS  Google Scholar 

  91. Larson SJ, Gilliom RJ, Capel PD (1999) Pesticides in streams of the United States—initial results from the national water-quality assessment program. U.S. Geological Survey Water-Resources Investigations Report 98–4222, p 92

    Google Scholar 

  92. Crawford CG (2001) J Am Water Res Assoc 37:1–15

    Article  CAS  Google Scholar 

  93. Thurman EM, Goolsby DA, Aga DS, Pomes ML, Meyer MT (1996) Environ Sci Technol 30:569–574

    Article  CAS  Google Scholar 

  94. Panshin SY, Dubrovsky NM, Gronberg JM, Domagalski JL (1998) Occurrence and distribution of dissolved pesticides in the San Joaquin River Basin, California: U.S. Geological Survey Water-Resources Investigations Report 98-4032, p 88

    Google Scholar 

  95. Fenelon JM (1998) Water quality in the White River Basin, 1992–96: U.S. Geological Survey Circular 1150, p 34

    Google Scholar 

  96. Zucker LA, Brown LC (1998) Agricultural drainage—water quality impacts and subsurface drainage studies in the Midwest. Ohio State University Extension Bulletin 871. Ohio State University, Columbus, OH p 40

    Google Scholar 

  97. Thurman EM, Goolsby DA, Meyer MT, Kolpin DW (1991) Environ Sci Technol 25:1794–1796

    Article  CAS  Google Scholar 

  98. Thurman EM, Cromwell AE (2000) Environ Sci Technol 34:3079–3085

    Article  CAS  Google Scholar 

  99. USEPA (2005) The Lake Michigan mass balance project. http://www.epa.gov/glnpo/lmmb/substs.html . Cited 15 June 2005

  100. Schottler SP, Eisenreich SJ (1997) Environ Sci Technol 31:2616–2625

    Article  CAS  Google Scholar 

  101. Macdonald RW, Eisenreich SJ, Bidleman TF, Dachs J, Pacyna JM, Jones KC, Bailey RE, Swackhamer DL, Muir DCG (2000) Case studies on persistence and long-range transport of persistent organic pollutants. In: Klecka G, Boethling B, Franklin J et al. (eds) Evaluation of Persistence and Long-range Transport of Organic Chemicals in the Environment. SETAC press, Pensacola, p 245–314

    Google Scholar 

  102. Coote DR, Macdonald EM, Dickinson WT, Ostry RL, Frank R (1982) J Environ Qual 11:473–481

    Article  CAS  Google Scholar 

  103. Harner T, Bidleman TF, Jantunen LM, Mackay D (2001) Environ Toxicol Chem 20:1612–1621

    Article  CAS  Google Scholar 

  104. Harris CR, Sans WW (1971) Pestic Monit J 5:259–267

    CAS  Google Scholar 

  105. USEPA (2002) The foundation for global action on persistent organic pollutants: A United States perspective. Office of Research and Development, Washington, EPA/600/P-01/003F

    Google Scholar 

  106. Henry KS, Kannan K, Nagy BW, Kevern NR, Zabik MJ, Giesy JP (1998) Arch Environ Contam Toxicol 34:81–86

    Article  CAS  Google Scholar 

  107. Bowerman WW, Giesy JP, Best DA, Kramer VJ (1995) Environ Health Perspect 103:51–59

    CAS  Google Scholar 

  108. NYSDEC (1998) Ambient water quality standards and guideline values and groundwater effluent limitations. Division of Water Technical and Operational Guideline Series (1.1.1). New York State Department of Environmental Conservation, Albany

    Google Scholar 

  109. Burger J, Kannan K, Giesy JP, Gochfeld M (2002) Effects of environmental pollutants on avian behavior. In: Dell'Omo G (ed) Behavioral Ecotoxicology. Wiley, New York, p 337–376

    Google Scholar 

  110. Bishop CA, Boermans HJ, Ng P, Campbell GD, Struger J (1998) J Toxicol Environ Health 55:531–559

    Article  CAS  Google Scholar 

  111. Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB, Wang C, Brazil C, Overstreet JW (2003) Environ Health Perspect 111:1478–1484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurunthachalam Kannan .

Editor information

Ronald A. Hites

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Kannan, K., Ridal, J., Struger, J. Pesticides in the Great Lakes. In: Hites, R.A. (eds) Persistent Organic Pollutants in the Great Lakes. The Handbook of Environmental Chemistry, vol 5N. Springer, Berlin, Heidelberg . https://doi.org/10.1007/698_5_041

Download citation

Publish with us

Policies and ethics