Skip to main content

Microalgae Production Integrated with the Wastewater Treatment: A Management Approach

  • Chapter
  • First Online:
Cost-efficient Wastewater Treatment Technologies

Abstract

Microalgae are a sustainable source of high value-added bioproducts that can be used for a variety of purposes, such as energy, food, and raw materials. However, the costs incurred to microalgae production are still very high, which prevents its large-scale application from being economically viable. One widely discussed solution in recent years is the association of microalgae cultivation with wastewater treatment, in order to reduce costs related to its cultivation. In this process, the microalgae uptake nutrients (e.g., carbon, nitrogen, and phosphorus) and other substances from the wastewater, generating a treated wastewater effluent and a microalgal biomass with high economic value. After the cultivation process, the generated biomass has to be recovered from the wastewater. Harvesting is also a bottleneck process because it represents about 20–60% of the total production costs. Since there is no universal method applied to microalgae recovery, different harvesting methods have been investigated, mainly including centrifugation, filtration, flotation, and sedimentation. Thus, choosing the appropriated harvesting method is crucial for a cost-effective microalgae production. In this context, this chapter presents an overview of the microalgae production, integrated with the wastewater treatment, and the potential harvesting methods. In addition, the challenges to apply the system in Brazil are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coppens J, Grunert O, Van Den Hende S, Vanhoutte I, Boon N, Haesaert G, De Gelder L (2016) The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 28:2367–2377. https://doi.org/10.1007/s10811-015-0775-2

    Article  CAS  Google Scholar 

  2. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38. https://doi.org/10.1016/j.biombioe.2012.12.019

    Article  Google Scholar 

  3. WWAP (2017) The United Nations World Water Development report 2017. Wastewater: the untapped resource, Paris

    Google Scholar 

  4. Von Sperling M (2014) Introdução à qualidade das águas e ao tratamento de esgotos.4th edn. Editora UFMG, Belo Horizonte. https://doi.org/10.3390/s150922234

    Book  Google Scholar 

  5. Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U. S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19. https://doi.org/10.1021/es801217q

    Article  CAS  Google Scholar 

  6. Caporgno MP, Taleb A, Olkiewicz M, Font J, Pruvost J, Legrand J, Bengoa C (2015) Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane. Algal Res 10:232–239. https://doi.org/10.1016/j.algal.2015.05.011

    Article  Google Scholar 

  7. Fernandes TV, Suárez-Muñoz M, Trebuch LM, Verbraak PJ, Van de Waal DB (2017) Toward an ecologically optimized N:P recovery from wastewater by microalgae. Front Microbiol 8:1742. https://doi.org/10.3389/fmicb.2017.01742

    Article  Google Scholar 

  8. Foladori P, Petrini S, Andreottola G (2018) Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chem Eng J 345:507–516. https://doi.org/10.1016/j.cej.2018.03.178

    Article  CAS  Google Scholar 

  9. Mennaa FZ, Arbib Z, Perales JA (2019) Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation–flocculation. Environ Technol 40:342–355. https://doi.org/10.1080/09593330.2017.1393011

    Article  CAS  Google Scholar 

  10. Fernandes TV, Shrestha R, Sui Y, Papini G, Zeeman G, Vet LEM, Wijffels RH, Lamers P (2015) Closing domestic nutrient cycles using microalgae. Environ Sci Technol 49:12450–12456. https://doi.org/10.1021/acs.est.5b02858

    Article  CAS  Google Scholar 

  11. de Souza Leite L, Matsumoto T, Albertin LL (2018) Mathematical modeling of thermal drying of facultative pond sludge. J Environ Eng 144:04018079. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001427

    Article  Google Scholar 

  12. de Souza WG (2012) Pós-secagem natural de lodos de estações de tratamento de Água e esgoto sanitários. Universidade de São Paulo, São Paulo

    Book  Google Scholar 

  13. Wang L, Liu J, Zhao Q, Wei W, Sun Y (2016) Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresour Technol 211:1–5. https://doi.org/10.1016/j.biortech.2016.03.048

