Skip to main content

Particulate Matter Spatial, Temporal Distribution and Size Properties in the Aegean Sea

  • Chapter
  • First Online:
The Aegean Sea Environment

Abstract

An extensive collection of light transmission/beam attenuation coefficient vertical profiles (LT/cp), particulate matter concentration (PMC) and particulate organic carbon concentration (POC), total particle volume concentration (VC), and particle median diameter (D50) vertical profiles were assembled in order to provide an overview of particulate matter dynamics in the Aegean Sea, as well as a first time assessment of suspended particle size properties. A typical beam cp vertical profile is composed of a relatively more turbid surface nepheloid layer (SNL) associated with enhanced primary productivity and atmospheric/fluvial inorganic/organic particle inputs, more transparent mid-waters with the sporadic occurrence of intermediate nepheloid layers (INL), and occasionally a more turbid bottom nepheloid layer (BNL) attributed to seabed sediment resuspension. The Aegean Sea is characterized by very low cp values, apart from river discharge coastal regions of the North Aegean Sea. In a north-south direction, cp decreases, and the water column becomes progressively more transparent, highlighting the transition from meso/oligo- to ultra-oligotrophic conditions prevailing in the Aegean Sea. There is a clear differentiation of particle abundance between “wet” and “dry” seasons, with the former showing enhanced cp, PMC, POC, and VC values. Particle size, studied within the range 1.25–250 μm, exhibits relatively small variability, with D50 varying between 81 and 105 μm, with a general increase over depth which is more pronounced in the South Aegean Sea, most likely associated with the variable abundance of Transparent Exopolymer Particles (TEP). Deep basins of the North Aegean Sea host permanent/semi-permanent INLs at mid-depths; their presence is attributed to internal wave activity. Good correlations of cp:PMC and cp:POC allow for the conversion of cp data to PMC and POC values, in support of modeling and remote sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gardner WD, Walsh ID, Richardson MJ (1993) Biophysical forcing of particle production and distribution during a spring bloom in the North Atlantic. Deep Res Part II 40:171–195. https://doi.org/10.1016/0967-0645(93)90012-C

    Article  Google Scholar 

  2. McCave IN, Hall IR, Antia AN, Chou L, Dehairs F, Lampitt RS, Thomsen L, Van Weering TCE, Wollast R (2001) Distribution, composition and flux of particulate material over the European margin at 47°–50°N. Deep Res Part II Top Stud Oceanogr 48:3107–3139. https://doi.org/10.1016/S0967-0645(01)00034-0

    Article  CAS  Google Scholar 

  3. Jeandel C, Rutgers van der Loeff M, Lam PJ, Roy-Barman M, Sherrell RM, Kretschmer S, German C, Dehairs F (2015) What did we learn about ocean particle dynamics in the GEOSECS-JGOFS era? Prog Oceanogr 133:6–16. https://doi.org/10.1016/j.pocean.2014.12.018

    Article  Google Scholar 

  4. Gardner WD, Richardson MJ, Mishonov AV (2018) Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics. Earth Planet Sci Lett 482:126–134. https://doi.org/10.1016/j.epsl.2017.11.008

    Article  CAS  Google Scholar 

  5. Durrie de Madron X, Nyffeler F, Balopoulos ET, Chronis G (1992) Circulation and distribution of suspended matter in the Sporades basin (Northwestern Aegean Sea). J Mar Syst 3:237–248. https://doi.org/10.1016/0924-7963(92)90003-Q

    Article  Google Scholar 

  6. Karageorgis A, Anagnostou C, Georgopoulos D, Albuisson M (2000) Distribution of suspended particulate matter determined by in-situ observations and satellite images in the NW Aegean Sea (Greece). Geo-Marine Lett 20:93–100. https://doi.org/10.1007/s003670000038

    Article  Google Scholar 

  7. Karageorgis AP, Gardner WD, Georgopoulos D, Mishonov AV, Krasakopoulou E, Anagnostou C (2008) Particle dynamics in the Eastern Mediterranean Sea: a synthesis based on light transmission, PMC, and POC archives (1991–2001). Deep Sea Res Part I Oceanogr Res Pap 55:177–202. https://doi.org/10.1016/J.DSR.2007.11.002

