Skip to main content

Pesticide Fate in Soils Under Different Agricultural Management Practices

  • Chapter
  • First Online:
Pesticides in Soils

Abstract

Agricultural development and the sustainability of agrosystems are two topics of great current interest. The typical model of intensive or conventional agriculture provides highly productive agrosystems, but at an important environmental cost. Therefore, new cropping systems, soil management and/or agricultural practices are being put in place to ensure sustainable agricultural production and reduce the environmental impact, as a challenge facing agriculture both now and in the future. However, the use of pesticides remains necessary even in this new approach to agricultural management, as well as tracking their fate in these systems because it has generally been studied under conventional practices. Some laboratory-scale studies have reported the effects of these practices, but few studies have been conducted under field conditions. Accordingly, this chapter conducts a review of current studies including pesticide persistence, dissipation and mobility in soils according to conservation agricultural practices, such as the soil application of organic amendments, conservation tillage systems or crop rotation. The chapter also includes a review of existing models to simulate pesticide behaviour under these management practices. Finally, a summary with research gaps and recommendations is proposed for the future development of modelling under conservation practices as tools for predicting possible long-term soil and/or water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perego A, Rocca A, Cattivelli V, Tabaglio V, Fiorini A, Barbieri S, Schillaci C, Chiodini ME, Brenna S, Acutis M (2019) Agro-environmental aspects of conservation agriculture compared to conventional systems: a 3-year experience on 20 farms in the Po valley (Northern Italy). Agric Syst 168:73–87

    Article  Google Scholar 

  2. Stavi I, Bel G, Zaady E (2016) Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agron Sustain Dev 36:1–32

    Article  CAS  Google Scholar 

  3. Abdalla M, Osborne B, Lanigan G, Forristal D, Williams M, Smith P, Jones MB (2013) Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manag 29:199–209

    Article  Google Scholar 

  4. Kaye JP, Quemada M (2017) Using cover crops to mitigate and adapt to climate change. A review. Agron Sustain Dev 37:4

    Article  Google Scholar 

  5. Palm C, Blanco-Canqui H, Declerck F, Gatere L, Grace P (2014) Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ 187:87–105

    Article  Google Scholar 

  6. Laborde JP, Wortmann C, Blanco-Canqui H, Baigorria GA, Lindquist JL (2020) Identifying the drivers and predicting the outcome of conservation agriculture globally. Agric Syst 177:102692

    Article  Google Scholar 

  7. Li S, Hu M, Shi J, Tian X, Wu J (2021) Integrated wheat-maize straw and tillage management strategies influence economic profit and carbon footprint in the Guanzhong Plain of China. Sci Total Environ 767:145347

    Article  CAS  Google Scholar 

  8. AEPLA (2018) Asociación Empresarial para la Protección de las Plantas. www.aepla.es. Accessed 22 Sep 2018

  9. Herrero-Hernández E, Rodríguez-Cruz MS, Pose-Juan E, Sánchez-González S, Andrades MS, Sánchez-Martín MJ (2017) Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Sci Total Environ 609:161–171

    Article  Google Scholar 

  10. Kapsi M, Tsoutsi C, Paschalidou A, Albanis T (2019) Environmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (N.W. Greece). Sci Total Environ 650:2188–2198

    Article  CAS  Google Scholar 

  11. Zambito Marsala R, Capri E, Russo E, Bisagni M, Colla R, Lucini L, Gallo A, Suciu NA (2020) First evaluation of pesticides occurrence in groundwater of Tidone Valley, an area with intensive viticulture. Sci Total Environ 736:139730

    Article  CAS  Google Scholar 

  12. FOCUS (FOrum for Co-ordination of pesticide fate models and their Use) (2000) FOCUS groundwater scenarios in the EU review of active substances. Report of the FOCUS Groundwater Scenarios Workgroup EC Document Reference Sanco/321/2000 Rev.2, 202 p

    Google Scholar 

  13. FOCUS (FOrum for Co-ordination of pesticide fate models and their Use) (2009) Assessing potential for movement of active substances and their metabolites to groundwater in the EU. Report of the FOCUS Groundwater Workgroup EC Document Reference Sanco/13144/2010 Version 1, 604 p

    Google Scholar 

  14. Álvarez-Martín A, Rodríguez-Cruz MS, Andrades MS, Sánchez-Martín MJ (2016) Application of a biosorbent to soil: a potential method for controlling water pollution by pesticides. Environ Sci Pollut Res 23:9192–9203

    Article  Google Scholar 

  15. Chabauty F, Pot V, Bourdat-Deschamps M, Bernet N, Labat C, Benoit P (2016) Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices. Environ Sci Pollut Res 23:6907–6918