    Article  CAS  Google Scholar 

  14. Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

    Article  CAS  Google Scholar 

  15. De Francisci D, Su Y, Iital A, Angelidaki I (2018) Evaluation of microalgae production coupled with wastewater treatment. Environ Technol 39:581–592. https://doi.org/10.1080/09593330.2017.1308441

    Article  CAS  Google Scholar 

  16. de Souza Leite L, Hoffmann MT, Daniel LA (2019) Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. J Water Process Eng 31:100821. https://doi.org/10.1016/j.jwpe.2019.100821

    Article  Google Scholar 

  17. Choi HJ, Lee SM (2015) Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng 38:761–766. https://doi.org/10.1007/s00449-014-1317-z

    Article  CAS  Google Scholar 

  18. Norvill ZN, Shilton A, Guieysse B (2016) Emerging contaminant degradation and removal in algal wastewater treatment ponds: identifying the research gaps. J Hazard Mater 313:291–309. https://doi.org/10.1016/j.jhazmat.2016.03.085

    Article  CAS  Google Scholar 

  19. Heimann K, Huerlimann R (2015) Microalgal classification: major classes and genera of commercial microalgal species. In: Handbook of marine microalgae. Biotechnology advances, pp 25–41. https://doi.org/10.1016/B978-0-12-800776-1.00003-0

    Chapter  Google Scholar 

  20. Acreman J (1994) Algae and cyanobacteria: isolation, culture and long-term maintenance. J Ind Microbiol 13:193–194. https://doi.org/10.1007/BF01584008

    Article  Google Scholar 

  21. Krienitz L, Huss VAR, Bock C (2015) Chlorella: 125 years of the green survivalist. Trends Plant Sci 20:67–69. https://doi.org/10.1016/j.tplants.2014.11.005

    Article  CAS  Google Scholar 

  22. Posten C, Chen SF (2016) Microalgae biotechnology. Springer. https://doi.org/10.1016/0014-5793(73)80708-2

    Book  Google Scholar 

  23. Randrianarison G, Ashraf MA (2017) Microalgae: a potential plant for energy production. Geol Ecol Landscapes 1:104–120. https://doi.org/10.1080/24749508.2017.1332853

    Article  Google Scholar 

  24. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/j.biotechadv.2013.07.011

    Article  CAS  Google Scholar 

  25. Liang M-H, Wang L, Wang Q, Zhu J, Jiang J-G (2018) High-value bioproducts from microalgae: strategies and progress. Crit Rev Food Sci Nutr:1–19. https://doi.org/10.1080/10408398.2018.1455030

  26. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  27. Singh B, Bauddh K, Bux F (2015) Algae and environmental sustainability. Springer. https://doi.org/10.1007/978-81-322-2641-3

    Book  Google Scholar 

  28. Kadir WNA, Lam MK, Uemura Y, Lim JW, Lee KT (2018) Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energ Conver Manage 171:1416–1429. https://doi.org/10.1016/j.enconman.2018.06.074

    Article  CAS  Google Scholar 

  29. Rahman A, Miller CD (2017) Microalgae as a source of bioplastics. Elsevier. https://doi.org/10.1016/B978-0-444-63784-0.00006-0

    Book  Google Scholar 

  30. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10. https://doi.org/10.1016/j.bej.2013.03.006

    Article  CAS  Google Scholar 

  31. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412. https://doi.org/10.1016/j.biotechadv.2016.10.005

    Article  CAS  Google Scholar 

  32. Brasil B dos SAF, de Siqueira FG, Salum TFC, Zanette CM, Spier MR (2017) Microalgae and cyanobacteria as enzyme biofactories. Algal Res 25:76–89. https://doi.org/10.1016/j.algal.2017.04.035

    Article  Google Scholar 

  33. Roux JM, Lamotte H, Achard JL (2017) An overview of microalgae lipid extraction in a biorefinery framework. Energy Procedia 112:680–688. https://doi.org/10.1016/j.egypro.2017.03.1137