    Article  Google Scholar 

  8. Karageorgis AP, Kontoyiannis H, Stavrakakis S, Krasakopoulou E, Gogou A, Papadopoulos A, Kanellopoulos TD, Rousakis G, Malinverno E, Triantaphyllou MV, Lykousis V (2018) Particle dynamics and fluxes in canyons and open slopes of the southern Cretan margin (Eastern Mediterranean). Prog Oceanogr 169:33–47. https://doi.org/10.1016/j.pocean.2017.12.009

    Article  Google Scholar 

  9. Karageorgis AP, Anagnostou CL (2001) Particulate matter spatial–temporal distribution and associated surface sediment properties: Thermaikos Gulf and Sporades Basin, NW Aegean Sea. Cont Shelf Res 21:2141–2153. https://doi.org/10.1016/S0278-4343(01)00048-6

    Article  Google Scholar 

  10. Karageorgis AP, Anagnostou CL (2003) Seasonal variation in the distribution of suspended particulate matter in the Northwest Aegean Sea. J Geophys Res Ocean 108:3274. https://doi.org/10.1029/2002jc001672

    Article  Google Scholar 

  11. Baker ET, Lavelle JW (1984) The effect of particle size on the light attenuation coefficient of natural suspensions. J Geophys Res 89:8197–8203. https://doi.org/10.1029/JC089iC05p08197

    Article  Google Scholar 

  12. Bishop JKB (1986) The correction and suspended particulate matter calibration of Sea Tech transmissometer data. Deep Sea Res Part A, Oceanogr Res Pap 33:121–134. https://doi.org/10.1016/0198-0149(86)90111-1

    Article  Google Scholar 

  13. Gardner WD, Tucholke BE, Richardson MJ, Biscaye PE (2017) Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the Western North Atlantic. Mar Geol 385:304–327. https://doi.org/10.1016/j.margeo.2016.12.012

    Article  Google Scholar 

  14. Boss E, Slade WH, Behrenfeld M, Dall’Olmo G (2009) Acceptance angle effects on the beam attenuation in the ocean. Opt Express 17:1535. https://doi.org/10.1364/oe.17.001535

    Article  PubMed  Google Scholar 

  15. Biscaye PE, Eittreim SL (1977) Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean. Mar Geol 23:155–172. https://doi.org/10.1016/0025-3227(77)90087-1

    Article  Google Scholar 

  16. Spinrad RW, Zaneveld JRV, Kitchen JC (1983) A study of the optical characteristics of the suspended particles in the benthic nepheloid layer of the Scotian Rise. J Geophys Res 88:7641. https://doi.org/10.1029/JC088iC12p07641

    Article  Google Scholar 

  17. Biscaye PE, Flagg CN, Falkowski PG (1994) The shelf edge exchange processes experiment, SEEP-II: an introduction to hypotheses, results and conclusions. Deep Res Part II 41:231–252. https://doi.org/10.1016/0967-0645(94)90022-1

    Article  CAS  Google Scholar 

  18. Cacchione DA, Drake DE (1986) Nepheloid layers and internal waves over continental shelves and slopes. Geo-Marine Lett 6:147–152. https://doi.org/10.1007/BF02238085

    Article  Google Scholar 

  19. Durrieu de Madron X, Ramondenc S, Berline L, Houpert L, Bosse A, Martini S, Guidi L, Conan P, Curtil C, Delsaut N, Kunesch S, Ghiglione JF, Marsaleix P, Pujo-Pay M, Séverin T, Testor P, Tamburini C (2017) Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection. J Geophys Res Ocean 122:2291–2318. https://doi.org/10.1002/2016JC012062

    Article  Google Scholar 

  20. Gardner WD (1989) Baltimore Canyon as a modern conduit of sediment to the deep sea. Deep Sea Res Part A, Oceanogr Res Pap 36:323–358. https://doi.org/10.1016/0198-0149(89)90041-1

    Article  CAS  Google Scholar 

  21. Hickey B, Baker E, Kachel N (1986) Suspended particle movement in and around Quinault submarine canyon. Mar Geol 71:35–83. https://doi.org/10.1016/0025-3227(86)90032-0