    Article  CAS  Google Scholar 

  16. Cassigneul A, Benoit P, Nobile C, Bergheaud V, Dumeny V, Etiévant V, Maylin A, Justes A, Alletto L (2018) Behaviour of S-metolachlor and its oxanilic and ethanesulfonic acids metabolites under fresh vs. partially decomposed cover crop mulches: a laboratory study. Sci Total Environ 631–632:1515–1524

    Article  Google Scholar 

  17. García-Jaramillo M, Trippe KM, Helmus R, Knicker HE, Cox L, Hermosín MC, Kalbitz K (2020) An examination of the role of biochar and biochar water–extractable substances on the sorption of ionizable herbicides in rice paddy soils. Sci Total Environ 706:135682

    Article  Google Scholar 

  18. United Nations (UN). Global issues. Our Global Population (2020). https://www.un.org/en/sections/issues-depth/population. Accessed 10 Sep 2020

  19. FAOSTAT (2021) Food and Agriculture Organization of the United Nations. http://faostat3.fao.org. Accessed 20 Mar 2021

  20. Worldatlas (2018). https://www.worldatlas.com/articles/top-pesticide consuming-countries-of-the-world.html. Accessed 10 Sep 2020

  21. Khan SU (2016) Pesticides in the soil environment. Elsevier

    Google Scholar 

  22. García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2020) Organic carbon nature determines the capacity of organic amendments to adsorb pesticides in soil. J Hazard Mater 390:122162

    Article  Google Scholar 

  23. Álvarez-Martín A, Sánchez-Martín MJ, Pose-Juan E, Rodríguez-Cruz MS (2016) Effect of different rates of spent mushroom substrate on the dissipation and bioavailability of cymoxanil and tebuconazole in an agricultural soil. Sci Total Environ 550:495–450

    Article  Google Scholar 

  24. Kästner M, Nowak KM, Miltner A, Trapp S, Schäffer A (2014) Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil – a synthesis. Crit Rev Environ Sci Technol 44:2107–2171

    Article  Google Scholar 

  25. Marín-Benito JM, Herrero-Hernández E, Ordax JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2021) The role of two organic amendments to modify the environmental fate of S-metolachlor in agricultural soils. Environ Res 195:110871

    Article  Google Scholar 

  26. Hussain S, Arshad M, Springael D, SøRensen SR, Bending GD, Devers-Lamrani M, Maqbool Z, Martin-Laurent F (2015) Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit Rev Environ Sci Technol 45:1947–1998

    Article  CAS  Google Scholar 

  27. Su W, Hao H, Ding M, Wu R, Xu H, Xue F, Lu C (2019) Adsorption and degradation of imazapic in soils under different environmental conditions. PLoS One 14:1–11

    Article  Google Scholar 

  28. Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol 13:429–466

    Article  Google Scholar 

  29. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–525

    Article  CAS  Google Scholar 

  30. Walker A, Rodriguez-Cruz MS, Mitchell MJ (2005) Influence of ageing of residues on the availability of herbicides for leaching. Environ Pollut 133:43–51

    Article  CAS  Google Scholar 

  31. Hochman D, Dor M, Mishael Y (2021) Diverse effects of wetting and drying cycles on soil aggregation: implications on pesticide leaching. Chemosphere 263:127910

    Article  CAS  Google Scholar 

  32. Pandey N, Rana D, Chandrakar G, Gowda GB, Patil NB, Pandi GP, Annamalai M, Pokhare SS, Rath PC, Adak T (2020) Role of climate change variables (standing water and rainfall) on dissipation of chlorantraniliprole from a simulated rice ecosystem. Ecotox Environ Saf 205:111324

    Article  CAS  Google Scholar 

  33. Herrero-Hernández E, Marín-Benito JM, Andrades MS, Sánchez-Martín MJ, Rodríguez-Cruz MS (2015) Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil. J Environ Manag 163:78–86

    Article  Google Scholar 

  34. Marín-Benito JM, Mamy L, Carpio MJ, Sánchez-Martín MJ, Rodríguez-Cruz MS (2020) Modelling herbicides mobility in amended soils: calibration and test of PRZM and MACRO. Sci Total Environ 717:137019

    Article  Google Scholar 

  35. Marín-Benito JM, Carpio MJ, Mamy L, Andrades MS, Sánchez-Martín MJ, Rodríguez-Cruz MS (2020) Field measurement and modelling of chlorotoluron and flufenacet persistence in unamended and amended soils. Sci Total Environ 725:138374

    Article  Google Scholar 

  36. Soracco CG, Villarreal R, Lozano LA, Vittori S, Melani EM, Marino DJG (2018) Glyphosate dynamics in a soil under conventional and no-till systems during a soybean growing season. Geoderma 323:13–21

