Skip to main content

Degradation of Selected Xenobiotics from Wastewater by Wood-Decay Fungi

  • Chapter
  • First Online:
  • 534 Accesses

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 118))

Abstract

The occurrence of xenobiotics in the aquatic environment is a consequence of the development of the chemical and pharmaceutical industries and the massive use of synthetic substances in various manufacturing sectors. It has a completely different effect on the environment than “normal” organic pollution. It does not primarily affect water quality but acts directly on organisms. It can damage immunity, growth, metabolic processes, reproduction, and the natural behavior of biota. The main source of xenobiotics in the water cycle is an outflow of wastewater treatment plants. Xenobiotics are a diverse group of micropollutants with high persistence and resistance to the normal process of biological treatment in WWTP. For this reason, it is necessary to look for and test new methods and possibilities of their elimination in the water management sector. Promising technology is the bioremediation system’s effective use of wood-destroying “white root fungi,” whose enzymatic apparatus is able to metabolize more complex substances.

This chapter deals with the influence of wood-destroying fungi on the degradation of selected xenobiotics from wastewater and the development of bioremediation technology with a biofilter inoculated with Trametes Versicolor mycelium, which could be practically applied in the tertiary stage of wastewater treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fatta-Kassinos D, Bester K, Kümmerer K (2010) Xenobiotics in the urban water cycle. Mass flows, environmental processes, mitigation and treatment strategies. Environ Pollut

    Google Scholar 

  2. Jobling SATR (2003) Endocrine disruption in wild freshwater fish. Pure Appl Chem 75(10–11):2219–2234

    CAS  Google Scholar 

  3. Sultanna T, Murray C, Kleyweght S, Metcalfe CD (2018) Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada. Chemosphere 202:506–513

    Google Scholar 

  4. Klarich K, Pflug N, DeWald E, Hladik M, Kolpin D, Cwiertny D (2017) Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environ Sci Technol 4(5):168–173

    CAS  Google Scholar 

  5. Schipper P, Vissers M, van der Linden A (2008) Pesticides in groundwater and drinking water wells: overview of the situation in the Netherlands. Water Sci Technol 57(8):1277–1286

    CAS  Google Scholar 

  6. Matsushita T, Morimoto A, Kuriyama T (2018) Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination. Water Res 138:67–76

    CAS  Google Scholar 

  7. Onesios K, Bouwer E (2021) Biological removal of pharmaceuticals and personal care products during laboratory soil aquifer treatment simulation with different primary substrate concentrations. Water Res 46(7):2365–2375

    Google Scholar 

  8. Komise E. EU – pesticides database [Online]. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=CS

  9. Klein W (1999) Final report – revised proposal for list of priority substances in the context of the water framework directive (COMMPS procedure) [Online]. http://ec.europa.eu/environment/water/water-dangersub/pdf/commps_report.pdf

  10. EUR (2015) Development of the first watch list under the environmental quality standards directive: EUR – scientific and technical research reports

    Google Scholar 

  11. Directive 2008/105/EC: environmental quality standards in the field of water policy (2008)

    Google Scholar 

  12. IPCS – The International Program on Chemical Safety (2014) [Online]. http://www.inchem.org/. Přístup získán 2021-04-27

  13. Field J, Jong E, Feijoo-Costa G, Bont J (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11(2):44–49

    CAS  Google Scholar 

  14. Morgan P, Lewis S, Watkinson R (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl Microbiol Biotechnol 34(5):693–696

    CAS  Google Scholar 

  15. Reddy C (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6(3):320–328

    CAS  Google Scholar 

  16. Kirby N, Mc Mullan G, Marchant R (1995) Decolourisation of an artificial textile effluent by Phanerochaete chrysosporium. Biotechnol Lett 17(7):761–764