    Article  Google Scholar 

  34. Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF (2019) Microalgae metabolites: a rich source for food and medicine, Saudi. J Biol Sci 26:709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

    Article  CAS  Google Scholar 

  35. Koyande AK, Chew KW, Rambabu K, Tao Y, Chu D-T, Show P-L (2019) Microalgae: a potential alternative to health supplementation for humans. Food Sci Human Wellness 8:16–24. https://doi.org/10.1016/j.fshw.2019.03.001

    Article  Google Scholar 

  36. Razzak SA, Hossain MM, Lucky RA, Bassi AS, De Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing – a review. Renew Sustain Energy Rev 27:622–653. https://doi.org/10.1016/j.rser.2013.05.063

    Article  CAS  Google Scholar 

  37. Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production – a review. Renew Sustain Energy Rev 16:2347–2353. https://doi.org/10.1016/j.rser.2012.01.026

    Article  CAS  Google Scholar 

  38. Jia H, Yuan Q (2016) Removal of nitrogen from wastewater using microalgae and microalgae-bacteria consortia, cogent. Environ Sci 2:1–15. https://doi.org/10.1080/23311843.2016.1275089

    Article  CAS  Google Scholar 

  39. Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45:53–60. https://doi.org/10.2216/04-79.1

    Article  Google Scholar 

  40. Geider RJ, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17. https://doi.org/10.1017/S0967026201003456

    Article  Google Scholar 

  41. Pahazri NF, Mohamed R, Al-gheethi AA, Mohd AH (2016) Production and harvesting of microalgae biomass from wastewater: a critical review, environ. Technol Rev 5:39–56. https://doi.org/10.1080/21622515.2016.1207713

    Article  Google Scholar 

  42. Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc B Biol Sci 363:2641–2650. https://doi.org/10.1098/rstb.2008.0020

    Article  CAS  Google Scholar 

  43. de Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4339. https://doi.org/10.1016/j.biortech.2009.04.016

    Article  CAS  Google Scholar 

  44. Vadlamani A, Viamajala S, Pendyala B, Varanasi S (2017) Cultivation of microalgae at extreme alkaline pH conditions: a novel approach for biofuel production. ACS Sustain Chem Eng 5:7284–7294. https://doi.org/10.1021/acssuschemeng.7b01534

    Article  CAS  Google Scholar 

  45. Zhang Q, Wang T, Hong Y (2014) Investigation of initial pH effects on growth of an oleaginous microalgae Chlorella sp. HQ for lipid production and nutrient uptake. Water Sci Technol 70:712–719. https://doi.org/10.2166/wst.2014.285

    Article  CAS  Google Scholar 

  46. Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev 50:431–444. https://doi.org/10.1016/j.rser.2015.05.024

    Article  CAS  Google Scholar 

  47. Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 104:352–359. https://doi.org/10.1002/bit.22394

    Article  CAS  Google Scholar 

  48. Cazzaniga S, Osto LD, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R (2014) Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels 7:1–13. https://doi.org/10.1186/s13068-014-0157-z

    Article  CAS  Google Scholar 

  49. Kessler E (1985) Upper limits of temperature for growth in Chlorella (Chlorophyceae). Plant Syst Evol 151:67–71. https://doi.org/10.1007/BF02418020

    Article  Google Scholar 

  50. Franco MC, Buffing MF, Janssen M, Lobato CV, Wijffels RH (2012) Performance of Chlorella sorokiniana under simulated extreme winter conditions. J Appl Phycol 24:693–699. https://doi.org/10.1007/s10811-011-9687-y

    Article  CAS  Google Scholar 

  51. Edmundson SJ, Huesemann MH (2015) The dark side of algae cultivation: characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Res 12:470–476. https://doi.org/10.1016/j.algal.2015.10.012

