Skip to main content

Thermal Desorption and Pyrolysis Combined with Gas Chromatography–Mass Spectrometry in Food and Environmental Chemistry

  • Chapter
  • First Online:
Mass Spectrometry in Food and Environmental Chemistry

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 119))

  • 605 Accesses

Abstract

Pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS) has confirmed to be a versatile technique that benefits food and environmental analyses. It has been used for the chemical characterization of materials and compounds that are not suitable for traditional gas chromatography (GC) because of their large size. The controlled thermal degradation carried out during pyrolysis is able to break down macromolecules into volatile fragments easier to identify because they become separable by GC and detectable by mass spectrometry (MS). A wide array of applications has been reported using Py–GC–MS, from characterization of macromolecules (polymers, paints, lacquers, adhesives, plastic, synthetic fibers, organic matter, etc.) in a variety of disciplines including forensics, history, engineering, and, of course, food and environmental sciences. In recent years, this technique has experienced an important increase due to its capability for the chemical fingerprinting of organic matter, and the identification and characterization of nano-, micro-plastics used for food package and present in environmental and food samples. In this chapter, we describe current Py–GC–MS instrumentation and working modes and summarize recent applications in food and environmental analysis with special emphasis on its strengths and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obst V, Steinhaus J, Knupp G, Schroeder-Obst D, Fink W, Kusch P (2014) Application of pyrolysis–gas chromatography–mass spectrometry for the identification of polymeric materials. LCGC N Am 32:210–217

    Google Scholar 

  2. Picó Y, Barceló D (2020) Pyrolysis gas chromatography-mass spectrometry in environmental analysis: focus on organic matter and microplastics. Trends Anal Chem 130:115964. https://doi.org/10.1016/j.trac.2020.115964

    Article  CAS  Google Scholar 

  3. McNaught AD, Wilkinson A (eds) (1997) Compendium of chemical terminology.2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  4. Schena T, Farrapeira R, Erle TRB, Krause LC, von Muhlen C, Caramao EB (2019) Fast two-dimensional gas chromatography applied in the characterization of bio-oil from the pyrolysis of coconut fibers. Separation Sci Plus 2(3):89–99. https://doi.org/10.1002/sscp.201800129

    Article  CAS  Google Scholar 

  5. Zhang Z, Wang JJ, Lyu X, Jiang M, Bhadha J, Wright A (2019) Impacts of land use change on soil organic matter chemistry in the Everglades, Florida – a characterization with pyrolysis-gas chromatography–mass spectrometry. Geoderma 338:393–400. https://doi.org/10.1016/j.geoderma.2018.12.041

    Article  CAS  Google Scholar 

  6. Basu P (2018) Chapter 5 – pyrolysis. In: Basu P (ed) Biomass gasification, pyrolysis and torrefaction3rd edn. Academic Press, pp 155–187

    Chapter  Google Scholar 

  7. Gómez X, Meredith W, Fernández C, Sánchez-García M, Díez-Antolínez R, Garzón-Santos J et al (2018) Evaluating the effect of biochar addition on the anaerobic digestion of swine manure: application of Py-GC/MS. Environ Sci Pollut Res 25(25):25600–25611. https://doi.org/10.1007/s11356-018-2644-4

    Article  CAS  Google Scholar 

  8. Laskar DD, Ke J, Zeng J, Gao X, Chen S (2013) Py-GC/MS as a powerful and rapid tool for determining lignin compositional and structural changes in biological processes. Curr Anal Chem 9(3):335–351. https://doi.org/10.2174/1573411011309030003

    Article  CAS  Google Scholar 

  9. Ma XM, Lu R, Miyakoshi T (2014) Application of pyrolysis gas chromatography/mass spectrometry in lacquer research: a review. Polymers 6(1):132–144. https://doi.org/10.3390/polym6010132