    Article  CAS  Google Scholar 

  37. Villarreal R, Lozano LA, Policha NG, Salazara MP, Bellora GL, Turinetto MJ, Soracco CG (2020) Influence of soil water holding and transport capacity on glyphosate dynamics in two agricultural soils from Pampas Region. Geoderma 376:114566

    Article  CAS  Google Scholar 

  38. Gupta M, Garg NK, Joshi H, Sharma MP (2012) Persistence and mobility of 2,4-D in unsaturated soil zone under winter wheat crop in sub-tropical region of India. Agric Ecosyst Environ 146:60–72

    Article  CAS  Google Scholar 

  39. Salazar-Ledesma M, Prado B, Zamora O, Siebe C (2018) Mobility of atrazine in soils of a wastewater irrigated maize field. Agric Ecosyst Environ 255:73–83

    Article  CAS  Google Scholar 

  40. Edwards PG, Murphy TM, Lydy MJ (2016) Fate and transport of agriculturally applied fungicidal compounds, azoxystrobin and propiconazole. Chemosphere 146:450–457

    Article  CAS  Google Scholar 

  41. Vendelboe AL, Norgaard T, Olsen P, de Jonge LW, Rosenbom AE (2016) When does the fluazifop-P-butyl degradate, TFMP, leach through an agricultural loamy soil to groundwater? Sci Total Environ 562:1044–1053

    Article  CAS  Google Scholar 

  42. Yadav IC, Watanabe H (2018) Soil erosion and transport of imidacloprid and clothianidin in the upland field under simulated rainfall condition. Sci Total Environ 640–641:1354–1364

    Article  Google Scholar 

  43. Willkommen S, Pfannerstill M, Ulrich U, Guse B, Fohrer N (2019) How weather conditions and physico-chemical properties control the leaching of flufenacet, diflufenican, and pendimethalin in a tile-drained landscape. Agric Ecosyst Environ 278:107–116

    Article  CAS  Google Scholar 

  44. Willkommen S, Lange J, Ulrich U, Pfannerstill M, Fohrer N (2021) Field insights into leaching and transformation of pesticides and fluorescent tracers in agricultural soil. Sci Total Environ 751:141658

    Article  CAS  Google Scholar 

  45. Dor M, Emmanuel S, Brumfeld V, Levy GJ, Mishael YG (2019) Microstructural changes in soils induced by wetting and drying: effects on atrazine mobility. Land Degrad Dev 30:746–755

    Article  Google Scholar 

  46. Mantzos N, Karakitsou A, Nikolaki S, Leneti E, Konstantinou I (2016) Dissipation and transport of quizalofop-p-ethyl herbicide in sunflower cultivation under field conditions. Environ Sci Pollut Res 23:3481–3490

    Article  CAS  Google Scholar 

  47. Potter TL, Bosch DD, Strickland TC (2016) Field and laboratory dissipation of the herbicide fomesafen in the southern Atlantic Coastal Plain (USA). J Agric Food Chem 64:5156–5163

    Article  CAS  Google Scholar 

  48. Peña A, Delgado-Moreno L, Rodríguez-Liébana JA (2020) A review of the impact of wastewater on the fate of pesticides in soils: effect of some soil and solution properties. Sci Total Environ 718:134468

    Article  Google Scholar 

  49. Breure AM, Lijzen JPA, Maring L (2018) Soil and land management in a circular economy. Sci Total Environ 624:1125–1130

    Article  CAS  Google Scholar 

  50. Hou D, Bolan NS, Tsang DCW, Kirkham MB, O'Connor D (2020) Sustainable soil use and management: an interdisciplinary and systematic approach. Sci Total Environ 729:138961

    Article  CAS  Google Scholar 

  51. Aranda V, Macci C, Peruzzi E, Masciandaro G (2015) Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost. J Environ Manag 147:278–285

    Article  CAS  Google Scholar 

  52. Hernandez T, Hernandez MC, Garcia C (2017) The effects on soil aggregation and carbon fixation of different organic amendments for restoring degraded soil in semiarid areas. Eur J Soil Sci 68:941–950

    Article  CAS  Google Scholar 

  53. Medina J, Monreal C, Barea JM, Arriagada C, Borie F, Cornejo P (2015) Crop residue stabilization and application to agricultural and degraded soils: a review. Waste Manag 42:41–54

    Article  CAS  Google Scholar 

  54. Hernández T, García E, García C (2015) A strategy for marginal semiarid degraded soil restoration: a sole addition of compost at a high rate. A five-year field experiment. Soil Biol Biochem 89:61–71

    Article  Google Scholar 

  55. Sun D, Li K, Bi Q, Zhu J, Zhang Q, Jin C, Lu L, Lin X (2017) Effects of organic amendment on soil aggregation and microbial community composition during drying-rewetting alternation. Sci Total Environ 574:735–743