    Article  Google Scholar 

  52. Janssen MGJ (2002) Cultivation of microalgae: effect of light/dark cycles on biomass yield. Wageningen University

    Google Scholar 

  53. Khoeyi ZA, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20:41–49. https://doi.org/10.1007/s10499-011-9440-1

    Article  CAS  Google Scholar 

  54. Krzemińska I, Nawrocka A, Piasecka A, Jagielski P, Tys J (2015) Cultivation of Chlorella protothecoides in photobioreactors: the combined impact of photoperiod and CO2 concentration. Eng Life Sci 15:533–541. https://doi.org/10.1002/elsc.201400174

    Article  CAS  Google Scholar 

  55. Kothari R, Prasad R, Kumar V, Singh DP (2013) Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour Technol 144:499–503. https://doi.org/10.1016/j.biortech.2013.06.116

    Article  CAS  Google Scholar 

  56. Solovchenko A, Pogosyan S, Chivkunova O, Selyakh I, Semenova L, Voronova E, Scherbakov P, Konyukhov I, Chekanov K, Kirpichnikov M, Lobakova E (2014) Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res 6:234–241. https://doi.org/10.1016/j.algal.2014.01.002

    Article  Google Scholar 

  57. Yu Z, Song M, Pei H, Han F, Jiang L, Hou Q (2017) The growth characteristics and biodiesel production of ten algae strains cultivated in anaerobically digested effluent from kitchen waste. Algal Res 24:265–275. https://doi.org/10.1016/j.algal.2017.04.010

    Article  Google Scholar 

  58. Hu X, Meneses YE, Stratton J, Wang B (2019) Acclimation of consortium of micro-algae help removal of organic pollutants from meat processing wastewater. J Clean Prod 214:95–102. https://doi.org/10.1016/j.jclepro.2018.12.255

    Article  CAS  Google Scholar 

  59. AlMomani FA, Örmeci B (2016) Performance of Chlorella vulgaris, Neochloris oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol Eng 95:280–289. https://doi.org/10.1016/j.ecoleng.2016.06.038

    Article  Google Scholar 

  60. Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x

    Article  Google Scholar 

  61. Hong J, Kim O, Kim H, Jo S, Cho H, Yoon H (2016) Mass cultivation from a Korean raceway pond system of indigenous microalgae as potential biofuel feedstock. Oil Gas Res 2:1–6. https://doi.org/10.4172/2472-0518.1000108

    Article  Google Scholar 

  62. Kim S, Lee Y (2013) Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae. J Korean Soc Water Wastewater 27:69–76. https://doi.org/10.11001/jksww.2013.27.1.69

    Article  Google Scholar 

  63. Mattos ER, Singh M, Cabrera ML, Das KC (2012) Effects of inoculum physiological stage on the growth characteristics of Chlorella sorokiniana cultivated under different CO2 concentrations. Appl Biochem Biotechnol 168:519–530. https://doi.org/10.1007/s12010-012-9793-6

    Article  CAS  Google Scholar 

  64. Posadas E, Morales M, Gomez C, Acién FG, Muñoz R (2015) Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J 265:239–248. https://doi.org/10.1016/j.cej.2014.12.059

    Article  CAS  Google Scholar 

  65. Shchegolkova N, Shurshin K, Pogosyan S, Voronova E, Matorin D, Karyakin D (2018) Microalgae cultivation for wastewater treatment and biogas production at Moscow wastewater treatment plant. Water Sci Technol 78:1–12. https://doi.org/10.2166/wst.2018.088

    Article  CAS  Google Scholar 

  66. Mohd Udaiyappan AF, Abu Hasan H, Takriff MS, Sheikh Abdullah SR (2017) A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J Water Process Eng 20:8–21. https://doi.org/10.1016/j.jwpe.2017.09.006

    Article  Google Scholar 

  67. Ansa EDO, Lubberding HJ, Gijzen HJ (2012) The effect of algal biomass on the removal of faecal coliform from domestic wastewater. Appl Water Sci 2:87–94. https://doi.org/10.1007/s13201-011-0025-y

    Article  CAS  Google Scholar 

  68. Slompo NDM, Quartaroli L, Fernandes TV, da Silva GHR, Daniel LA (2020) Nutrient and pathogen removal from anaerobically treated black water by microalgae. J Environ Manage 268:2–8. https://doi.org/10.1016/j.jenvman.2020.110693