    Article  CAS  Google Scholar 

  10. Guillou C, Lipp M, Radovic B, Reniero F, Schmidt M, Anklam E (1999) Use of pyrolysis–mass spectrometry in food analysis: applications in the food analysis laboratory of the European Commissions’ Joint Research Centre. J Anal Appl Pyrolysis 49(1):329–335. https://doi.org/10.1016/S0165-2370(98)00121-1

    Article  CAS  Google Scholar 

  11. Jiménez-Morillo NT, Cabrita MJ, Dias CB, González-Vila FJ, González-Pérez JA (2020) Pyrolysis-compound-specific hydrogen isotope analysis (δ2H Py-CSIA) of Mediterranean olive oils. Food Control 110:107023. https://doi.org/10.1016/j.foodcont.2019.107023

    Article  CAS  Google Scholar 

  12. Lima NK, Lopes AR, Guerrero Jr PG, Yamamoto CI, Hansel FA (2018) Determination of volatile organic compounds in eucalyptus fast pyrolysis bio-oil by full evaporation headspace gas chromatography. Talanta 176:47–51. https://doi.org/10.1016/j.talanta.2017.08.008

    Article  CAS  Google Scholar 

  13. Llana-Ruiz-Cabello M, Pichardo S, Morillo NJ, Bermudez JM, Aucejo S, Gonzalez-Vila F et al (2015) Fingerprinting (Py–GC/MS) of a bio-film active food package with Origanum vulgare L. essential oil. Toxicol Lett 238(2 Suppl):S72. https://doi.org/10.1016/j.toxlet.2015.08.251

    Article  Google Scholar 

  14. Onorevoli B, Machado ME, Polidoro AS, Corbelini VA, Caramao EB, Jacques RA (2017) Pyrolysis of residual tobacco seeds: characterization of nitrogen compounds in bio-oil using comprehensive two-dimensional gas chromatography with mass spectrometry detection. Energy Fuel 31(9):9402–9407. https://doi.org/10.1021/acs.energyfuels.7b00405

    Article  CAS  Google Scholar 

  15. Fu Y, Xiao Q, Zong S, Wei S (2020) Characterization and quantitation study of ancient lacquer objects by NIR spectroscopy and THM-Py-GC/MS. J Cult Herit 46:95–101. https://doi.org/10.1016/j.culher.2020.06.015

    Article  Google Scholar 

  16. Primaz CT, Schena T, Lazzari E, Caramao EB, Jacques RA (2018) Influence of the temperature in the yield and composition of the bio-oil from the pyrolysis of spent coffee grounds: characterization by comprehensive two dimensional gas chromatography. Fuel 232:572–580. https://doi.org/10.1016/j.fuel.2018.05.097

    Article  CAS  Google Scholar 

  17. Duemichen E, Eisentraut P, Celina M, Braun U (2019) Automated thermal extraction-desorption gas chromatography mass spectrometry: a multifunctional tool for comprehensive characterization of polymers and their degradation products. J Chromatogr A 1592:133–142. https://doi.org/10.1016/j.chroma.2019.01.033

    Article  CAS  Google Scholar 

  18. Matsui K, Ishimura T, Mattonai M, Iwai I, Watanabe A, Teramae N et al (2020) Identification algorithm for polymer mixtures based on Py-GC/MS and its application for microplastic analysis in environmental samples. J Anal Appl Pyrolysis 149:104834. https://doi.org/10.1016/j.jaap.2020.104834

    Article  CAS  Google Scholar 

  19. Mao F, Fan H, Wang J (2019) Biogenic oxygenates in lignite pyrolysis tars and their thermal cracking revealed by two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC-TOFMS). J Anal Appl Pyrolysis 139:213–223. https://doi.org/10.1016/j.jaap.2019.02.008

    Article  CAS  Google Scholar 

  20. Almendros G, Hernández Z, Sanz J, Rodríguez-Sánchez S, Jiménez-González MA, González-Pérez JA (2018) Graphical statistical approach to soil organic matter resilience using analytical pyrolysis data. J Chromatogr A 1533:164–173. https://doi.org/10.1016/j.chroma.2017.12.015

