Skip to main content

Water–Energy Nexus in Wastewater Management for Irrigation

  • Chapter
  • First Online:
Cost-efficient Wastewater Treatment Technologies

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 117))

  • 390 Accesses

Abstract

Owing to the importance of water and increasing water crises, wastewater analysis has become extremely important. For water to be usable, there are certain physical, chemical and biological criteria which need to be fulfilled, such as the concentration of elements for drinking as well as for agricultural purposes. Quality of water is affected by natural and human interferences and the major factor is pollution created by human. The wastewater from the population if handled and treated with care should be able to promote the sustainable use of water and make the water available for our upcoming generations. Countries are stressing on water management and have certain specifications for the water being potable. The water–energy nexus describes the relationship between water and energy wherein wastewater can act as a reservoir of renewable energy leading a way towards sustainability. This chapter elaborates the energy–water nexus, strategies towards wastewater remediation and the technological interventions in wastewater application for irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tian Y, Hu H, Zhang J (2017) Solution to water resource scarcity: water reclamation and reuse. In: Environmental science and pollution research, vol 24, no 6. Springer Science and Business Media LLC, pp 5095–5097

    Google Scholar 

  2. Zhang X, Vesselinov VV (2017) Integrated modeling approach for optimal management of water, energy and food security nexus. In: Advances in water resources, vol 101. Elsevier BV, pp 1–10

    Google Scholar 

  3. UNICEF (2012) Progress on drinking water and sanitation – 2012 annual report. https://data.unicef.org/resources/progress-on-drinking-water-and-sanitation-2012-update

  4. Deng C, Wang H, Gong S, Zhang J, Yang B, Zhao Z (2020) Effects of urbanization on food-energy-water systems in mega-urban regions: a case study of the Bohai MUR, China. Environ Res Lett 15(4):044014

    Article  Google Scholar 

  5. IEA (2012) Emissions from fuel combustion. International Energy Agency (IEA/OECD). https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview

  6. Dai J, Wu S, Han G, Weinberg J, Xie X, Wu X et al (2018) Water-energy nexus: a review of methods and tools for macro-assessment. Appl Energy 210:393–408

    Article  Google Scholar 

  7. Griggs D, Stafford-Smith M, Gaffney O, Rockstrom J, Ohman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I (2013) Policy: sustainable development goals for people and planet. Nature 495:305–307

    Article  CAS  Google Scholar 

  8. Scott CA, Pierce SA, Pasqualetti MJ, Jones AL, Montz BE, Hoover JH (2011) Policy and institutional dimensions of the water–energy nexus. Energy Policy 39:6622–6630

    Article  Google Scholar 

  9. Rothausen SGSA, Conway D (2011) Greenhouse-gas emissions from energy use in the water sector. Nature Clim Change 1:210–219

    Article  CAS  Google Scholar 

  10. Lee M, Keller AA, Chiang P-C, Den W, Wang H, Hou C-H, Wu J, Wang X, e Yan, J. (2017) Water-energy nexus for urban water systems: a comparative review on energy intensity and environmental impacts in relation to global water risks. Appl Energy 205:589–601

    Article  Google Scholar 

  11. Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. J Ecol Eng 35:1–17

    Article  Google Scholar 

  12. Francisca CM, Soler J, Alpendurada MF, Rui AR, Enric B, Vitor JP (2016) Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes. Water Res 105:251–263

    Article  Google Scholar 

  13. Malik RPS (2002) Water-energy nexus in resource-poor economies: the Indian experience. Int J Water Resour Dev 18(1):47–58

    Article  Google Scholar 

  14. Mannie MN, Bower A (2014) Challenges in determining the correct waste disposal solutions for local municipalities - a South African overview. In: Proceedings of the 20th WasteCon conference 6-10 October 2014. Somerset West, Cape Town