    Article  CAS  Google Scholar 

  69. Cavet JS, Borrelly GPM, Robinson NJ (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27:165–181. https://doi.org/10.1016/S0168-6445(03)00050-0

    Article  CAS  Google Scholar 

  70. Zhang L, Lee YW, Jahng D (2012) Ammonia stripping for enhanced biomethanization of piggery wastewater. J Hazard Mater 199–200:36–42. https://doi.org/10.1016/j.jhazmat.2011.10.049

    Article  CAS  Google Scholar 

  71. Marcilhac C, Sialve B, Pourcher AM, Ziebal C, Bernet N, Béline F (2014) Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res 64:278–287. https://doi.org/10.1016/j.watres.2014.07.012

    Article  CAS  Google Scholar 

  72. Kuo CM, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, Lin CS (2015) Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour Technol 194:326–333. https://doi.org/10.1016/j.biortech.2015.07.026

    Article  CAS  Google Scholar 

  73. Gao F, Peng YY, Li C, Yang GJ, Deng YB, Xue B, Guo YM (2018) Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater. Sci Total Environ 640–641:943–953. https://doi.org/10.1016/j.scitotenv.2018.05.380

    Article  CAS  Google Scholar 

  74. Zhang L, Cheng J, Pei H, Pan J, Jiang L, Hou Q (2018) Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production. Renew Energy 115:276–287. https://doi.org/10.1016/j.renene.2017.08.034

    Article  CAS  Google Scholar 

  75. Wang M, Yang Y, Chen Z, Chen Y, Wen Y, Chen B (2016) Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresour Technol 222:130–138. https://doi.org/10.1016/j.biortech.2016.09.128

    Article  CAS  Google Scholar 

  76. Metcalf E, Eddy H (2003) Wastewater engineering: treatment and reuse.4th edn. McGraw-Hill, Boston

    Google Scholar 

  77. Von Sperling M, Freire VH, Chernicharo CAL (2001) Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Sci Technol 43:323–328. https://doi.org/10.2166/wst.2001.0698

    Article  Google Scholar 

  78. Girard JM, Roy ML, Ben Hafsa M, Gagnon J, Faucheux N, Heitz M, Tremblay R, Deschênes JS (2014) Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res 5:241–248. https://doi.org/10.1016/j.algal.2014.03.002

    Article  Google Scholar 

  79. Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep 11:18–26. https://doi.org/10.1016/j.btre.2016.04.003

    Article  Google Scholar 

  80. Santana H, Cereijo CR, Teles VC, Nascimento RC, Fernandes MS, Brunale P, Campanha RC, Soares IP, Silva FCP, Sabaini PS, Siqueira FG, Brasil BSAF (2017) Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization. Bioresour Technol 228:133–140. https://doi.org/10.1016/j.biortech.2016.12.075

    Article  CAS  Google Scholar 

  81. Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362. https://doi.org/10.1016/j.algal.2017.11.038

    Article  Google Scholar 

  82. Sukenik A, Shelef G (1984) Algal autoflocculation – verification and proposed mechanism. Biotechnol Bioeng 26:4–9. https://doi.org/10.1002/bit.260260206

    Article  Google Scholar 

  83. Chys M, Demeestere K, Nopens I, Audenaert WTM, Van Hulle SWH (2018) Municipal wastewater effluent characterization and variability analysis in view of an ozone dose control strategy during tertiary treatment: the status in Belgium. Sci Total Environ 625:1198–1207. https://doi.org/10.1016/j.scitotenv.2018.01.032

    Article  CAS  Google Scholar 

  84. Beuckels A, Depraetere O, Vandamme D, Foubert I, Smolders E, Muylaert K (2013) Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Biomass Bioenergy 54:107–114. https://doi.org/10.1016/j.biombioe.2013.03.027

    Article  CAS  Google Scholar 

  85. de Souza Leite L, Daniel LA, Pivokonsky M, Novotna K, Branyikova I, Branyik T (2019) Interference of model wastewater components with flocculation of Chlorella sorokiniana induced by calcium phosphate precipitates. Bioresour Technol 286:121352. https://doi.org/10.1016/j.biortech.2019.121352