    Article  CAS  Google Scholar 

  21. Campo J, Nierop KGJ, Cammeraat E, Andreu V, Rubio JL (2011) Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro- and microaggregates of a Mediterranean soil upon heating. J Chromatogr A 1218(30):4817–4827. https://doi.org/10.1016/j.chroma.2011.03.038

    Article  CAS  Google Scholar 

  22. Faria SR, De la Rosa JM, Knicker H, González-Pérez JA, Keizer JJ (2015) Molecular characterization of wildfire impacts on organic matter in eroded sediments and topsoil in Mediterranean eucalypt stands. Catena 135:29–37. https://doi.org/10.1016/j.catena.2015.07.007

    Article  CAS  Google Scholar 

  23. Jiménez-Morillo NT, Almendros G, De la Rosa JM, Jordán A, Zavala LM, Granged AJP et al (2020) Effect of a wildfire and of post-fire restoration actions in the organic matter structure in soil fractions. Sci Total Environ 728:138715. https://doi.org/10.1016/j.scitotenv.2020.138715

    Article  CAS  Google Scholar 

  24. Ma S, Chen Y, Lu X, Wang X (2018) Soil organic matter chemistry: based on pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Mini-Rev Org Chem 15(5):389–403. https://doi.org/10.2174/1570193X15666180108152845

    Article  CAS  Google Scholar 

  25. Santoiemma G (2018) Recent methodologies for studying the soil organic matter. Appl Soil Ecol 123:546–550. https://doi.org/10.1016/j.apsoil.2017.09.011

    Article  Google Scholar 

  26. Yamamoto S, Yoshioka H, Ishiwatari R (2007) Pyrolysis- and chemical degradation-GC/MS analyses of environmental kerogen and humic substances and their applications to geochemistry. Bunseki Kagaku 56(2):71–91. https://doi.org/10.2116/bunsekikagaku.56.71

    Article  CAS  Google Scholar 

  27. Allouzi MMA, Tang DYY, Chew KW, Rinklebe J, Bolan N, Allouzi SMA et al (2021) Micro (nano) plastic pollution: the ecological influence on soil-plant system and human health. Sci Total Environ 788:147815. https://doi.org/10.1016/j.scitotenv.2021.147815

    Article  CAS  Google Scholar 

  28. Barcelo D, Pico Y (2019) Microplastics in the global aquatic environment: analysis, effects, remediation and policy solutions. J Environ Chem Eng 7(5). https://doi.org/10.1016/j.jece.2019.103421

  29. Fu W, Min J, Jiang W, Li Y, Zhang W (2020) Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci Total Environ 721:137561. https://doi.org/10.1016/j.scitotenv.2020.137561

    Article  CAS  Google Scholar 

  30. Jiang Y, Yang F, Hassan Kazmi SSU, Zhao Y, Chen M, Wang J (2022) A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. Chemosphere 286:131677. https://doi.org/10.1016/j.chemosphere.2021.131677

    Article  CAS  Google Scholar 

  31. Peñalver R, Arroyo-Manzanares N, López-García I, Hernández-Córdoba M (2020) An overview of microplastics characterization by thermal analysis. Chemosphere 242:125170. https://doi.org/10.1016/j.chemosphere.2019.125170

    Article  CAS  Google Scholar 

  32. Pico Y, Alfarhan A, Barcelo D (2019) Nano- and microplastic analysis: focus on their occurrence in freshwater ecosystems and remediation technologies. Trac-Trends Anal Chem 113:409–425. https://doi.org/10.1016/j.trac.2018.08.022

    Article  CAS  Google Scholar 

  33. Shi W, Cui T, Wu H, LeBlanc GA, Wang F, Lihui AN (2021) A proposed nomenclature for microplastic contaminants. Mar Pollut Bull 172:112960. https://doi.org/10.1016/j.marpolbul.2021.112960