    Article  CAS  Google Scholar 

  56. Yazdanpanah N, Mahmoodabati M, Cerdà A (2016) The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 266:58–65

    Article  CAS  Google Scholar 

  57. Zhang W, Xu M, Wang X, Huang Q, Nie J, Li Z, Li S, Hwang SW, Lee KB (2012) Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. J Soils Sediments 12:457–470

    Article  Google Scholar 

  58. FAO (2017) Voluntary guidelines for sustainable soil management. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  59. Goss MJ, Tubeileh A, Goorahoo D (2013) A review of the use of organic amendments and the risk to human health. Adv Agron 120:275–379

    Article  CAS  Google Scholar 

  60. Insam H, Gómez-Brandón M, Ascher-Jenull J (2018) Recycling of organic wastes to soil and its effect on soil organic carbon status. In: Garcia C, Nannipieri P, Hernandez T (eds) The future of soil carbon. Its conservation and formation. Academic Press, Cambridge, pp 195–214

    Google Scholar 

  61. Urra J, Alkorta I, Garbisu C (2019) Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 9:1–23

    Article  Google Scholar 

  62. Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2016) Impact of spent mushroom substrates on the fate of pesticides in soil, and their use for preventing and/or controlling soil and water contamination: a review. Toxics 4:17

    Article  Google Scholar 

  63. Pose-Juan E, Marin-Benito JM, Sanchez-Martin MJ, Rodriguez-Cruz MS (2018) Dissipation of herbicides after repeated application in soils amended with green compost and sewage sludge. J Environ Manag 223:1068–1077

    Article  CAS  Google Scholar 

  64. Castillo JM, Beguet J, Martin-Laurent F, Romero E (2016) Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes. J Hazard Mater 304:379–387

    Article  CAS  Google Scholar 

  65. Cheng J, Lee X, Gao W, Chen Y, Pan W, Tang Y (2017) Effect of biochar on the bioavailability of difenoconazole and microbial community composition in a pesticide-contaminated soil. Appl Soil Ecol 121:185–192

    Article  Google Scholar 

  66. García-Delgado CD, Annibale A, Pesciaroli L, Yunta F, Crognale S, Petruccioli M, Eymar E (2015) Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. Sci Total Environ 508:20–28

    Article  Google Scholar 

  67. Rodríguez-Cruz MS, Pose-Juan E, Marín-Benito JM, Igual JM, Sánchez-Martín MJ (2019) Pethoxamid dissipation and microbial activity and structure in an agricultural soil: effect of herbicide rate and organic residues. Appl Soil Ecol 140:135–143

    Article  Google Scholar 

  68. Nègre M, Passarella I, Boursier C, Mozzetti C, Gennari M (2006) Evaluation of the bioavailability of the herbicide prosulfocarb through adsorption on soils and model colloids, and through a simple bioassay. Pest Manag Sci 62:957–964

    Article  Google Scholar 

  69. Rodríguez-Liébana JA, Peña A (2018) Adsorption-desorption of dimethenamid and fenarimol onto three agricultural soils as affected by treated wastewater and fresh sewage sludge-derived dissolved organic carbon. J Environ Manag 217:592–599

    Article  Google Scholar 

  70. Thevenot M, Dousset S, Hertkorn N, Schmitt-Kopplin P, Andreux F (2009) Interactions of diuron with dissolved organic matter from organic amendments. Sci. Total Environ 407:4297–4302

    Article  CAS  Google Scholar 

  71. Marín-Benito JM, Brown CD, Herrero-Hernández E, Arienzo M, Sánchez-Martín MJ, Rodríguez-Cruz MS (2013) Use of raw or incubated organic wastes as amendments in reducing pesticide leaching through soil columns. Sci Total Environ 463-464:589–599

    Article  Google Scholar 

  72. PPDB (Pesticide Properties Data Base) (2021) University of Hertfordshire, UK. http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm. Accessed 19 Apr 2021

  73. Herrero-Hernández E, Andrades MS, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2011) Field-scale dissipation of tebuconazole in a vineyard soil amended with spent mushroom substrate and its potential environmental impact. Ecotox Environ Saf 74:1480–1488

    Article  Google Scholar 

  74. Marín-Benito JM, Barba V, Ordax JM, Andrades MS, Sánchez-Martín MJ, Rodríguez-Cruz MS (2018) Application of green compost as amendment in an agricultural soil: effect on the behaviour of triasulfuron and prosulfocarb under field conditions. J Environ Manag 207:180–191

    Article  Google Scholar 

  75. Marín-Benito JM, Barba V, Ordax JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2018) Recycling organic residues in soils as amendments: effect on the mobility of two herbicides under different management practices. J Environ Manag 224:172–181