    Article  CAS  Google Scholar 

  86. Vandamme D, Beuckels A, Vadelius E, Depraetere O, Noppe W, Dutta A, Foubert I, Laurens L, Muylaert K (2016) Inhibition of alkaline flocculation by algal organic matter for Chlorella vulgaris. Water Res 88:301–307. https://doi.org/10.1016/j.watres.2015.10.032

    Article  CAS  Google Scholar 

  87. Deconinck N, Muylaert K, Ivens W, Vandamme D (2018) Innovative harvesting processes for microalgae biomass production: a perspective from patent literature. Algal Res 31:469–477. https://doi.org/10.1016/j.algal.2018.01.016

    Article  Google Scholar 

  88. Kurniawati HA, Ismadji S, Liu JC (2014) Microalgae harvesting by flotation using natural saponin and chitosan. Bioresour Technol 166:429–434. https://doi.org/10.1016/j.biortech.2014.05.079

    Article  CAS  Google Scholar 

  89. Pérez L, Luis Salgueiro J, Maceiras R, Cancela Á, Sánchez Á (2017) An effective method for harvesting of marine microalgae: pH induced flocculation. Biomass Bioenergy 97:20–26. https://doi.org/10.1016/j.biombioe.2016.12.010

    Article  CAS  Google Scholar 

  90. Rakesh S, Saxena S, Dhar DW, Prasamna R, Saxena KA (2014) Comparative evaluation of inorganic and organic amendments for their flocculation efficiency of selected microalgae. J Appl Phycol 26:399–406. https://doi.org/10.1007/s10811-013-0114-4

    Article  CAS  Google Scholar 

  91. Ummalyma SB, Mathew AK, Pandey A, Sukumaran RK (2016) Harvesting of microalgal biomass: efficient method for flocculation through pH modulation. Bioresour Technol 213:216–221. https://doi.org/10.1016/j.biortech.2016.03.114

    Article  CAS  Google Scholar 

  92. Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119. https://doi.org/10.1016/j.biortech.2011.11.105

    Article  CAS  Google Scholar 

  93. Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502. https://doi.org/10.1016/j.biortech.2012.01.101

    Article  CAS  Google Scholar 

  94. Heasman M, Diemar J, Connor WO, Sushames T, Foulkes L (2000) Development of extended shelf life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary. Aquacult Res 31:637–659. https://doi.org/10.1046/j.1365-2109.2000.318492.x

    Article  Google Scholar 

  95. Dassey AJ, Theegala CS (2013) Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 128:241–245. https://doi.org/10.1016/j.biortech.2012.10.061

    Article  CAS  Google Scholar 

  96. Nagy E (2019) Membrane materials, structures, and modules. In: Nagy E (ed) Basic equations mass transport through a membrane layer2nd edn, Elsevier, pp 11–19. https://doi.org/10.1016/b978-0-12-813722-2.00002-9

  97. Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4:397–407. https://doi.org/10.4155/bfs.13.25

    Article  CAS  Google Scholar 

  98. Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178. https://doi.org/10.1007/s11157-012-9301-z

    Article  Google Scholar 

  99. Rios SD, Clavero E, Salvadó J, Farriol X, Torras C (2011) Dynamic microfiltration in microalgae harvesting for biodiesel production. Ind Eng Chem Res 50:2455–2460. https://doi.org/10.1021/ie101070q

    Article  CAS  Google Scholar 

  100. Sun X, Wang C, Tong Y, Wang W, Wei J (2013) A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Res 2:437–444. https://doi.org/10.1016/j.algal.2013.08.004

    Article  Google Scholar 

  101. Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2012) Crossflow microfiltration of microalgae biomass for biofuel production. Desalination 302:65–70. https://doi.org/10.1016/j.desal.2012.06.026