    CAS  Google Scholar 

  17. Badia-Fabregat M, Lucas D, Pereira M, Alves M, Pennanen T, Fritze H, Rodríguez-Mozaz S, Barceló D, Vicent T, Caminal G (2016) Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Appl Microbiol Biotechnol 100(5):2401–2415

    CAS  Google Scholar 

  18. Mir-Tutusaus J, Sarrà M, Caminal G (2016) Continuous treatment of non-sterile hospital wastewater by Trametes Versicolor: how to increase fungal viability by means of operational strategies and pretreatments. J Hazard Mater 318:561–570

    CAS  Google Scholar 

  19. Cruz-Morató C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E (2014) Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376

    Google Scholar 

  20. Kalina T, Váňa J (2010) SINICE,ŘASY, HOUBY, MECHOROSTY a podobné organismy v současné biologii. NAKLADATELSTVÍ KAROLINUM, Praha

    Google Scholar 

  21. Royal Botanic Gardens, Kew (2018) Kew science [Online]. https://stateoftheworldsfungi.org/2018/reports/SOTWFungi_2018_Full_Report.pdf

  22. Hansson D, Menkis A, Olson Å, Stenlid J, Broberg A, Karlsson M (2012) Biosynthesis of fomannoxin in the root rotting pathogen Heterobasidion occidentale. Phytochemistry 84:31–39

    CAS  Google Scholar 

  23. Horlacher N, Nachtigall J, Schulz D, Süssmuth RD, Hampp R, Fiedler H-P, Schrey SD (2013) Biotransformation of the fungal phytotoxin fomannoxin by soil streptomycetes. J Chem Ecol 39(7):931–941

    CAS  Google Scholar 

  24. Hakulinen R (1988) The use of enzymes for wastewater treatment in the pulp and paper industry – a new possibility. Water Sci Technol 20(1):251–262

    CAS  Google Scholar 

  25. Royer G, Desrochers M, Jurasek L (1985) Batch and continuous decolorisation of bleached kraft effluents by a white-rot fungus. J Chem Technol Biotechnol Biotechnol 35B(1):14–22

    CAS  Google Scholar 

  26. Paszczynski A, Pasti M, Goszczynski S, Crawford D, Crawford R (1991) New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium. Enzym Microb Technol 13(5):378–384

    CAS  Google Scholar 

  27. Schliephake K, Lonergan GT, Jones CL, Mainwaring DE (1993) Decolourisation of a pigment plant effluent by Pycnoporus cinnabarinus in a packed-bed bioreactor. Biotechnol Lett 15(11):1185–1188

    CAS  Google Scholar 

  28. Sannia G, Limongi P, Cocca E, Buonocore F, Nitti G, Giardina P (1991) Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. BBA Gen Sub 1073(1):114–119

    CAS  Google Scholar 

  29. Swamy J, Ramsaya J (1999) The evaluation of white rot fungi in the decoloration of textile dyes. Enzym Microb Technol 24(3–4):130–137

    CAS  Google Scholar 

  30. Heinfling A, Martínez M, Martínez A, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64(8):2788–2793

    CAS  Google Scholar 

  31. Bollag J, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48(4):849–854

    CAS  Google Scholar 

  32. Uhnáková B, Ludwig R, Pěknicová J, Homolka L, Lisá L, Šulc M, Petříčková A, Elzeinová F, Pelantová H, Monti D, Křen V, Haltrich D, Martínková L (2011) Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresour Technol 102(20):9409–9415

    Google Scholar 

  33. Sánchez-Trasviña C, Enriquez-Ochoa D, Arellano-Gurrola C, Tinoco-Valencia R, Rito-Palomares M, Serrano-Carreón L, Mayolo-Deloisa K (2019) Strategies based on aqueous two-phase systems for the separation of laccase from protease produced by Pleurotus ostreatus. Fluid Phase Equilib 502:112281