    Article  Google Scholar 

  22. Gardner WD (1989) Periodic resuspension in Baltimore Canyon by focusing of internal waves. J Geophys Res 94:18185–18194. https://doi.org/10.1029/jc094ic12p18185

    Article  Google Scholar 

  23. Moody JA, Butman B, Bothner MH (1987) Near-bottom suspended matter concentration on the continental shelf during storms: estimates based on in situ observations of light transmission and a particle size dependent transmissometer calibration. Cont Shelf Res 7:609–628. https://doi.org/10.1016/0278-4343(87)90026-4

    Article  Google Scholar 

  24. Durrieu de Madron X (1994) Hydrography and nepheloid structures in the Grand-Rhône canyon. Cont Shelf Res 14:457–477. https://doi.org/10.1016/0278-4343(94)90098-1

    Article  Google Scholar 

  25. Puig P, de Madron XD, Salat J, Schroeder K, Martín J, Karageorgis AP, Palanques A, Roullier F, Lopez-Jurado JL, Emelianov M, Moutin T, Houpert L (2013) Thick bottom nepheloid layers in the Western Mediterranean generated by deep dense shelf water cascading. Prog Oceanogr 111:1–23. https://doi.org/10.1016/j.pocean.2012.10.003

    Article  Google Scholar 

  26. Puig P, Palanques A (1998) Nepheloid structure and hydrographic control on the Barcelona continental margin, Northwestern Mediterranean. Mar Geol 149:39–54. https://doi.org/10.1016/S0025-3227(98)00037-1

    Article  Google Scholar 

  27. Gardner WD, Chung SP, Richardson MJ, Walsh ID (1995) The oceanic mixed-layer pump. Deep Res Part II 42:757–775. https://doi.org/10.1016/0967-0645(95)00037-Q

    Article  Google Scholar 

  28. Monaco A, Biscaye P, Soyer J, Pocklington R, Heussner S (1990) Particle fluxes and ecosystem response on a continental margin: the 1985–1988 Mediterranean ECOMARGE experiment. Cont Shelf Res 10:809–839

    Article  Google Scholar 

  29. Karageorgis AP, Georgopoulos D, Kanellopoulos TD, Mikkelsen OA, Pagou K, Kontoyiannis H, Pavlidou A, Anagnostou C (2012) Spatial and seasonal variability of particulate matter optical and size properties in the Eastern Mediterranean Sea. J Mar Syst 105–108:123–134. https://doi.org/10.1016/j.jmarsys.2012.07.003

    Article  Google Scholar 

  30. Agrawal YC, Pottsmith HC (2000) Instruments for particle size and settling velocity observations in sediment transport. Mar Geol 168:89–114. https://doi.org/10.1016/S0025-3227(00)00044-X

    Article  Google Scholar 

  31. Nittis K, Perivoliotis L (2002) Circulation and hydrological characteristics of the North Aegean Sea: a contribution from real-time buoy measurements. Mediterr Mar Sci 3:21–32. https://doi.org/10.12681/mms.255

    Article  Google Scholar 

  32. Varkitzi I, Psarra S, Assimakopoulou G, Pavlidou A, Krasakopoulou E, Velaoras D, Papathanassiou E, Pagou K (2020) Phytoplankton dynamics and bloom formation in the oligotrophic Eastern Mediterranean: field studies in the Aegean, Levantine and Ionian seas. Deep Sea Res Part II Top Stud Oceanogr 171:104662. https://doi.org/10.1016/j.dsr2.2019.104662

    Article  CAS  Google Scholar 

  33. Ignatiades L, Psarra S, Zervakis V, Pagou K, Souvermezoglou E, Assimakopoulou G, Gotsis-Skretas O (2002) Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). J Mar Syst 36:11–28. https://doi.org/10.1016/S0924-7963(02)00132-X

    Article  Google Scholar 

  34. Siokou-Frangou I, Bianchi M, Christaki U, Christou ED, Giannakourou A, Gotsis O, Ignatiades L, Pagou K, Pitta P, Psarra S, Souvermezoglou E, Van Wambeke F, Zervakis V (2002) Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea). J Mar Syst 33–34:335–353. https://doi.org/10.1016/S0924-7963(02)00065-9