    Article  CAS  Google Scholar 

  102. Laamanen CA, Ross GM, Scott JA (2016) Flotation harvesting of microalgae. Renew Sustain Energy Rev 58:75–86. https://doi.org/10.1016/j.rser.2015.12.293

    Article  Google Scholar 

  103. Edzwald JK (1993) Algae, bubbles, coagulants, and dissolved air flotation. Water Sci Technol 27:67–81. https://doi.org/10.2166/wst.1993.0207

    Article  CAS  Google Scholar 

  104. Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155. https://doi.org/10.1016/S0892-6875(01)00216-3

    Article  CAS  Google Scholar 

  105. Edzwald JK (2010) Dissolved air flotation and me. Water Res 44:2077–2106. https://doi.org/10.1016/j.watres.2009.12.040

    Article  CAS  Google Scholar 

  106. Ndikubwimana T, Chang J, Xiao Z, Shao W, Zeng X, Ng I, Lu Y (2016) Flotation: a promising microalgae harvesting and dewatering technology for biofuels production. Biotechnol J 11:315–326. https://doi.org/10.1002/biot.201500175

    Article  CAS  Google Scholar 

  107. Shi W, Zhu L, Chen Q, Lu J, Pan G, Hu L, Yi Q (2017) Synergy of flocculation and flotation for microalgae harvesting using aluminium electrolysis. Bioresour Technol 233:127–133. https://doi.org/10.1016/j.biortech.2017.02.084

    Article  CAS  Google Scholar 

  108. de Souza Leite L, Hoffmann MT, Daniel LA (2019) Coagulation and dissolved air flotation as a harvesting method for microalgae cultivated in wastewater. J Water Process Eng 32:100947. https://doi.org/10.1016/j.jwpe.2019.100947

    Article  Google Scholar 

  109. Besson A, Guiraud P (2013) High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina. Bioresour Technol 147:464–470. https://doi.org/10.1016/j.biortech.2013.08.053

    Article  CAS  Google Scholar 

  110. de Souza Leite L, dos Santos PR, Daniel LA (2020) Microalgae harvesting from wastewater by pH modulation and flotation: assessing and optimizing operational parameters. J Environ Manage 254:109825. https://doi.org/10.1016/j.jenvman.2019.109825

    Article  CAS  Google Scholar 

  111. Kwon H, Lu M, Lee EY, Lee J (2014) Harvesting of microalgae using flocculation combined with dissolved air flotation. Biotechnol Bioprocess Eng 19:143–149. https://doi.org/10.1007/s12257-013-0433-y

    Article  CAS  Google Scholar 

  112. Wiley PE, Brenneman KJ, Jacobson AE (2009) Improved algal harvesting using suspended air flotation. Water Environ Res 81:702–708. https://doi.org/10.2175/106143009x407474

    Article  CAS  Google Scholar 

  113. Zhang X, Hewson JC, Amendola P, Reynoso M, Sommerfeld M, Chen Y, Hu Q (2014) Critical evaluation and modeling of algal harvesting using dissolved air flotation. Biotechnol Bioeng 111:2477–2485. https://doi.org/10.1002/bit.25300

    Article  CAS  Google Scholar 

  114. Marchioretto MM, Reali MAP (2001) Ozonation followed by coagulation/flocculation and flotation as post-treatment of the effluent from an anaerobic baffled reactor treating domestic sewage. Water Sci Technol Technol 43:99–106. https://doi.org/10.2166/wst.2001.0474%0A

    Article  CAS  Google Scholar 

  115. Santos PR, Daniel LA (2017) Dissolved air flotation as a potential treatment process to remove Giardia cysts from anaerobically treated sewage. Environ Technol 38:2392–2399. https://doi.org/10.1080/09593330.2016.1262461

    Article  CAS  Google Scholar 

  116. Lei X, Chen Y, Shao Z, Chen Z, Li Y, Zhu H, Zhang J, Zheng W, Zheng T (2015) Effective harvesting of the microalgae Chlorella vulgaris via flocculation – flotation with bioflocculant. Bioresour Technol 198:922–925. https://doi.org/10.1016/j.biortech.2015.08.095