    Article  Google Scholar 

  76. Petter FA, Ferreira TS, Sinhorin AP, Lima LB, Almeida FA, Pacheco LP, Silva AF (2019) Biochar increases diuron sorption and reduces the potential contamination of subsurface water with diuron in a sandy soil. Pedosphere 29:801–809

    Article  Google Scholar 

  77. Keren Y, Borisover M, Schaumann GE, Diehl D, Tamimic N, Bukhanovskya N (2017) Land disposal of olive mill wastewater enhances ability of soil to sorb diuron: temporal persistence, and the effects of soil depth and application season. Agric Ecosyst Environ 236:43–51

    Article  CAS  Google Scholar 

  78. Gámiz B, López-Cabeza R, Facenda G, Velarde P, Hermosín MC, Cox L, Celis R (2016) Effect of synthetic clay and biochar addition on dissipation and enantioselectivity of tebuconazole and metalaxyl in an agricultural soil: laboratory and field experiments. Agric Ecosyst Environ 230:32–41

    Article  Google Scholar 

  79. Peña D, Albarrán Á, Gómez S, Fernández-Rodríguez D, Rato-Nunes JM, López-Piñeiro A (2019) Effects of olive mill wastes with different degrees of maturity on behaviour of S metolachlor in three soils. Geoderma 348:86–96

    Article  Google Scholar 

  80. Fernández D, Gómez S, Albarrán Á, Peña D, Rozas MÁ, Rato–Nunes JM, López–Piñeiro A (2020) How the environmental fate of clomazone in rice fields is influenced by amendment with olive–mill waste under different regimes of irrigation and tillage. Pest Manag Sci 76: 1795–1803

    Google Scholar 

  81. Antonious GF, Turley ET, Hill RR (2014) Impact of soil amendments on metribuzin and DCPA half-lives and mobility into agricultural runoff water. J Environ Sci Health Part B 49:313–323

    Article  CAS  Google Scholar 

  82. García-Delgado C, Barba-Vicente V, Marín-Benito JM, Igual MJ, Sánchez-Martín MJ, Rodríguez-Cruz MS (2019) Influence of different agricultural management practices on soil microbial community over dissipation time of two herbicides. Sci. Total Environ 646:1478–1488

    Article  Google Scholar 

  83. Tahir M, Ul Hassan A, Maqbool S, Barber B, Koskinen WC, Xinhua P, Mulla DJ (2016) Sorption and leaching potential of isoproturon and atrazine in low organic carbon soil of Pakistan under a wheat-maize rotation. Pedosphere 26:687–698

    Article  CAS  Google Scholar 

  84. Filipovic V, Coquet Y, Pot V, Houot S, Benoit P (2014) Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application. Sci Total Environ 499:546–559

    Article  CAS  Google Scholar 

  85. Filipović V, Coquet Y, Pot V, Houot S, Benoit P (2016) Modeling water and isoproturon dynamics in a heterogeneous soil profile under different urban waste compost applications. Geoderma 268:29–40

    Article  Google Scholar 

  86. Carpio MJ, Rodríguez-Cruz MS, García-Delgado C, Sánchez-Martín MJ, Marín-Benito JM (2020) Mobility monitoring of two herbicides in amended soils: a field study for modeling applications. J Environ Manag 260:110161

    Article  CAS  Google Scholar 

  87. Marín-Benito JM, Carpio MJ, Sánchez-Martín MJ, Rodríguez-Cruz MS (2019) Previous degradation study of two herbicides to simulate their fate in a sandy loam soil: effect of the temperature and the organic amendments. Sci Total Environ 653:1301–1310

    Article  Google Scholar 

  88. Carpio MJ, García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2020) Soil microbial community changes in a field treatment with chlorotoluron, flufenacet and diflufenican and two organic amendments. Agronomy 10:1166

    Article  CAS  Google Scholar 

  89. García-Delgado C, Barba V, Marín-Benito JM, Igual JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2018) Simultaneous application of two herbicides and green compost in a field experiment: implications on soil microbial community. Appl Soil Ecol 127:30–40

    Article  Google Scholar 

  90. Gil Ribes JA, Ordóñez Fernández R, González Sánchez EJ, Veroz González O, Gómez Ariza M, Sánchez Ruiz F (2017) Beneficios de la Agricultura de Conservascion en un Entorno de Cambio Climatico. Asociación Española Agricultura de Conservación Suelos Vivos (AEACSV), 136 p

    Google Scholar 

  91. FAO (2016) Conservation agriculture in: save and grow in practice: maize, rice and wheat

    Google Scholar 

  92. Gabriel JL, Quemada M, Martín-Lammerding D, Vanclooster M (2019) Assessing the cover crop effect on soil hydraulic properties by inverse modelling in a 10-year field trial. Agric Water Manag 222:62–71