    Article  Google Scholar 

  35. Zodiatis G (1994) Advection of Black Sea water in the North Aegean Sea. Glob Atmos Ocean Syst 2:41–60

    Google Scholar 

  36. Karageorgis AP, Drakopoulos PG, Psarra S, Pagou K, Krasakopoulou E, Banks AC, Velaoras D, Spyridakis N, Papathanassiou E (2017) Particle characterization and composition in the NE Aegean Sea: combining optical methods and biogeochemical parameters. Cont Shelf Res 149:96–111. https://doi.org/10.1016/j.csr.2017.03.008

    Article  Google Scholar 

  37. Poulos SE, Drakopoulos PG, Collins MB (1997) Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): an overview. J Mar Syst 13:225–244. https://doi.org/10.1016/S0924-7963(96)00113-3

    Article  Google Scholar 

  38. Zervakis V, Karageorgis AP, Kontoyiannis H, Papadopoulos V, Lykousis V (2005) Hydrology, circulation and distribution of particulate matter in Thermaikos Gulf (NW Aegean Sea), during September 2001–October 2001 and February 2002. Cont Shelf Res 25:2332–2349. https://doi.org/10.1016/j.csr.2005.08.010

    Article  Google Scholar 

  39. Ignatiades L (1998) The productive and optical status of the oligotrophic waters of the Southern Aegean Sea (Cretan Sea), Eastern Mediterranean. J Plankton Res 20:985–995. https://doi.org/10.1093/plankt/20.5.985

    Article  Google Scholar 

  40. Kontoyiannis H, Kourafalou VH, Papadopoulos V (2003) Seasonal characteristics of the hydrology and circulation in the Northwest Aegean Sea (Eastern Mediterranean): observations and modeling. J Geophys Res Ocean 108. https://doi.org/10.1029/2001jc001132

  41. Poulos SE, Chronis GT, Collins MB, Lykousis V (2000) Thermaikos Gulf coastal system, NW Aegean Sea: an overview of water/sediment fluxes in relation to air-land-ocean interactions and human activities. J Mar Syst 25:47–76. https://doi.org/10.1016/S0924-7963(00)00008-7

    Article  Google Scholar 

  42. Therianos AD (1974) The geographical distribution of the river water supply in Greece. Bull Geol Soc Greece 11:28–58

    Google Scholar 

  43. Poulos SE, Chronis GT (1997) The importance of the river systems in the evolution of the Greek coastline. In: Transformations and evolution of the Mediterranean Coastline, pp 75–96

    Google Scholar 

  44. Poulos SE, Collins MB (2002) Fluviatile sediment fluxes to the Mediterranean Sea: a quantitative approach and the influence of dams. Geol Soc Spec Publ 191:227–245. https://doi.org/10.1144/GSL.SP.2002.191.01.16

    Article  Google Scholar 

  45. Guerzoni S, Chester R, Dulac F, Herut B, Loÿe-Pilot M-D, Measures C, Migon C, Molinaroli E, Moulin C, Rossini P, Saydam C, Soudine A, Ziveri P (1999) The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Prog Oceanogr 44:147–190. https://doi.org/10.1016/S0079-6611(99)00024-5

    Article  Google Scholar 

  46. Bressac M, Guieu C, Doxaran D, Bourrin F, Obolensky G, Grisoni JM (2012) A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters. Geo-Marine Lett 32:153–164. https://doi.org/10.1007/s00367-011-0269-4

    Article  Google Scholar 

  47. Gallisai R, Peters F, Volpe G, Basart S, Baldasano JM (2014) Saharan dust deposition may affect phytoplankton growth in the Mediterranean Sea at ecological time scales. PLoS One 9:e110762. https://doi.org/10.1371/journal.pone.0110762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gallisai R, Volpe G, Peters F (2016) Large Saharan dust storms: implications for chlorophyll dynamics in the Mediterranean Sea. Global Biogeochem Cycles 30:1725–1737. https://doi.org/10.1002/2016GB005404

    Article  CAS  Google Scholar 

  49. Herut B, Zohary T, Krom MD, Mantoura RFC, Pitta P, Psarra S, Rassoulzadegan F, Tanaka T, Frede Thingstad T (2005) Response of East Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep Res Part II Top Stud Oceanogr 52:3024–3040. https://doi.org/10.1016/j.dsr2.2005.09.003

