Skip to main content

Membrane Bioreactor for Wastewater Treatment: Current Status, Novel Configurations and Cost Analysis

  • Chapter
  • First Online:
Cost-efficient Wastewater Treatment Technologies

Abstract

The membrane bioreactor (MBR) process is a ground-breaking innovation in the field of wastewater treatment, which involves a biological activated sludge process coupled with the membrane separation. The main highlights of the MBR are its low footprint, which is due to the elimination of secondary sedimentation process in the conventional activated sludge (CAS). MBR can produce high and consistent effluent quality, which can be a non-potable water source or be readily treated in downstream processes for potable water reuse. With the decrease in the cost of membrane modules over the years, full-scale deployment of MBR plants continues to increase worldwide with scale up to 800 MGD to date. Nevertheless, membrane fouling and energy consumption in MBRs are two technical challenges. MBR membranes are prone to fouling by organic matter originating from the microbial cells. Energy consumption in MBRs is higher than the CAS due to the aeration requirements, particularly for membrane scouring. Several mitigations strategies to address these challenges have been developed, which showed promising results by reducing the operating cost of the MBR plants. These strategies include the development of new membrane materials with chemical and biological resistant properties, novel configurations for enhanced process performance as well as fouling mitigation and control. This chapter aims to present a succinct overview of the status of MBR technology for municipal and industrial wastewater treatment to cover the recent development of energy reduction and fouling mitigation. It is envisioned that MBR will continue as a domain technology in wastewater treatment sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Golbabaei Kootenaei F, Aminirad H (2014) Membrane biological reactors (MBR) and their applications for water reuse. Int J Adv Biol Biomed Res 2(7):2208–2216

    Google Scholar 

  2. Zhang J, Xiao K, Huang X (2020) Full-scale MBR applications for leachate treatment in China: practical, technical, and economic features. J Hazard Mater 389:122138

    CAS  Google Scholar 

  3. Gurung K, Ncibi MC, Sillanpää M (2017) Assessing membrane fouling and the performance of pilot-scale membrane bioreactor (MBR) to treat real municipal wastewater during winter season in Nordic regions. Sci Total Environ 579:1289–1297

    CAS  Google Scholar 

  4. Herrera-Robledo M, Cid-León DM, Morgan-Sagastume JM, Noyola A (2011) Biofouling in an anaerobic membrane bioreactor treating municipal sewage. Sep Purif Technol 81(1):49–55

    CAS  Google Scholar 

  5. Krzeminski P, Iglesias-Obelleiro A, Madebo G, Garrido JM, van der Graaf JHJM, van Lier JB (2012) Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment. J Membr Sci 423–424:348–361

    Google Scholar 

  6. Badani Z, Ait-Amar H, Si-Salah A, Brik M, Fuchs W (2005) Treatment of textile waste water by membrane bioreactor and reuse. Desalination 185(1):411–417

    CAS  Google Scholar 

  7. Chung Y-J, Choi H-N, Lee S-E, Cho J-B (2004) Treatment of tannery wastewater with high nitrogen content using anoxic/oxic membrane bio-reactor (MBR). J Environ Sci Health A 39(7):1881–1890

    Google Scholar 

  8. Gao WJ, Han MN, Xu C, Liao BQ, Hong Y, Cumin J, Dagnew M (2016) Performance of submerged anaerobic membrane bioreactor for thermomechanical pulping wastewater treatment. J Water Process Eng 13:70–78

    Google Scholar 

  9. Goltara A, Martinez J, Mendez R (2003) Carbon and nitrogen removal from tannery wastewater with a membrane bioreactor. Water Sci Technol 48(1):207–214

    CAS  Google Scholar 

  10. Yan Z, Wang S, Kang X, Ma Y (2009) Pilot-scale hybrid coagulation/membrane bioreactor (HCMBR) for textile dyeing wastewater advanced treatment. 2009 3rd international conference on bioinformatics and biomedical engineering, 11–13 June 2009. pp 1–4