    Article  CAS  Google Scholar 

  34. Vilakati B, Sivasankar V, Nyoni H, Mamba BB, Omine K, Msagati TAM (2021) The Py – GC-TOF-MS analysis and characterization of microplastics (MPs) in a wastewater treatment plant in Gauteng Province. S Afr Ecotoxicol Environ Saf 222:112478. https://doi.org/10.1016/j.ecoenv.2021.112478

    Article  CAS  Google Scholar 

  35. Yu Z-f, Song S, Xu X-l, Ma Q, Lu Y (2021) Sources, migration, accumulation and influence of microplastics in terrestrial plant communities. Environ Exp Bot 192:104635. https://doi.org/10.1016/j.envexpbot.2021.104635

    Article  Google Scholar 

  36. Sobeih KL, Baron M, Gonzalez-Rodriguez J (2008) Recent trends and developments in pyrolysis-gas chromatography. J Chromatogr A 1186(1–2):51–66. https://doi.org/10.1016/j.chroma.2007.10.017

    Article  CAS  Google Scholar 

  37. Fan X, Wei S, Zhu M, Song J, Peng P (2018) Molecular characterization of primary humic-like substances in fine smoke particles by thermochemolysis–gas chromatography–mass spectrometry. Atmos Environ 180:1–10. https://doi.org/10.1016/j.atmosenv.2018.02.033

    Article  CAS  Google Scholar 

  38. Zhang Z, Xu G, Wang Q, Cui Z, Wang L (2019) Pyrolysis characteristics, kinetics, and evolved gas determination of chrome-tanned sludge by thermogravimetry–Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry. Waste Manag 93:130–137. https://doi.org/10.1016/j.wasman.2019.05.034

    Article  CAS  Google Scholar 

  39. Girona-García A, Badía-Villas D, Jiménez-Morillo NT, González-Pérez JA (2019) Changes in soil organic matter composition after Scots pine afforestation in a native European beech forest revealed by analytical pyrolysis (Py-GC/MS). Sci Total Environ 691:1155–1161. https://doi.org/10.1016/j.scitotenv.2019.07.229

    Article  CAS  Google Scholar 

  40. Mazzetto JML, Melo VF, Bonfleur EJ, Vidal-Torrado P, Dieckow J (2019) Potential of soil organic matter molecular chemistry determined by pyrolysis-gas chromatography/mass spectrometry for forensic investigations. Sci Justice 59(6):635–642. https://doi.org/10.1016/j.scijus.2019.07.003

    Article  Google Scholar 

  41. Wu X, Ba Y, Wang X, Niu M, Fang K (2018) Evolved gas analysis and slow pyrolysis mechanism of bamboo by thermogravimetric analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Bioresour Technol 266:407–412. https://doi.org/10.1016/j.biortech.2018.07.005

    Article  CAS  Google Scholar 

  42. Zhong L, Ni R, Zhang L, He Z, Zhou H, Li L (2019) Determination of total arsenic in soil by gas chromatography after pyrolysis. Microchem J 146:568–574. https://doi.org/10.1016/j.microc.2019.01.057

    Article  CAS  Google Scholar 

  43. Pico Y, Barcelo D (2019) Analysis and prevention of microplastics pollution in water: current perspectives and future directions. Acs Omega 4(4):6709–6719. https://doi.org/10.1021/acsomega.9b00222

    Article  CAS  Google Scholar 

  44. Dierkes G, Lauschke T, Becher S, Schumacher H, Foeldi C, Ternes T (2019) Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal Bioanal Chem 411(26):6959–6968. https://doi.org/10.1007/s00216-019-02066-9

    Article  CAS  Google Scholar 

  45. Gong J-S, Tang C, Peng C-X (2012) Characterization of the chemical differences between solvent extracts from Pu-erh tea and Dian Hong black tea by CP–Py–GC/MS. J Anal Appl Pyrolysis 95:189–197. https://doi.org/10.1016/j.jaap.2012.02.006