    Google Scholar 

  15. Tilley E, Ulrich L, Luethi C, Reymond P, Zurbruegg C (2014) Compendium of sanitation systems and technologies.2nd rev edn. Swiss Federal Institute of Aquatic Science and Technology (Eawag), Duebendorf

    Google Scholar 

  16. Benammar L, Menasria T, Ayachi A, Benounis M (2015) Phosphate removal using aerobic bacterial consortium and pure cultures isolated from activated sludge. Process Saf Environ Prot 95:237–246

    Article  CAS  Google Scholar 

  17. Dharmender Y, Vikas P, Pramod K (2016) Enhanced biological phosphorus removal in aerated stirred tank reactor using aerobic bacterial consortium. J Water Process Eng 13:61–69

    Article  Google Scholar 

  18. Mang HP, Li Z (2010) Technology review of biogas sanitation. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Eschborn

    Google Scholar 

  19. Jeon B, Nam S, Kim Y (2014) Treatment of pharmaceutical wastewaters by hydrogen peroxide and zerovalent iron. Environmental Engineering Research

    Book  Google Scholar 

  20. Sinha SK, Sinha VK, Kr S, Pandey AT (2014) A study on the wastewater treatment Technology for Steel Industry: recycle and reuse. Am J Eng Res 03(04):309–315

    Google Scholar 

  21. Irene M, Lesage N, Sperandio M, Besierre Y (2016) Impact of sonication on activated sludge properties and consequence on PAH partitioning. Can J Chem Eng 94:244–252

    Article  Google Scholar 

  22. Madoni P (1994) Microfauna biomass in activated sludge and biofilm. Water Sci Technol 29:63–66

    Article  CAS  Google Scholar 

  23. Cordi L, Assalin MR, Ponezi AN, Durán N (2012) Identification of microbiota for activated sludge acclimated by paper mill effluent Kraft E1 bioremediation. J Bioremed Biodegr 3:169

    Article  Google Scholar 

  24. Mittal A (1 Aug 2011) Biological wastewater treatment. Water Today, pp 32–44

    Google Scholar 

  25. Wilson SP, Ouki SK, Saroj DP, Pearce PA, Bancroft L, Germain E (2015) Adopting primary plastic Trickling filters as a solution for enhanced nitrification. Water Environ Res 87(1):80–88

    Article  CAS  Google Scholar 

  26. Wafler M (2008) Training materials on anaerobic wastewater treatment (ecosan expert training course). Seecon GmbH, Aarau

    Google Scholar 

  27. Galvaân A, Urbina P, De Castro F (2000) Characterization of filamentous microorganisms in rotating biological contactor biofilms of wastewater treatment plants. Bioprocess Eng 22:257–260

    Article  Google Scholar 

  28. Tawfik H, Temmink GZ, Klapwijk B (2006) Sewage treatment in a rotating biological contactor (RBC) system. National Research Center, Water Pollution Control Dept, pp 275–289

    Google Scholar 

  29. Cortez S, Teixeira P, Oliveira R, Mota M (2008) Rotating biological contactors: a review on main factors affecting performance. Rev Environ Sci Biotechnol 7(2):155–172

    Article  CAS  Google Scholar 

  30. Manoj RT, Sonali BP, Jyoti RM (2015) Review paper on study of rotating biological contactor for wastewater treatment process. Int J Curr Eng Technol 5(3):1539–1541

    Google Scholar 

  31. De la Cruz N, Esquius L, Grandjean D, Magnet A, Tungler A, De Alencastro LF, Pulgarín C (2013) Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res 47(15):5836–5845

    Article  Google Scholar 

  32. Pickford J (1987) Developing world water. Grosvenor Press, London

    Google Scholar 

  33. USEPA (1995) United State Environmental Protection Agency guidance for risk characterization. Science Policy Council. February 1995