    Google Scholar 

  11. Yigit NO, Uzal N, Koseoglu H, Harman I, Yukseler H, Yetis U, Civelekoglu G, Kitis M (2009) Treatment of a denim producing textile industry wastewater using pilot-scale membrane bioreactor. Desalination 240(1):143–150

    CAS  Google Scholar 

  12. Zhang Y, Ma C, Ye F, Kong Y, Li H (2009) The treatment of wastewater of paper mill with integrated membrane process. Desalination 236(1):349–356

    CAS  Google Scholar 

  13. Ji J, Kakade A, Yu Z, Khan A, Liu P, Li X (2020) Anaerobic membrane bioreactors for treatment of emerging contaminants: a review. J Environ Manage 270:110913

    CAS  Google Scholar 

  14. Vinardell S, Astals S, Peces M, Cardete MA, Fernández I, Mata-Alvarez J, Dosta J (2020) Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: a 2020 updated review. Renew Sustain Energy Rev 130:109936

    CAS  Google Scholar 

  15. Burggraaf AJ, Keizer K (1991) Ceramic membranes. In: Brook RJ (ed) Concise encyclopedia of advanced ceramic materials. Pergamon, Oxford, pp 62–67

    Google Scholar 

  16. Meng F, Chae S-R, Drews A, Kraume M, Shin H-S, Yang F (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43(6):1489–1512

    CAS  Google Scholar 

  17. Jin L, Ong SL, Ng HY (2010) Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors. Water Res 44(20):5907–5918

    CAS  Google Scholar 

  18. Lin H, Gao W, Meng F, Liao B-Q, Leung K-T, Zhao L, Chen J, Hong H (2012) Membrane bioreactors for industrial wastewater treatment: a critical review. Crit Rev Environ Sci Technol 42(7):677–740

    CAS  Google Scholar 

  19. Hofs B, Ogier J, Vries D, Beerendonk EF, Cornelissen ER (2011) Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep Purif Technol 79(3):365–374

    CAS  Google Scholar 

  20. Khan SJ, Hasnain G, Fareed H, Aim RB (2019) Evaluation of treatment performance of a full-scale membrane bioreactor (MBR) plant from unsteady to steady state condition. J Water Process Eng 30:100379

    Google Scholar 

  21. Martinez-Sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H (2011) Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresour Technol 102(22):10377–10385

    CAS  Google Scholar 

  22. Wan C-Y, De Wever H, Diels L, Thoeye C, Liang J-B, Huang L-N (2011) Biodiversity and population dynamics of microorganisms in a full-scale membrane bioreactor for municipal wastewater treatment. Water Res 45(3):1129–1138

    CAS  Google Scholar 

  23. Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298

    CAS  Google Scholar 

  24. Hai FI, Nghiem LD, Khan SJ, Asif MB, Price WE, Yamamoto K (2019) Removal of emerging trace organic contaminants (TrOC) by MBR. In: Membrane biological reactors: theory, modeling, design, management and applications to wastewater reuse. IWA Publishing

    Google Scholar 

  25. Taheran M, Brar SK, Verma M, Surampalli RY, Zhang TC, Valero JR (2016) Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci Total Environ 547:60–77

    CAS  Google Scholar 

  26. Asif MB, Ansari AJ, Chen S-S, Nghiem LD, Price WE, Hai FI (2019) Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review. Environ Sci Pollut Res 26(33):34085–34100

    CAS  Google Scholar 

  27. Churchouse S (1997) Membrane bioreactors for wastewater treatment – operating experiences with the Kubota submerged membrane activated sludge process. Membr Technol 1997(83):5–9

    Google Scholar 

  28. Ergas SJ, Rheinheimer DE (2004) Drinking water denitrification using a membrane bioreactor. Water Res 38(14):3225–3232

    CAS  Google Scholar 

  29. Ueda T, Hata K, Kikuoka Y (1996) Treatment of domestic sewage from rural settlements by a membrane bioreactor. Water Sci Technol 34(9):189–196