    Article  CAS  Google Scholar 

  46. Tian L, Bayen S, Yaylayan V (2017) Thermal degradation of five veterinary and human pharmaceuticals using pyrolysis-GC/MS. J Anal Appl Pyrolysis 127:120–125. https://doi.org/10.1016/j.jaap.2017.08.016

    Article  CAS  Google Scholar 

  47. Prieto AI, Guzmán-Guillén R, Jos Á, Cameán AM, de la Rosa JM, González-Pérez JA (2020) Detection of cylindrospermopsin and its decomposition products in raw and cooked fish (Oreochromis niloticus) by analytical pyrolysis (Py-GC/MS). Chemosphere 244:125469. https://doi.org/10.1016/j.chemosphere.2019.125469

    Article  CAS  Google Scholar 

  48. Wang L, Hosaka A, Watanabe C, Ohtani H, Tsuge S (2004) Development of a novel solid-phase extraction element for thermal desorption gas chromatography analysis. J Chromatogr A 1035(2):277–279. https://doi.org/10.1016/j.chroma.2004.02.059

    Article  CAS  Google Scholar 

  49. Wang L, Zhang X, Wang Y, Wang W (2006) Simultaneous determination of preservatives in soft drinks, yogurts and sauces by a novel solid-phase extraction element and thermal desorption-gas chromatography. Anal Chim Acta 577(1):62–67. https://doi.org/10.1016/j.aca.2006.06.030

    Article  CAS  Google Scholar 

  50. Huang Y, Qing X, Wang W, Han G, Wang J (2020) Mini-review on current studies of airborne microplastics: analytical methods, occurrence, sources, fate and potential risk to human beings. Trends Anal Chem 125:115821. https://doi.org/10.1016/j.trac.2020.115821

    Article  CAS  Google Scholar 

  51. Li J, Liu H, Paul Chen J (2018) Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–374. https://doi.org/10.1016/j.watres.2017.12.056

    Article  CAS  Google Scholar 

  52. Mai L, Bao LJ, Shi L, Wong CS, Zeng EY (2018) A review of methods for measuring microplastics in aquatic environments. Environ Sci Pollut Res 25(12):11319–11332. https://doi.org/10.1007/s11356-018-1692-0

    Article  CAS  Google Scholar 

  53. Rios Mendoza LM, Balcer M (2019) Microplastics in freshwater environments: a review of quantification assessment. Trends Anal Chem 113:402–408. https://doi.org/10.1016/j.trac.2018.10.020

    Article  CAS  Google Scholar 

  54. Silva AB, Bastos AS, Justino CIL, da Costa JP, Duarte AC, Rocha-Santos TAP (2018) Microplastics in the environment: challenges in analytical chemistry – a review. Anal Chim Acta 1017:1–19. https://doi.org/10.1016/j.aca.2018.02.043

    Article  CAS  Google Scholar 

  55. Kusch P (2017) Chapter 7 – application of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). In: Rocha-Santos TAP, Duarte AC (eds) Comprehensive analytical chemistry, vol 75. Elsevier, pp 169–207

    Google Scholar 

  56. David J, Steinmetz Z, Kučerík J, Schaumann GE (2018) Quantitative analysis of poly(ethylene terephthalate) microplastics in soil via thermogravimetry-mass spectrometry. Anal Chem 90(15):8793–8799. https://doi.org/10.1021/acs.analchem.8b00355

    Article  CAS  Google Scholar 

  57. Steinmetz Z, Kintzi A, Muñoz K, Schaumann GE (2020) A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2020.104803

  58. Watteau F, Dignac MF, Bouchard A, Revallier A, Houot S (2018) Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Front Sustain Food Syst 2. https://doi.org/10.3389/fsufs.2018.00081

  59. Okoffo ED, Ribeiro F, O'Brien JW, O'Brien S, Tscharke BJ, Gallen M et al (2020) Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography-mass spectrometry. Sci Total Environ 715:136924. https://doi.org/10.1016/j.scitotenv.2020.136924