    Article  Google Scholar 

  93. Alonso-Ayuso M, Gabriel JL, Pancorbo JL, Quemada M (2020) Interseeding cover crops into maize: characterization of species performance under Mediterranean conditions. Field Crops Res 249:107762

    Article  Google Scholar 

  94. García-González I, Hontoria C, Gabriel JL, Alonso-Ayuso M, Quemada M (2018) Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 322:81–88

    Article  Google Scholar 

  95. Tribouillois H, Cohan JP, Justes E (2016) Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modelling. Plant Soil 401:347–364

    Article  CAS  Google Scholar 

  96. Yagioka A, Komatsuzaki M, Kaneko N, Ueno H (2015) Effect of no-tillage with weed cover mulching versus conventional tillage on global warming potential and nitrate leaching. Agric. Ecosyst Environ 200:42–53

    Article  CAS  Google Scholar 

  97. Thierfelder C, Mwila M, Rusinamhodzi L (2013) Conservation agriculture in eastern and southern provinces of Zambia: long-term effects on soil quality and maize productivity. Soil Tillage Res 126:246–258

    Article  Google Scholar 

  98. Trail P, Abaye O, Thomason WE, Thompson TL, Gueye F, Diedhiou I, Diatta MB, Faye A (2016) Evaluating intercropping (living cover) and mulching (desiccated cover) practices for increasing millet yields in Senegal. Agron J 108:1742–1752

    Article  Google Scholar 

  99. Alletto L, Coquet Y, Benoit P, Heddadj D, Barriuso E (2010) Tillage management effects on pesticide fate in soils. A review. Agron Sustain Dev 30:367–400

    Article  CAS  Google Scholar 

  100. Alletto L, Benoit P, Justes E, Coquet Y (2012) Tillage and fallow period management effects on the fate of the herbicide isoxaflutole in an irrigated continuous-maize field. Agric Ecosyst Environ 153:40–49

    Article  CAS  Google Scholar 

  101. Alletto L, Benoit P, Bolognési B, Couffignal M, Bergheaud V, Dumény V, Longueval C, Barriuso E (2013) Sorption and mineralisation of S-metolachlor in soils from fields cultivated with different conservation tillage systems. Soil Tillage Res 128:97–103

    Article  Google Scholar 

  102. Aslam S, Iqbal A, Deschamps M, Recous S, Garnier P, Benoit P (2015) Effect of rainfall regimes and mulch decomposition on the dissipation and leaching of S-metolachlor and glyphosate: a soil column experiment. Pest Manag Sci 71:278–291

    Article  CAS  Google Scholar 

  103. Cueff S, Alletto L, Dumény V, Benoit P, Pot V (2021) Adsorption and degradation of the herbicide nicosulfuron in a stagnic Luvisol and Vermic Umbrisol cultivated under conventional or conservation agriculture. Environ Sci Pollut Res 28:15934–15946

    Article  CAS  Google Scholar 

  104. Okada E, Costa JL, Bedmar F (2016) Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 263:78–85

    Article  CAS  Google Scholar 

  105. Abdollahi L, Munkholm LJ (2014) Tillage system and cover crop effects on soil quality: I. Chemical, mechanical, and biological properties. Soil Sci Soc Am J 78:262–270

    Article  Google Scholar 

  106. Almeida WSD, Panachuki E, Tarso P, Oliveira SD, Menezes S, Alves T, Fonseca D, Carvalho D (2018) Effect of soil tillage and vegetal cover on soil water infiltration. Soil Tillage Res 175:130–138

    Article  Google Scholar 

  107. Soto-Gómez D, Pérez-Rodríguez P, Vázquez Juiz L, López-Periago JE, Paradelo M (2019) A new method to trace colloid transport pathways in macroporous soils using X-ray computed tomography and fluorescence macrophotography. Eur J Soil Sci 70:431–442

    Article  Google Scholar 

  108. Marín-Benito JM, Herrero-Hernández E, Rodríguez-Cruz MS, Arienzo M, Sánchez-Martín MJ (2017) Study of processes influencing bioavailability of pesticides in wood-soil systems: effect of different factors. Ecotox Environ Saf 139:454–462

    Article  Google Scholar 

  109. Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V (2019) Pesticide residues in European agricultural soils - a hidden reality. Sci Total Environ 653:1532–1545

    Article  CAS  Google Scholar 

  110. Pérez DJ, Iturburu FG, Calderon G, Oyesqui LAE, De Gerónimo E, Aparicio VC (2021) Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere 263:128061