    CAS  Google Scholar 

  30. Dittrich J, Gnirss R, Peter-Fröhlich A, Sarfert F (1996) Microfiltration of municipal wastewater for disinfection and advanced phosphorus removal. Water Sci Technol 34(9):125–131

    CAS  Google Scholar 

  31. Xiao K, Xu Y, Liang S, Lei T, Sun J, Wen X, Zhang H, Chen C, Huang X (2014) Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect. Front Environ Sci Eng 8(6):805–819

    CAS  Google Scholar 

  32. Verrecht B, Maere T, Nopens I, Brepols C, Judd S (2010) The cost of a large-scale hollow fibre MBR. Water Res 44(18):5274–5283

    CAS  Google Scholar 

  33. Xiao K, Liang S, Wang X, Chen C, Huang X (2019) Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresour Technol 271:473–481

    CAS  Google Scholar 

  34. Côté P, Masini M, Mourato D (2004) Comparison of membrane options for water reuse and reclamation. Desalination 167:1–11

    Google Scholar 

  35. Iglesias R, Simón P, Moragas L, Arce A, Rodriguez-Roda I (2017) Cost comparison of full-scale water reclamation technologies with an emphasis on membrane bioreactors. Water Sci Technol 75(11):2562–2570

    Google Scholar 

  36. Judd SJ (2017) Membrane technology costs and me. Water Res 122:1–9

    CAS  Google Scholar 

  37. Brepols C, Schäfer H, Engelhardt N (2010) Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications. Water Sci Technol 61(10):2461–2468

    CAS  Google Scholar 

  38. Krzeminski P, van der Graaf JHJM, van Lier JB (2012) Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Sci Technol 65(2):380–392

    CAS  Google Scholar 

  39. Buer T, Cumin J (2010) MBR module design and operation. Desalination 250(3):1073–1077

    CAS  Google Scholar 

  40. Wang S, Zou L, Li H, Zheng K, Wang Y, Zheng G, Li J (2020) Full-scale membrane bioreactor process WWTPs in East Taihu basin: wastewater characteristics, energy consumption and sustainability. Sci Total Environ 723:137983

    CAS  Google Scholar 

  41. van Dijk L, Roncken GCG (1997) Membrane bioreactors for wastewater treatment: the state of the art and new developments. Water Sci Technol 35(10):35–41

    Google Scholar 

  42. Yamamoto K, Hiasa M, Mahmood T, Matsuo T (1988) Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. In: Lijklema L, Imhoff KR, Ives KJ, Jenkins D, Ludwig RG, Suzuki M, Toerien DF, Wheatland AB, Milburn A, Izod EJ (eds) Water pollution research and control brighton. Pergamon, pp 43–54

    Google Scholar 

  43. Visvanathan C, Aim RB, Parameshwaran K (2000) membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 30(1):1–48

    CAS  Google Scholar 

  44. Cornel P, Wagner M, Krause S (2003) Investigation of oxygen transfer rates in full scale membrane bioreactors. Water Sci Technol 47(11):313–319

    CAS  Google Scholar 

  45. Giesen A, Van Bentem A, Gademan GEH (2008) Lessons learnt in facility design, tendering and operation of MBR’s for industrial and municipal wastewater treatment. In: Proceedings of WISA biennial conference and exhibition, paper 102, Sun City, South Africa

    Google Scholar 

  46. Gabarrón S, Ferrero G, Dalmau M, Comas J, Rodriguez-Roda I (2014) Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors. J Environ Manage 134:8–14

    Google Scholar 

  47. Krzeminski P, Leverette L, Malamis S, Katsou E (2017) Membrane bioreactors – a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J Membr Sci 527:207–227

    CAS  Google Scholar 

  48. Sun J, Liang P, Yan X, Zuo K, Xiao K, Xia J, Qiu Y, Wu Q, Wu S, Huang X, Qi M, Wen X (2016) Reducing aeration energy consumption in a large-scale membrane bioreactor: process simulation and engineering application. Water Res 93:205–213