    Article  CAS  Google Scholar 

  60. Käppler A, Fischer M, Scholz-Böttcher BM, Oberbeckmann S, Labrenz M, Fischer D et al (2018) Comparison of μ-ATR-FTIR spectroscopy and Py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Anal Bioanal Chem 410(21):5313–5327. https://doi.org/10.1007/s00216-018-1185-5

    Article  CAS  Google Scholar 

  61. Doyen P, Hermabessiere L, Dehaut A, Himber C, Decodts M, Degraeve T et al (2019) Occurrence and identification of microplastics in beach sediments from the Hauts-de-France region. Environ Sci Pollut Res 26(27):28010–28021. https://doi.org/10.1007/s11356-019-06027-8

    Article  CAS  Google Scholar 

  62. Gomiero A, Øysæd KB, Agustsson T, van Hoytema N, van Thiel T, Grati F (2019) First record of characterization, concentration and distribution of microplastics in coastal sediments of an urban fjord in south West Norway using a thermal degradation method. Chemosphere 227:705–714. https://doi.org/10.1016/j.chemosphere.2019.04.096

    Article  CAS  Google Scholar 

  63. Fischer M, Scholz-Boettcher BM (2019) Microplastics analysis in environmental samples – recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass-related data. Anal Methods 11(18):2489–2497. https://doi.org/10.1039/c9ay00600a

    Article  Google Scholar 

  64. Funck M, Yildirim A, Nickel C, Schram J, Schmidt TC, Tuerk J (2019) Identification of microplastics in wastewater after cascade filtration using Pyrolysis-GC-MS. MethodsX 7:100778. https://doi.org/10.1016/j.mex.2019.100778

    Article  CAS  Google Scholar 

  65. Lv L, He L, Jiang S, Chen J, Zhou C, Qu J et al (2020) In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Sci Total Environ 728. https://doi.org/10.1016/j.scitotenv.2020.138449

  66. Yu J, Wang P, Ni F, Cizdziel J, Wu D, Zhao Q et al (2019) Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar Pollut Bull 145:153–160. https://doi.org/10.1016/j.marpolbul.2019.05.037

    Article  CAS  Google Scholar 

  67. Ravit B, Cooper K, Buckley B, Yang I, Deshpande A (2019) Organic compounds associated with microplastic pollutants in New Jersey, U.S.A. surface waters. AIMS Environ Sci 6(6):445–459. https://doi.org/10.3934/environsci.2019.6.445

    Article  CAS  Google Scholar 

  68. Hendrickson E, Minor EC, Schreiner K (2018) Microplastic abundance and composition in Western Lake superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environ Sci Technol 52(4):1787–1796. https://doi.org/10.1021/acs.est.7b05829

    Article  CAS  Google Scholar 

  69. Fischer M, Goßmann I, Scholz-Böttcher BM (2019) Fleur de Sel—an interregional monitor for microplastics mass load and composition in European coastal waters? J Anal Appl Pyrolysis 144. https://doi.org/10.1016/j.jaap.2019.104711

  70. Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, Cassone AL et al (2018) Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal Bioanal Chem 410(25):6663–6676. https://doi.org/10.1007/s00216-018-1279-0

    Article  CAS  Google Scholar 

  71. Fabbri D, Rombolà AG, Vassura I, Torri C, Franzellitti S, Capolupo M et al (2020) Off-line analytical pyrolysis GC–MS to study the accumulation of polystyrene microparticles in exposed mussels. J Anal Appl Pyrolysis 149:104836. https://doi.org/10.1016/j.jaap.2020.104836

    Article  CAS  Google Scholar 

  72. Diez-Quijada L, de Oliveira FL, Jos Á, Cameán AM, Aparicio-Ruiz R, Vasconcelos V et al (2020) Alterations in Mediterranean mussel (Mytilus galloprovincialis) composition exposed to cyanotoxins as revealed by analytical pyrolysis. J Anal Appl Pyrolysis 152:104970. https://doi.org/10.1016/j.jaap.2020.104970