    Google Scholar 

  34. De Godos I, Munoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229–230:446–449

    Article  Google Scholar 

  35. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–7

    Article  CAS  Google Scholar 

  36. Rafiee A, Kamyar Y, Mohammad H, Saeid P, Amirhosein M, Masud Y, Mehran K, Ramin N (2016) Assessment and selection of the best treatment alternative for infectious waste by modified sustainability assessment of technologies methodology. J Environ Health Sci Eng 14(10):1–14

    Google Scholar 

  37. Yaman C, Martin JP, Korkut E (2006) Effects of wastewater filtration on geotextile permeability. Geosynth Int 13(3):87–97

    Article  Google Scholar 

  38. Kadlec RH, Wallace SD (2008) Treatment wetlands.2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  39. Suzanne EA, Claudia S, Sébastien FL, George T, Pierre L (2015) Potential efficiency of riparian vegetated buffer strips in intercepting soluble compounds in the presence of subsurface preferential flows. PLoS One 10(7):1–21

    Google Scholar 

  40. Olilo CO, Onyando JO, Moturi WN, Muia AW, Ombui P, Shivoga WA, Roegner AF (2016) Effect of vegetated filter strips on transport and deposition rates of Escherichia coli in overland flow in the eastern escarpments of the Mau Forest, Njoro River Watershed, Kenya. In: Energy, ecology and environment, vol 1, no 3. Springer Science and Business Media LLC, pp 157–182

    Google Scholar 

  41. Shah M, Hashmi HN, Ghumman AR, Zeeshan M (2015) Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J South Afr Inst Civil Eng 57(3):18–25. Paper 1011

    Article  Google Scholar 

  42. Saunders MJ, Jones MB, Kansiime F (2007) Carbon and water cycles in tropical papyrus wetlands. Wetl Ecol Manag 15:489–498

    Article  CAS  Google Scholar 

  43. Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45(1):65–69

    Article  Google Scholar 

  44. Peixoto RB, Marotta H, Bastviken D, Prast E (2016) Floating aquatic macrophytes can substantially offset open water CO2 emissions from tropical floodplain lake ecosystems. Ecosystems 19(4):724–736

    Article  CAS  Google Scholar 

  45. Vymazal J (2014) Constructed wetlands for treatment of industrial wastewaters: a review. In: Ecological engineering, vol 73. Elsevier BV, pp 724–751

    Google Scholar 

  46. Saunders MJ, Kansiime F, Jones MB (2012) Agricultural encroachment: implications for carbon sequestration in tropical African wetlands. Glob Chang Biol 18:1312–1321

    Article  Google Scholar 

  47. Rey JR, Walton WE, Wolfe RJ, Connelly CR, O’Connell SM, Berg J, Sakolsky-Hoopes GE, Laderman AD (2012) North American Wetlands and mosquito control. Int J Environ Res Public Health 9(12):4537–4605

    Article  Google Scholar 

  48. UN Economic and Social Commission for Asia and the Pacific (1981). https://www.unescap.org/publications/transport-and-communications-bulletin-asia-and-pacific-no-57

  49. Jensen CD, Gujarathi NP (2015) Characterization of a macrophyte microcosm as a surface water treatment system for antibiotics. Environ Prog Sustain Energy 34:1605–1612

    Article  CAS  Google Scholar 

  50. Borkar RP, Mahatme PS (2015) Tidal flow constructed wetland: an overview. Int J Eng Sci 5(10):31–34

    Google Scholar 

  51. Ana D, David M, Gayani C, Yali L, Belinda H, Emily P, Kefeng Z, Rebekah H, Peter K, Anja R, Ze M, Bonnie G, Tracey P, Jason E (2014) Biofilters and wetlands for stormwater treatment and harvesting. Cooperative Research Centre for Water Sensitive Cities. Monash University

    Google Scholar 

  52. Glaister BJ, Fletcher TD, Cook PLM, Hatt BE (2014) Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: the role of filter media, vegetation and saturated zone. Water Sci Technol 69(9):1961–1969