    CAS  Google Scholar 

  49. Yan X, Xiao K, Liang S, Lei T, Liang P, Xue T, Yu K, Guan J, Huang X (2015) Hydraulic optimization of membrane bioreactor via baffle modification using computational fluid dynamics. Bioresour Technol 175:633–637

    CAS  Google Scholar 

  50. Habib R, Asif MB, Iftekhar S, Khan Z, Gurung K, Srivastava V, Sillanpää M (2017) Influence of relaxation modes on membrane fouling in submerged membrane bioreactor for domestic wastewater treatment. Chemosphere 181:19–25

    CAS  Google Scholar 

  51. Barillon B, Ruel SM, Langlais C, Lazarova V (2013) Energy efficiency in membrane bioreactors. Water Sci Technol 67(12):2685–2691

    CAS  Google Scholar 

  52. Itokawa H, Tsuji K, Yamashita K, Hashimoto T (2014) Design and operating experiences of full-scale municipal membrane bioreactors in Japan. Water Sci Technol 69(5):1088–1093

    CAS  Google Scholar 

  53. Santos A, Ma W, Judd SJ (2011) Membrane bioreactors: two decades of research and implementation. Desalination 273(1):148–154

    CAS  Google Scholar 

  54. Judd S, Judd C (2011) The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment.2nd edn. Elsevier, Amsterdam. ISBN: 9780080966823

    Google Scholar 

  55. Young T, Smoot S, Peeters J, Côté P (2013) When does building an MBR make sense? How variations of local construction and operating cost parameters impact overall project economics. Proc Water Environ Fed 2013(8). https://doi.org/10.2175/193864713813716444

  56. Young T, Smoot S, Peeters J, Côté P (2014) Cost-effectiveness of membrane bioreactors treatment system for low-level phosphorus reduction from municipal wastewater. Water Pract Tech 9(3):316–323

    Google Scholar 

  57. van Bentem AGN, Nijman N, Schyns PFT, Petri CP (2010) MBR varsseveld: 5 years of operational experience. Water Pract Tech 5(1)

    Google Scholar 

  58. Mizuta K, Shimada M (2010) Benchmarking energy consumption in municipal wastewater treatment plants in Japan. Water Sci Technol 62(10):2256–2262

    CAS  Google Scholar 

  59. Gnirss R, Dittrich J (2000) Microfiltration of municipal wastewater for disinfection and advanced phosphorus removal: results from trials with different small-scale pilot plants. Water Environ Res 72(5):602–609

    CAS  Google Scholar 

  60. Yang L, Zeng S, Chen J, He M, Yang W (2010) Operational energy performance assessment system of municipal wastewater treatment plants. Water Sci Technol 62(6):1361–1370

    CAS  Google Scholar 

  61. Akamatsu K, Lu W, Sugawara T, Nakao S-I (2010) Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field. Water Res 44(3):825–830

    CAS  Google Scholar 

  62. Ho J, Smith S, Roh HK (2014) Alternative energy efficient membrane bioreactor using reciprocating submerged membrane. Water Sci Technol 70(12):1998–2003

    CAS  Google Scholar 

  63. Kola A, Ye Y, Ho A, Le-Clech P, Chen V (2012) Application of low frequency transverse vibration on fouling limitation in submerged hollow fibre membranes. J Membr Sci 409–410:54–65

    Google Scholar 

  64. Rector TJ, Garland JL, Starr SO (2006) Dispersion characteristics of a rotating hollow fiber membrane bioreactor: effects of module packing density and rotational frequency. J Membr Sci 278(1):144–150

    CAS  Google Scholar 

  65. Asif MB, Maqbool T, Zhang Z (2020) Electrochemical membrane bioreactors: state-of-the-art and future prospects. Sci Total Environ 741:140233