    Article  CAS  Google Scholar 

  73. Dehaut A, Hermabessiere L, Duflos G (2019) Current frontiers and recommendations for the study of microplastics in seafood. Trends Anal Chem 116:346–359. https://doi.org/10.1016/j.trac.2018.11.011

    Article  CAS  Google Scholar 

  74. Mintenig SM, Bäuerlein PS, Koelmans AA, Dekker SC, Van Wezel AP (2018) Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ Sci Nano 5(7):1640–1649. https://doi.org/10.1039/c8en00186c

    Article  CAS  Google Scholar 

  75. Sullivan GL, Gallardo JD, Jones EW, Hollliman PJ, Watson TM, Sarp S (2020) Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF). Chemosphere 249:126179. https://doi.org/10.1016/j.chemosphere.2020.126179

    Article  CAS  Google Scholar 

  76. Zhou X-x, Hao L-t, Wang H-y-z, Li Y-j, Liu J-f (2019) Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry. Anal Chem 91(3):1785–1790. https://doi.org/10.1021/acs.analchem.8b04729

    Article  CAS  Google Scholar 

  77. Fischer M, Scholz-Böttcher BM (2017) Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry. Environ Sci Technol 51(9):5052–5060. https://doi.org/10.1021/acs.est.6b06362

    Article  CAS  Google Scholar 

  78. Müller YK, Wernicke T, Pittroff M, Witzig CS, Storck FR, Klinger J et al (2020) Microplastic analysis—are we measuring the same? Results on the first global comparative study for microplastic analysis in a water sample. Anal Bioanal Chem 412(3):555–560. https://doi.org/10.1007/s00216-019-02311-1

    Article  CAS  Google Scholar 

  79. La Nasa J, Biale G, Fabbri D, Modugno F (2020) A review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative determination of microplastics. J Anal Appl Pyrolysis 149:104841. https://doi.org/10.1016/j.jaap.2020.104841

    Article  CAS  Google Scholar 

  80. Akoueson F, Chbib C, Monchy S, Paul-Pont I, Doyen P, Dehaut A et al (2021) Identification and quantification of plastic additives using pyrolysis-GC/MS: a review. Sci Total Environ 773:145073. https://doi.org/10.1016/j.scitotenv.2021.145073

    Article  CAS  Google Scholar 

  81. Chen H, Rhoades CC, Chow AT (2020) Characteristics of soil organic matter 14 years after a wildfire: a pyrolysis-gas-chromatography mass spectrometry (Py-GC-MS) study. J Anal Appl Pyrolysis 152:104922. https://doi.org/10.1016/j.jaap.2020.104922

    Article  CAS  Google Scholar 

  82. Campo J, Stijsiger RJ, Nadal-Romero E, Cammeraat ELH (2019) The effects of land abandonment and long-term afforestation practices on the organic carbon stock and lignin content of Mediterranean humid mountain soils. Eur J Soil Sci 70(5):947–959. https://doi.org/10.1111/ejss.12799

    Article  CAS  Google Scholar 

  83. Banach-Szott M, Debska B, Tobiasova E, Pakula J (2019) Structural investigation of humic acids of forest soils by pyrolysis-gas chromatography. Pol J Environ Stud 28(6):4099–4107. https://doi.org/10.15244/pjoes/97392

    Article  CAS  Google Scholar 

  84. Otto S, Streibel T, Erdmann S, Klingbeil S, Schulz-Bull D, Zimmermann R (2015) Pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon-ionization for characterization of polycyclic aromatic hydrocarbons in the Baltic Sea. Mar Pollut Bull 99(1):35–42. https://doi.org/10.1016/j.marpolbul.2015.08.001