    Article  Google Scholar 

  111. Tauchnitz N, Kurzius F, Rupp H, Schmidt G, Hauser B, Schrödter M, Meissner R (2021) Assessment of pesticide inputs into surface waters by agricultural and urban sources - a case study in the Querne/Weida catchment, Central Germany. Environ Pollut 267:115186

    Article  Google Scholar 

  112. Aslam S, Garnier P, Rumpel C, Parent SE, Benoit P (2013) Adsorption and desorption behavior of selected pesticides as influenced by decomposition of maize mulch. Chemosphere 91:1447–1455

    Article  CAS  Google Scholar 

  113. Cassigneul A, Alletto L, Benoit P, Bergheaud V, Etiévant V, Dumény V, Le Gac AL, Chuette D, Rumpel C, Justes E (2015) Nature and decomposition degree of cover crops influence pesticide sorption: quantification and modelling. Chemosphere 119:1007–1014

    Article  CAS  Google Scholar 

  114. Cassigneul A, Benoit P, Bergheaud V, Dumeny V, Etiévant V, Goubard Y, Maylin A, Justes E, Alletto L (2016) Fate of glyphosate and degradates in cover crop residues and underlying soil: a laboratory study. Sci Total Environ 545–546:582–590

    Article  Google Scholar 

  115. Mamy L, Barriuso E, Gabrielle B (2016) Glyphosate fate in soils when arriving in plant residues. Chemosphere 154:425–433

    Article  CAS  Google Scholar 

  116. Cueff S, Alletto L, Bourdat-Deschamps M, Benoit P, Pot V (2020) Water and pesticide transfers in undisturbed soil columns sampled from a Stagnic Luvisol and a Vermic Umbrisol both cultivated under conventional and conservation agriculture. Geoderma 377:114590

    Article  Google Scholar 

  117. Porfiri C, Montoya JC, Koskinen WC, Azcarate MP (2015) Adsorption and transport of imazapyr through intact soil columns taken from two soils under two tillage systems. Geoderma 251–252:1–9

    Article  Google Scholar 

  118. Lee N, Thierfeeder C (2017) Weed control under conservation agriculture in dryland smallholder farming systems of southern Africa. A review. Agron Sustain Dev 37:48

    Article  Google Scholar 

  119. Van Acker RC (2005) Soil residual herbicides: science and management. Topics in Canadian weed science, vol Vol 3. Canadian Weed Science Society, Sainte-Anne-de Bellevue, 125 p

    Google Scholar 

  120. OEPP/EPPO (2007) EPPO standard PP 1/207. Effects on succeeding crops. Bull OEPP/EPPO Bull 37:452–458

    Article  Google Scholar 

  121. Bzour M, Mispan M, Zuki F (2020) Carryover and dissipation of imidazolinone herbicides application and their effect on succeeding following crops: a review. Indian J Ecol 47:1150–1157

    Google Scholar 

  122. Constantin J, Biffe DF, de Oliveira Jr RS, Rosa EL, Gheno EA, Machado FG, Braz GBP (2018) Use of residual herbicides in soybean and impact on corn in succession. Comunicata Scientiae 9:481–491

    Article  Google Scholar 

  123. Felix J, Fennimore SA, Rachuy JS (2012) Response of alfalfa, green onion, dry bulb onion, sugar beet, head lettuce, and carrot to imazosulfuron soil residues 2 years after application. Weed Technol 26:769–776

    Article  CAS  Google Scholar 

  124. Lawrence BH, Bond JA, Edwards HM, Golden BR, Montgomery GB, Eubank TW, Walker TW (2018) Effect of fall-applied residual herbicides on rice growth and yield. Weed Technol 32:526–531

    Article  Google Scholar 

  125. Palhano MG, Norsworthy JK, Barber T (2018) Sensitivity and likelihood of residual herbicide carryover to cover crops. Weed Technol 32:236–243

    Article  Google Scholar 

  126. Rector LS, Pittman KB, Beam SC, Bamber KW, Cahoon CW, Frame WH, Flessner ML (2020) Herbicide carryover to various fall-planted cover crop species. Weed Technol 34:25–34

    Article  Google Scholar 

  127. Nemecek T, Hayer F, Bonnin E, Carrouée B, Schneider A, Vivier C (2015) Designing eco-efficient crop rotations using life cycle assessment of crop combinations. Eur J Agron 65:40–51

    Article  Google Scholar 

  128. Belderráin J, Fernández J, Molinero L, Velasco L (2016) Control de malas hierbas en la rotación cereal-girasol. Asociación Española del Girasol. www.aegirasol.org. D.L. SE296–2016

  129. Saavedra MM, Alcántara C (2018) Fitotoxicidad en girasol por residuos de herbicidas. Tierras de Castilla y León. Agricultura 264:65–72