    Article  Google Scholar 

  50. Ridame C, Guieu C (2002) Saharan input of phosphate to the oligotrophic water of the open western Mediterranean Sea. Limnol Oceanogr 47:856–869. https://doi.org/10.4319/lo.2002.47.3.0856

    Article  CAS  Google Scholar 

  51. Claustre H, Morel A, Hooker SB, Babin M, Antoine D, Oubelkheir K, Bricaud A, Leblanc K, Quéguiner B, Maritorena S (2002) Is desert dust making oligotrophic waters greener? Geophys Res Lett 29:107-1–107-4. https://doi.org/10.1029/2001gl014056

    Article  Google Scholar 

  52. Mobley CD (2004) Light and water: radiative transfer in natural waters, vol 592. Academic Press

    Google Scholar 

  53. Bartz R, Ronald J, Zaneveld V, Pak H (1978) A transmissometer for profiling and moored observations in water. In: White MB, Stevenson R (eds) Ocean optics V. SPIE, pp 102–109

    Chapter  Google Scholar 

  54. Gardner WD, Mishonov AV, Richardson MJ (2006) Global POC concentrations from in-situ and satellite data. Deep Sea Res Part II Top Stud Oceanogr 53:718–740. https://doi.org/10.1016/j.dsr2.2006.01.029

    Article  CAS  Google Scholar 

  55. Chaikalis S, Velaoras D, Karageorgis AP, Sofianos S, Gogou A, Cardin V, Hainbucher D (2018) LISST measurements in the Mediterranean Sea: relationships between particle optical characteristics and hydrology. In: Particles in Europe (PiE), Lisbon, Portugal, October 2018

    Google Scholar 

  56. Van Rossum G, Drake FL (2009) Python 3 reference manual. CreateSpace, Scotts Valley, CA

    Google Scholar 

  57. Schlitzer R (2020) Ocean data view. https://odv.awi.de

  58. Cutter GA, Radford-Knoery J (2013) Determination of carbon, nitrogen, sulfur, and inorganic sulfur species in marine particles. American Geophysical Union (AGU), pp 57–63

    Google Scholar 

  59. Verardo DJ, Froelich PN, McIntyre A (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep Sea Res Part A, Oceanogr Res Pap 37:157–165. https://doi.org/10.1016/0198-0149(90)90034-S

    Article  CAS  Google Scholar 

  60. Gardner WD, Richardson MJ, Carlson CA, Hansell D, Mishonov AV (2003) Determining true particulate organic carbon: bottles, pumps and methodologies. Deep Res Part II Top Stud Oceanogr 50:655–674. https://doi.org/10.1016/S0967-0645(02)00589-1

    Article  CAS  Google Scholar 

  61. Moran SB, Charette MA, Pike SM, Wicklund CA (1999) Differences in seawater particulate organic carbon concentration in samples collected using small- and large-volume methods: the importance of DOC adsorption to the filter blank. Mar Chem 67:33–42. https://doi.org/10.1016/S0304-4203(99)00047-X

    Article  CAS  Google Scholar 

  62. Georgopoulos D (2002) Water masses, dynamic structure and circulation in the North Aegean Sea. University of Patras

    Google Scholar 

  63. Lykousis V, Chronis G, Tselepides A, Price N, Theocharis A, Siokou-Frangou I, Van Wambeke F, Danovaro R, Stavrakakis S, Duineveld G, Georgopoulos D, Ignatiades L, Souvermezoglou A, Voutsinou-Taliadouri F (2002) Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the Aegean Sea. J Mar Syst 33–34:313–334. https://doi.org/10.1016/S0924-7963(02)00064-7

    Article  Google Scholar 

  64. Karageorgis AP, Kaberi HG, Tengberg A, Zervakis V, Hall POJ, Anagnostou CL (2003) Comparison of particulate matter distribution, in relation to hydrography, in the mesotrophic Skagerrak and the oligotrophic northeastern Aegean Sea. Cont Shelf Res 23:1787–1809. https://doi.org/10.1016/j.csr.2003.06.004

    Article  Google Scholar 

  65. Price NB, Lindsay FS, Pates JM (1999) The biogeochemistry of major elements of the suspended particulate matter of the Cretan Sea. Prog Oceanogr 44:677–699