    Article  CAS  Google Scholar 

  53. Payne EGI, Fletcher TD, Cook PLM, Deletic A, Hatt BE (2014) Processes and drivers of nitrogen removal in storm water biofiltration. Crit Rev Environ Sci Technol 44(7):796–846

    Article  CAS  Google Scholar 

  54. Jenny AG, Diego P, Janneth AC (2013) Effects of plants and the combination of wetland treatment types systems in pathogen removal in tropical climate condition. Ecol Eng 58:57–62

    Article  Google Scholar 

  55. Chandrasena GI, Pham T, Payne EG, Deletic A, McCarthy DT (2014) E. coli removal in laboratory scale stormwater biofilters: influence of vegetation and submerged zone. J Hydrol 519(Part A):814–822

    Article  Google Scholar 

  56. Shrestha RR (2005) Faecal sludge management through constructed wetland system in Nepal. Concern & quest ENPHO, Environment and Public Health Organisation, Kathmandu

    Google Scholar 

  57. Wong TH, Breen PF, Somes NL (1999, February) Ponds vs wetlands–performance considerations in stormwater quality management. In: Proceedings of the 1st South Pacific conference on comprehensive stormwater and aquatic ecosystem management, vol 2, pp 223–231

    Google Scholar 

  58. Namratha N, Harshini P, Hamsalekha S, Sindhu MS, Udayashankara TH (2016) A review on removal of phosphate and nitrate from kitchen wastewater by constructed wetlands. Int J Mod Trends Eng Res 3(3):273–276

    Google Scholar 

  59. Davison L, Headley T, Pratt K (2005) Aspects of design, structure, performance and operation of reed beds-eight years’ experience in North-Eastern New South Wales, Australia. Water Sci Technol 51:129–138

    Article  CAS  Google Scholar 

  60. Vymazal J (2005) Horizontal sub-surface flow and hybrid constructed wetland systems for wastewater treatment. Ecol Eng 25:478–490

    Article  Google Scholar 

  61. Haghshenas AA, Heidarpour M, Tarkesh ES (2016) Evaluation of horizontal-vertical subsurface hybrid constructed wetlands for tertiary treatment of conventional treatment facilities effluents in developing countries. Water Air Soil Pollut 227(28):1–18

    Google Scholar 

  62. Weerakoon G, Jinadasa K, Herath G, Mowjood M, Dongqing Z, Soon K, Ng, Wun J (2016) Performance of tropical vertical subsurface flow constructed wetlands at different hydraulic loading rates. CSAWAC 44(8):909–1084

    Google Scholar 

  63. Lennard WA, Leonard BV (2006) A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquacult Int 14(6):539–550

    Article  Google Scholar 

  64. Castillo CD, Zavala LI, Ruiz VJ, Radilla GA, Nieto NJ, Romero BC, González-H C (2016) Implementation of an experimental nutrient film technique-type aquaponic system. Aquac Int 4(2):637–646

    Article  Google Scholar 

  65. Danaher JJ, Shultz RC, Rakocy JE, Bailey DS (2013) Alternative solids removal for warm water recirculating raft aquaponic systems. J World Aquac Soc 44(3):374–383

    Article  CAS  Google Scholar 

  66. Donde O (2017) Wastewater management techniques: a review of advancement on the appropriate wastewater treatment principles for sustainability. Environ Manag Sustain Dev 6:40. https://doi.org/10.5296/emsd.v6i1.10137

    Article  Google Scholar 

  67. Hosomi M (2016) New challenges on wastewater treatment. Clean Techn Environ Policy 18:627–628

    Article  Google Scholar 

  68. Cassel DK (1984) Irrigation scheduling. Crops and soil magazine. Am Soc Agron. February, March–April

    Google Scholar 

  69. Heermann DF, Martin DL, Jackson RD, Stegrnan EC (1990) Irrigation scheduling controls and techniques. In: Stewart BA, Nielsen DR (eds) Irrigation of agricultural crops. Agronomy monographs no:30. ASA. CSSA, SSSA, Madison, pp 510–533