    Article  CAS  Google Scholar 

  85. Park J, Choi M, Cho J, Chon K (2018) Transformation of dissolved organic matter in a constructed wetland: a molecular-level composition analysis using pyrolysis-gas chromatography mass spectrometry. Environ Eng Res 23(4):390–396. https://doi.org/10.4491/eer.2018.043

    Article  Google Scholar 

  86. Jiang T, Kaal J, Liang J, Zhang Y, Wei S, Wang D et al (2017) Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC–MS and thermally assisted hydrolysis and methylation. Sci Total Environ 603–604:461–471. https://doi.org/10.1016/j.scitotenv.2017.06.114

    Article  CAS  Google Scholar 

  87. Taube PS, Silva DS, Vasconcelos AA, Rebellato L, Madureira LAS, Hansel FA (2018) Exploratory on-line pyrolysis and thermally assisted hydrolysis and methylation for evaluating non-hydrolyzable organic matter in anthropogenic soil from central Brazilian Amazon. Brazilian. J Anal Chem 5(19):38–53. https://doi.org/10.30744/brjac.2179-3425.2018.5.19.38-53

    Article  CAS  Google Scholar 

  88. Dorado J, Almendros G, González-Vila FJ (2016) Response of humic acid structure to soil tillage management as revealed by analytical pyrolysis. J Anal Appl Pyrolysis 117:56–63. https://doi.org/10.1016/j.jaap.2015.12.016

    Article  CAS  Google Scholar 

  89. Jimenez-Gonzalez MA, Alvarez AM, Carral P, Gonzalez-Vila FJ, Almendros G (2017) The diversity of methoxyphenols released by pyrolysis-gas chromatography as predictor of soil carbon storage. J Chromatogr A 1508:130–137. https://doi.org/10.1016/j.chroma.2017.05.068

    Article  CAS  Google Scholar 

  90. Schellekens J, Almeida-Santos T, Macedo RS, Buurman P, Kuyper TW, Vidal-Torrado P (2017) Molecular composition of several soil organic matter fractions from anthropogenic black soils (Terra Preta de Índio) in Amazonia — a pyrolysis-GC/MS study. Geoderma 288:154–165. https://doi.org/10.1016/j.geoderma.2016.11.001

    Article  CAS  Google Scholar 

  91. Heslop J, Walter Anthony K, Zhang M (2017) Utilizing pyrolysis GC-MS to characterize organic matter quality in relation to methane production in a thermokarst lake sediment core. Org Geochem 103:43–50. https://doi.org/10.1016/j.orggeochem.2016.10.013

    Article  CAS  Google Scholar 

  92. Fukushima M, Tu X, Aneksampant A, Tanaka A (2018) Analysis of branched-chain fatty acids in humic substances as indices for compost maturity by pyrolysis-gas chromatography/mass spectrometry with tetramethylammonium hydroxide (TMAH-py-GC/MS). J Mater Cycles Waste Manag 20(1):176–184. https://doi.org/10.1007/s10163-016-0559-z

    Article  CAS  Google Scholar 

  93. Chen H, Blosser GD, Majidzadeh H, Liu X, Conner WH, Chow AT (2018) Integration of an automated identification-quantification pipeline and statistical techniques for pyrolysis GC/MS tracking of the molecular fingerprints of natural organic matter. J Anal Appl Pyrolysis 134:371–380. https://doi.org/10.1016/j.jaap.2018.07.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Grant RTI2018-097158-B-C31 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe,” and project ANTROPOCEN@ (PROMETEO/2018/155) funded by Generalitat Valenciana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Picó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campo, J., Picó, Y. (2022). Thermal Desorption and Pyrolysis Combined with Gas Chromatography–Mass Spectrometry in Food and Environmental Chemistry. In: Picó, Y., Campo, J. (eds) Mass Spectrometry in Food and Environmental Chemistry. The Handbook of Environmental Chemistry, vol 119. Springer, Cham. https://doi.org/10.1007/698_2022_887

Download citation

Publish with us

Policies and ethics