    Article  CAS  Google Scholar 

  117. Zhang D, Yu Y, Li C, Chai C, Liu L (2015) Factors affecting microalgae harvesting efficiencies using electrocoagulation-flotation for lipid extraction. RSC Adv 5:5795–5800. https://doi.org/10.1039/c4ra09983d

    Article  CAS  Google Scholar 

  118. Feng Q, Chen M, Wang W (2016) Study on the harvest of oleaginous microalgae Chlorella sp. by photosynthetic hydrogen mediated auto-flotation for biodiesel production. Int J Hydrogen Energy 41:16772–16777. https://doi.org/10.1016/j.ijhydene.2016.07.142

    Article  CAS  Google Scholar 

  119. Branyikova I, Filipenska M, Urbanova K, Ruzicka MC, Pivokonsky M, Branyik T (2018) Physicochemical approach to alkaline flocculation of Chlorella vulgaris induced by calcium phosphate precipitates. Colloids Surf B Biointerfaces 166:54–60. https://doi.org/10.1016/j.colsurfb.2018.03.007

    Article  CAS  Google Scholar 

  120. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239. https://doi.org/10.1016/j.tibtech.2012.12.005

    Article  CAS  Google Scholar 

  121. Salim S, Kosterink NR, Tchetkoua Wacka ND, Vermuë MH, Wijffels RH (2014) Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis. J Biotechnol 174:34–38. https://doi.org/10.1016/j.jbiotec.2014.01.026

    Article  CAS  Google Scholar 

  122. Ummalyma SB, Gnansounou E, Sukumaran RK, Sindhu R, Pandey A, Sahoo D (2017) Bioflocculation: an alternative strategy for harvesting of microalgae – an overview. Bioresour Technol 242:227–235. https://doi.org/10.1016/j.biortech.2017.02.097

    Article  CAS  Google Scholar 

  123. Cole AJ, Neveux N, Whelan A, Morton J, Vis M, de Nys R, Paul NA (2016) Adding value to the treatment of municipal wastewater through the intensive production of freshwater macroalgae. Algal Res 20:100–109. https://doi.org/10.1016/j.algal.2016.09.026

    Article  Google Scholar 

  124. Instituto Trata Brasil, Dados de esgoto no Brasil (2020) http://www.tratabrasil.org.br/saneamento/principais-estatisticas/no-brasil/esgoto

  125. Ganeshkumar V, Subashchandrabose SR, Dharmarajan R, Venkateswarlu K, Naidu R, Megharaj M (2018) Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3. Bioresour Technol 256:254–258. https://doi.org/10.1016/j.biortech.2018.02.025

    Article  CAS  Google Scholar 

  126. Kunz A, Steinmetz RLR, Ramme MA, Coldebella A (2009) Effect of storage time on swine manure solid separation efficiency by screening. Bioresour Technol 100:1815–1818. https://doi.org/10.1016/j.biortech.2008.09.022

    Article  CAS  Google Scholar 

  127. Associação Brasileira de proteina animal (2018) Annual Report, São Paulo

    Google Scholar 

  128. Franchino M, Tigini V, Varese GC, Mussat Sartor R, Bona F (2016) Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Sci Total Environ 569–570:40–45. https://doi.org/10.1016/j.scitotenv.2016.06.100

    Article  CAS  Google Scholar 

  129. Sánchez E, Borja R, Travieso L, Martín A, Colmenarejo MF (2005) Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresour Technol 96:335–344. https://doi.org/10.1016/j.biortech.2004.04.003

    Article  CAS  Google Scholar 

  130. de Souza Leite L, Daniel LA (2020) Optimization of microalgae harvesting by sedimentation induced by high pH. Water Sci Technol:1–10. https://doi.org/10.2166/wst.2020.106

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luan de Souza Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leite, L.d.S., Daniel, L.A. (2022). Microalgae Production Integrated with the Wastewater Treatment: A Management Approach. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 117. Springer, Cham. https://doi.org/10.1007/698_2022_862

Download citation

Publish with us

Policies and ethics