    Google Scholar 

  70. Jones JW (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55(407):2427–2436

    Article  CAS  Google Scholar 

  71. Martin DL, Stegman EC, Fereres E (1990) Irrigation scheduling principles. In: Hoffman GJ et al (eds) Management of farm irrigation systems. ASAE Monograph, St. Joseph, pp 155–199

    Google Scholar 

  72. Abdulmumin S, Bastiansen J, Smith M, Rijks D, Gbeckor-Kore NA (1990) Application of climatic data for irrigation planning and management. Training manual. FAO WMO, Rome

    Google Scholar 

  73. Hillel D (ed) (1982) Advances in irrigation, vol 1. Academic Press, New York

    Google Scholar 

  74. English MJ, Musick JT, Murty VVN (1990) Deficit irrigation. In: Hoffman GJ et al (eds) Management of farm irrigation systems. ASAE Monograph, St. Joseph, pp 631–655

    Google Scholar 

  75. Yazar A, Kanber R, Ozekici B (1995) Irrigation scheduling in agronomic practice. In: Pereira LS et al (eds) Sustainability of irrigated agriculture. NATO ASI series E: applied sciences, vol 312. Springer, pp 251–266

    Google Scholar 

  76. Fernández JE, Green SR, Caspari HW, Diaz-Espejo A, Cuevas MV (2007) The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant Soil. https://doi.org/10.1007/s11104-007-9348-8

  77. Topp GC, Davis JL (1985) Time-domain reflectometry and its applications to irrigation scheduling. In: Hillel D (ed) Advances in irrigation, vol 3. Academic Press, Orlando, pp 107–129

    Google Scholar 

  78. Bucks D, Sammis TW, Dickey GL (1990) Irrigation for arid areas. In: Hoffman GJ et al (eds) Management of farm irrigation systems. ASAE Monograph, St. Joseph, pp 499–542

    Google Scholar 

  79. Evett SR (2008) Neutron moisture meters. In: Evett SR, Heng LK, Moutonnet P (eds) Field estimation of soil water content: a practical guide to methods, instrumentation, and sensor technology. International Atomic Energy Agency, Vienna

    Google Scholar 

  80. Harrison K (2009) Irrigation scheduling methods. The University of Georgia, Cooperative Extension Service Bulletin 974

    Google Scholar 

  81. Turner NC (1990) Plant water relations and irrigation management. Agric Water Manag 17(1990):59–73

    Article  Google Scholar 

  82. Jensen ME, Rangeley WR, Dielman PJ (1990) Irrigation trends in world agriculture. In: Stewart BA, Nielsen DR (eds) Irrigation of agriculture crops. Agronomy 30. American Society of Agronomy, Madison

    Google Scholar 

  83. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. FAO irrigation and drainage paper 56. FAO, FAO, Rome

    Google Scholar 

  84. Yazar A (2013) On-farm agricultural water management (irrigation scheduling techniques)

    Google Scholar 

  85. World Health Organization (WHO) (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. WHO, Geneva

    Google Scholar 

  86. United Nations World Water Assessment Programme (WWAP) (2012) The United Nations world water development report 4: managing water under uncertainty and risk. UNESCO, Paris

    Book  Google Scholar 

  87. World Health Organization (WHO) (2006) Guidelines for the safe use of wastewater, excreta and grey water. WHO, Geneva

    Google Scholar 

  88. Corcoran E, Nellemann C, Baker E, Bos R, Osborn D, Savelli H (eds) (2010) Sick water? The central role of waste-water management in sustainable development. A rapid response assessment. United Nations Environment Programme, UN-HABITAT, GRID-Arendal, Oslo

    Google Scholar 

  89. Avellán T, Ardakanian R, Perret SR, Ragab R, Vlotman W, Zainal H, Im S, Gany HA (2018) Considering resources beyond water: irrigation and drainage management in the context of the water–energy–food nexus. Irrig Drain 67:12–21