    CAS  Google Scholar 

  66. Wang Y-K, Sheng G-P, Li W-W, Huang Y-X, Yu Y-Y, Zeng RJ, Yu H-Q (2011) Development of a novel bioelectrochemical membrane reactor for wastewater treatment. Environ Sci Technol 45(21):9256–9261

    CAS  Google Scholar 

  67. Wang Y-P, Liu X-W, Li W-W, Li F, Wang Y-K, Sheng G-P, Zeng RJ, Yu H-Q (2012) A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energy 98:230–235

    CAS  Google Scholar 

  68. Gao F, Yang Z-H, Li C, Zeng G-M, Ma D-H, Zhou L (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179:8–12

    CAS  Google Scholar 

  69. Nguyen LN, Truong MV, Nguyen AQ, Johir MAH, Commault AS, Ralph PJ, Semblante GU, Nghiem LD (2020) A sequential membrane bioreactor followed by a membrane microalgal reactor for nutrient removal and algal biomass production. Environ Sci Water Res Technol 6(1):189–196

    CAS  Google Scholar 

  70. Huyskens C, Brauns E, Van Hoof E, Diels L, De Wever H (2011) Validation of a supervisory control system for energy savings in membrane bioreactors. Water Res 45(3):1443–1453

    CAS  Google Scholar 

  71. Tao G, Kekre K, Oo MH, Viswanath B, Yusof AMD, Seah H (2010) Energy reduction and optimisation in membrane bioreactor systems. Water Pract Tech 5(4)

    Google Scholar 

  72. Germain E, Nelles F, Drews A, Pearce P, Kraume M, Reid E, Judd SJ, Stephenson T (2007) Biomass effects on oxygen transfer in membrane bioreactors. Water Res 41(5):1038–1044

    CAS  Google Scholar 

  73. Ferrero G, Rodríguez-Roda I, Comas J (2012) Automatic control systems for submerged membrane bioreactors: a state-of-the-art review. Water Res 46(11):3421–3433

    CAS  Google Scholar 

  74. Yamashita K, Itokawa H, Hashimoto T (2019) Demonstration of energy-saving membrane bioreactor (MBR) systems. Water Sci Technol 79(3):448–457

    Google Scholar 

  75. Ortiz M, Raluy RG, Serra L (2007) Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination 204(1):121–131

    CAS  Google Scholar 

  76. Memon FA, Zheng Z, Butler D, Shirley-Smith C, Lui S, Makropoulos C, Avery L (2007) Life cycle impact assessment of greywater recycling technologies for new developments. Environ Monit Assess 129(1):27–35

    CAS  Google Scholar 

  77. Jeong H, Broesicke OA, Drew B, Crittenden JC (2018) Life cycle assessment of small-scale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia. J Clean Prod 174:333–342

    Google Scholar 

  78. Høibye L, Clauson-Kaas J, Wenzel H, Larsen HF, Jacobsen BN, Dalgaard O (2008) Sustainability assessment of advanced wastewater treatment technologies. Water Sci Technol 58(5):963–968

    Google Scholar 

  79. Hospido A, Sanchez I, Rodriguez-Garcia G, Iglesias A, Buntner D, Reif R, Moreira MT, Feijoo G (2012) Are all membrane reactors equal from an environmental point of view? Desalination 285:263–270

    CAS  Google Scholar 

  80. Kobayashi Y, Ashbolt NJ, Davies EGR, Liu Y (2020) Life cycle assessment of decentralized greywater treatment systems with reuse at different scales in cold regions. Environ Int 134:105215

    Google Scholar 

  81. Cashman S, Ma X, Mosley J, Garland J, Crone B, Xue X (2018) Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: influence of scale, population density, climate, and methane recovery. Bioresour Technol 254:56–66

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luong N. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asif, M.B. et al. (2022). Membrane Bioreactor for Wastewater Treatment: Current Status, Novel Configurations and Cost Analysis. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 118. Springer, Cham. https://doi.org/10.1007/698_2022_871

Download citation

Publish with us

Policies and ethics