    Article  Google Scholar 

  66. Georgopoulos D, Theocharis A, Zodiatis G (1989) Intermediate water formation in the Cretan Sea (South Aegean Sea). Oceanol Acta 12:353–359

    Google Scholar 

  67. Robinson AR, Malanotte-Rizzoli P, Hecht A, Michelato A, Roether W, Theocharis A, Ünlüata Ü, Pinardi N, Artegiani A, Bergamasco A, Bishop J, Brenner S, Christianidis S, Gacic M, Georgopoulos D, Golnaraghi M, Hausmann M, Junghaus HG, Lascaratos A, Latif MA, Leslie WG, Lozano CJ, Oǧuz T, Özsoy E, Papageorgiou E, Paschini E, Rozentroub Z, Sansone E, Scarazzato P, Schlitzer R, Spezie GC, Tziperman E, Zodiatis G, Athanassiadou L, Gerges M, Osman M (1992) General circulation of the Eastern Mediterranean. Earth Sci Rev 32:285–309. https://doi.org/10.1016/0012-8252(92)90002-B

    Article  Google Scholar 

  68. Theocharis A, Georgopoulos D, Lascaratos A, Nittis K (1993) Water masses and circulation in the central region of the Eastern Mediterranean: Eastern Ionian, South Aegean and Northwest Levantine, 1986–1987. Deep Res Part II 40:1121–1142. https://doi.org/10.1016/0967-0645(93)90064-T

    Article  Google Scholar 

  69. Eriksen CC (1982) Observations of internal wave reflection off sloping bottoms. J Geophys Res 87:525. https://doi.org/10.1029/JC087iC01p00525

    Article  Google Scholar 

  70. McPhee-Shaw EE (2002) Boundary layer intrusions from a sloping bottom: a mechanism for generating intermediate nepheloid layers. J Geophys Res 107:3–1. https://doi.org/10.1029/2001jc000801

    Article  Google Scholar 

  71. McPhee-Shaw E (2006) Boundary-interior exchange: reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins. In: Deep-sea research part II: topical studies in oceanography. Pergamon, pp 42–59

    Google Scholar 

  72. Arthur RS, Fringer OB (2016) Transport by breaking internal gravity waves on slopes. J Fluid Mech 789:93–126. https://doi.org/10.1017/jfm.2015.723

    Article  CAS  Google Scholar 

  73. McPhee-Shaw EE, Sternberg RW, Mullenbach B, Ogston AS (2004) Observations of intermediate nepheloid layers on the northern California continental margin. Cont Shelf Res 24:693–720. https://doi.org/10.1016/j.csr.2004.01.004

    Article  Google Scholar 

  74. Tesi T, Langone L, Goñi MA, Turchetto M, Miserocchi S, Boldrin A (2008) Source and composition of organic matter in the Bari canyon (Italy): dense water cascading versus particulate export from the upper ocean. Deep Res Part I Oceanogr Res Pap 55:813–831. https://doi.org/10.1016/j.dsr.2008.03.007

    Article  Google Scholar 

  75. Gardner WD, Sullivan LG (1981) Benthic storms: temporal variability in a deep-ocean nepheloid layer. Science 213(4505):329–331. https://doi.org/10.1126/science.213.4505.329

    Article  CAS  PubMed  Google Scholar 

  76. Puig P (2004) Role of internal waves in the generation of nepheloid layers on the northwestern Alboran slope: implications for continental margin shaping. J Geophys Res 109:C09011. https://doi.org/10.1029/2004JC002394

    Article  Google Scholar 

  77. Turnewitsch R, Falahat S, Nycander J, Dale A, Scott RB, Furnival D (2013) Deep-sea fluid and sediment dynamics-influence of hill- to seamount-scale seafloor topography. Earth-Science Rev 127:203–241

    Article  Google Scholar 

  78. McCave IN (1986) Local and global aspects of the bottom nepheloid layers in the world ocean. Neth J Sea Res 20:167–181. https://doi.org/10.1016/0077-7579(86)90040-2

    Article  Google Scholar 

  79. Allen SE, Durrieu de Madron X (2009) A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci 5:607–620. https://doi.org/10.5194/os-5-607-2009