    Article  Google Scholar 

  90. Gros M, Petrovic M, Ginebreda A, Barcelo D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–26

    Article  CAS  Google Scholar 

  91. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021

    Article  CAS  Google Scholar 

  92. Sui Q, Huang J, Deng S, Chen W, Yu G (2011) Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. Environ Sci Technol 45:3341–3348

    Article  CAS  Google Scholar 

  93. Vanderford B, Snyder S (2006) Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ Sci Technol 40:7312–7320

    Article  CAS  Google Scholar 

  94. Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B (2014) Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ Sci Technol 48(16):9325–9333

    Article  CAS  Google Scholar 

  95. Calderón-Preciado D, Jiménez-Cartagena C, Matamoros V, Bayona JM (2011) Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res 45:221–231

    Article  Google Scholar 

  96. Jones-Lepp TL, Sanchez CA, Moy T, Kazemi R (2010) Method development and application to determine potential plant uptake of antibiotics and other drugs in irrigated crop production systems. J Agric Food Chem 58:11568–11573

    Article  CAS  Google Scholar 

  97. Wu X, Conkle JL, Ernst F, Gan J (2014) Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environ Sci Technol 48(19):11286–11293

    Article  CAS  Google Scholar 

  98. Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R, Babu S, Singh R, Shivay YS, Nain L (2015) Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. In: Environmental science and pollution research, vol 23, no 7. Springer Science and Business Media LLC, pp 6608–6620

    Google Scholar 

  99. Sonune A, Ghate R (2004) Developments in wastewater treatment methods. Desalination 167:55–63

    Article  CAS  Google Scholar 

  100. Ruiz J, Arbib Z, Álvarez-Díaz P, Garrido-Pérez C, Barragán J, Perales J (2013) Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater. Environ Technol 34:979–991

    Article  CAS  Google Scholar 

  101. Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  102. Queiroz MI, Lopes EJ, Zepka LQ, Bastos RG, Goldbeck R (2007) The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresour Technol 98:2163–2169

    Article  CAS  Google Scholar 

  103. Foess GW, Steinbrecher P, Williams K, Garrett GS (1998) Cost and performance evaluation of BNR processes. Fla Water Res J 11:11–13

    Google Scholar 

  104. Barnard JL (1975) Biological nutrient removal without the addition of chemicals. Water Res 9:485–490

    Article  CAS  Google Scholar 

  105. Malhotra SK, Lee GF, Rohlich G (1964) Nutrient removal from secondary effluent by alum flocculation and lime precipitation. Int J Air Water Pollut 8:487–500

    CAS  Google Scholar 

  106. Wang X-J, Xia S-Q, Chen L, Zhao J-F, Renault N, Chovelon J-M (2006) Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process Biochem 41:824–828

    Article  CAS  Google Scholar 

  107. Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(2006):2799–2815

    Article  Google Scholar 

  108. González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262

    Article  Google Scholar 

  109. Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  Google Scholar 

  110. Phang S, Miah M, Yeoh B, Hashim M (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12:395–400

    Article  Google Scholar 

  111. Sydney E, Da Silva T, Tokarski A, Novak A, De Carvalho J, Woiciecohwski A, Larroche C, Soccol C (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy 88:3291–3294

    Article  CAS  Google Scholar 

  112. Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302

    Article  CAS  Google Scholar 

  113. Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS (2013) Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol 25:1529–1537

    Article  CAS  Google Scholar 

  114. Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  115. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  116. De Godos I, González C, Becares E, García-Encina PA, Muñoz R (2009) Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl Microbiol Biotechnol 82:187–194

    Article  CAS  Google Scholar 

  117. Gonçalves AL, Pires JCM, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24(1):403–415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, L., Kapoor, N., Tiwari, A. (2022). Water–Energy Nexus in Wastewater Management for Irrigation. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 117. Springer, Cham. https://doi.org/10.1007/698_2022_861

Download citation

Publish with us

Policies and ethics