    Google Scholar 

  34. Sun K, Hong D, Liu J, Latif A, Li S, Chu G, Qin W, Si Y (2021) Trametes Versicolor laccase-assisted oxidative coupling of estrogens: conversion kinetics, linking mechanisms, and practical applications in water purification. Sci Total Environ 782:146917

    CAS  Google Scholar 

  35. Bilal M, Noreen S, Asgher M, Parveen S (2021) Development and characterization of cross-linked laccase aggregates (lac-CLEAs) from Trametes Versicolor IBL-04 as ecofriendly biocatalyst for degradation of dye-based environmental pollutants. Environ Technol Innov 21:101364

    CAS  Google Scholar 

  36. Binupriya A, Sathishkumar M, Swaminathan K, Kuz C, Yun S (2008) Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes Versicolor in various reactor modes. Bioresour Technol 99(5):1080–1088

    CAS  Google Scholar 

  37. Blánquez P, Casas N, Font X, Gabarrell X, Sarrà M, Caminal G, Vicent T (2004) Mechanism of textile metal dye biotransformation by Trametes Versicolor. Water Res 38(8):2166–2172

    Google Scholar 

  38. Torán J, Blánquez P, Camina G (2017) Comparison between several reactors with Trametes Versicolor immobilized on lignocellulosic support for the continuous treatments of hospital wastewater. Bioresour Technol 243:966–974

    Google Scholar 

  39. Li X, Xu J, Toledo R, Shim H (2015) Enhanced removal of naproxen and carbamazepine from wastewater using a novel countercurrent seepage bioreactor immobilized with Phanerochaete chrysosporium under non-sterile conditions. Bioresour Technol 197:465–474

    CAS  Google Scholar 

  40. Rodarte-Morales AI et al (2012) Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen suplí. Biodegradation 24(1):145–156

    Google Scholar 

  41. Zhou P, Su C, Li B, Qian Y (2006) Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes. J Environ Eng 132(1):129–136

    CAS  Google Scholar 

  42. Cerrone F, Barghini P, Pesciaroli C, Fenice M (2011) Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes Versicolor. Chemosphere 84(2):254–259

    CAS  Google Scholar 

  43. Ehlers G, Rose P (2005) Immobilized white-rot fungal biodegradation of phenol and chlorinated phenol in trickling packed-bed reactors by employing sequencing batch operation. Bioresour Technol 96(11):1264–1275

    CAS  Google Scholar 

  44. Nguyen L, Hai F, Yang S, Kang J, Leusch F, Roddick F, Price W, Nghiem L (2013) Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Bioresour Technol 148:234–241

    CAS  Google Scholar 

  45. Hruška K, Fránek M (2012) Sulfonamides in the environment: a review and a case report. Vet Med 57:1–35

    Google Scholar 

  46. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    CAS  Google Scholar 

  47. Chang H, Hu J, Asami M, Kunikane S (2008) Simultaneous analysis of 16 sulfonamide and trimethoprim antibiotics in environmental waters by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 1190(1–2):390–393

    CAS  Google Scholar 

  48. Rößler M, Marx C, Diamond S, Schubert S, Oertel R, Fauler J (2015) Occurrence and removal of frequently prescribed pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant. Sci Total Environ 532:762–770

    Google Scholar 

  49. Levin L, Carabajal M, Hofrichter M, Ullrich R (2016) Degradation of 4-nitrophenol by the white-rot polypore Trametes Versicolor. Int Biodeterior Biodegradation 107:174–179

    CAS  Google Scholar 

Download references

Acknowledgments

This chapter has been worked out under the project No. LO1408 “AdMaS UP – Advanced Materials, Structures and Technologies,” supported by Ministry of Education, Youth and Sports under the “National Sustainability Programme I.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hlavínek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Žižlavská, A., Hlavínek, P. (2022). Degradation of Selected Xenobiotics from Wastewater by Wood-Decay Fungi. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 118. Springer, Cham. https://doi.org/10.1007/698_2022_879

Download citation

Publish with us

Policies and ethics