    Article  Google Scholar 

  80. Slinn DN, Riley JJ (1996) Turbulent mixing in the oceanic boundary layer caused by internal wave reflection from sloping terrain. Dyn Atmos Oceans 24:51–62. https://doi.org/10.1016/0377-0265(95)00425-4

    Article  Google Scholar 

  81. Hall RA, Huthnance JM, Williams RG (2013) Internal wave reflection on shelf slopes with depth-varying stratification. J Phys Oceanogr 43:248–258. https://doi.org/10.1175/JPO-D-11-0192.1

    Article  Google Scholar 

  82. Pradhan HK, Rao AD, Mohanty S (2015) Generation of internal tides: an interaction of tides with variable topography and coastal geometry. Ocean Sci J 50:183–194. https://doi.org/10.1007/s12601-015-0014-4

    Article  Google Scholar 

  83. Southard JB, Cacchione DA (1972) Experiments on bottom sediment movement by breaking internal waves. In: Shelf sediment transport: process and pattern. Dowen, Hutchinson and Ross, Stroudsburg, PA, pp 83–97

    Google Scholar 

  84. Chronis G, Lykousis V, Georgopoulos D, Zervakis V, Stavrakakis S, Poulos S (2000) Suspended particulate matter and nepheloid layers over the southern margin of the Cretan Sea (N.E. Mediterranean): seasonal distribution and dynamics. Prog Oceanogr 46:163–185. https://doi.org/10.1016/S0079-6611(00)00017-3

    Article  Google Scholar 

  85. Garrett C, Kunze E (2007) Internal tide generation in the deep ocean. Annu Rev Fluid Mech 39:57–87. https://doi.org/10.1146/annurev.fluid.39.050905.110227

    Article  Google Scholar 

  86. EMODnet (2018) EMODnet Digital Bathymetry (DTM 2018). https://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6

  87. QGIS Development Team (2009) QGIS geographic information system

    Google Scholar 

  88. Lykousis V, Collins MB, Ferentinos G (1981) Modern sedimentation in the N.W. Aegean Sea. Mar Geol 43:111–130. https://doi.org/10.1016/0025-3227(81)90131-6

    Article  Google Scholar 

  89. Lagaria A, Mandalakis M, Mara P, Papageorgiou N, Pitta P, Tsiola A, Kagiorgi M, Psarra S (2017) Phytoplankton response to Saharan dust depositions in the Eastern Mediterranean Sea: a mesocosm study. Front Mar Sci 3:287. https://doi.org/10.3389/FMARS.2016.00287

    Article  Google Scholar 

  90. Parinos C, Gogou A, Krasakopoulou E, Lagaria A, Giannakourou A, Karageorgis AP, Psarra S (2017) Transparent exopolymer particles (TEP) in the NE Aegean Sea frontal area: seasonal dynamics under the influence of Black Sea water. Cont Shelf Res 149:112–123. https://doi.org/10.1016/j.csr.2017.03.012

    Article  Google Scholar 

Download references

Acknowledgments

The officers and crew of R/V “Aegaeo” are warmly thanked for their continuous support during work at sea, occasionally under harsh weather conditions. The technicians and engineers of the Institute of Oceanography-HCMR are thanked for performing all repairs, calibrations, and laboratory analyses over the years: A. Androni, G. Kambouri, A. Morphis, A. Papageorgiou, P. Renieris, I. Stavrakaki, M. Taxiarchi. HCMR scientists acknowledge support by the action entitled “National Network on Climate Change and its Impacts—CLIMPACT,” funded by the Public Investment Program of Greece, General Secretary of Research and Technology/Ministry of Development and Investments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Karageorgis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karageorgis, A.P. et al. (2022). Particulate Matter Spatial, Temporal Distribution and Size Properties in the Aegean Sea. In: Anagnostou, C.L., Kostianoy, A.G., Mariolakos, I.D., Panayotidis, P., Soilemezidou, M., Tsaltas, G. (eds) The Aegean Sea Environment. The Handbook of Environmental Chemistry, vol 127. Springer, Cham. https://doi.org/10.1007/698_2022_899

Download citation

Publish with us

Policies and ethics