    Google Scholar 

  130. Scursoni JA, Montoya JC, Vigna MR, Gigón R, Istilart C, Renzi Pugni JP, López R, Porfiri C (2017) Impact of imazamox and imazapyr carryover on wheat, barley and oat. Weed Technol 31:838–846

    Article  Google Scholar 

  131. Cornelius CD, Bradley KW (2017) Carryover of common corn and soybean herbicides to various cover crop species. Weed Technol 31:21–31

    Article  Google Scholar 

  132. Hill ZT, Norsworthy JK, Barber LT, Roberts TL, Gbur EE (2016) Assessing the potential for fluridone carryover to six crops rotated with cotton. Weed Technol 30:346–354

    Article  Google Scholar 

  133. Grey TL, Diera A, Moore JM, Rucker KS, Butts CL (2017) Effect of pyrasulfotole carryover to peanut and tobacco. Weed Technol 31:651–657

    Article  Google Scholar 

  134. Miller MR, Norsworthy JK (2018) Assessment of florpyrauxifen-benzyl potential to carryover to subsequent crops. Weed Technol 32:404–409

    Article  Google Scholar 

  135. Wang H, Wang H, Zhu B, Guo W, Liu W (2021) Fenpyrazone effects on succeeding crops in annual double-cropping areas on the North China plain. Crop Prot 143:105456

    Article  CAS  Google Scholar 

  136. Wallace JM, Curran WS, Mirsky SB, Ryan MR (2017) Tolerance of interseeded annual ryegrass and red clover cover crops to residual herbicides in mid-Atlantic corn cropping systems. Weed Technol 31:641–650

    Article  Google Scholar 

  137. Vanclooster M, Boesten J, Trevisan M, Brown CD, Capri E, Eklo OM, Gottesbüren B, Gouy V, Van der Linden AMA (2000) A European test of pesticide-leaching models: methodology and major recommendations. Agric Water Manag 44:1–19

    Article  Google Scholar 

  138. Siimes K, Kämäri J (2003) A review of available pesticide leaching models: selection of models for simulation of herbicide fate in Finnish sugar beet cultivation. Boreal Environ Res 8:31–51

    CAS  Google Scholar 

  139. Jarvis NC (1995) Simulation of soil water dynamics and herbicide persistence in a silt loam soil using the MACRO model. Ecol Model 81:97–109

    Article  CAS  Google Scholar 

  140. Mueller TC (1994) Comparison of PRZM computer-model predictions with field lysimeter data for dichlorprop and bentazon leaching. J Environ Sci Health A 29:1183–1195

    Google Scholar 

  141. Nicholls PH, Harris GL, Brockie D (2000) Simulation of pesticide leaching at Vredepeel and Brimstone farm using the macropore model PLM. Agric Water Manag 44:307–315

    Article  Google Scholar 

  142. Armstrong A, Aden K, Amraoui N, Diekkrüger B, Jarvis N, Mouvet C, Nicholls P, Wittwer C (2000) Comparison of the performance of pesticide-leaching models on a cracking clay soil: results using the Brimstone Farm dataset. Agric Water Manag 44:85–104

    Article  Google Scholar 

  143. Garratt JA, Capri E, Trevisan M, Errera G, Wilkins RM (2002) Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy. Pest Manag Sci 58:3–20

    Google Scholar 

  144. Gottesbüren B, Aden K, Bärlund I, Brown C, Dust M, Görlitz G, Jarvis N, Rekolainen S, Schäfer H (2000) Comparison of pesticide leaching models: results using the Weiherbach data set. Agric Water Manag 44:153–181

    Article  Google Scholar 

  145. Dubus IG, Brown CD (2002) Sensitivity and first-step uncertainty analyses for the preferential flow model MACRO. J Environ Qual 31:227–240

    Article  CAS  Google Scholar 

  146. Dubus IG, Brown CD, Beulke S (2003) Sensitivity analyses for four pesticide leaching models. Pest Manag Sci 59:962–982

    Article  CAS  Google Scholar 

  147. Jarvis NJ, Brown CD, Granitza E (2000) Sources of error in model predictions of pesticide leaching: a case study using the MACRO model. Agric Water Manag 44:247–262

    Article  Google Scholar 

  148. Fait G, Balderacchi M, Ferrari F, Ungaro F, Capri E, Trevisan M (2010) A field study of the impact of different irrigation practices on herbicide leaching. Eur J Agron 32:280–287

    Article  CAS  Google Scholar 

  149. Gupta M, Garg NK, Joshi H, Sharma MP (2014) Assessing the impact of irrigation treatments on thiram residual trends: correspondence with numerical modelling and field-scale experiments. Environ Monit Assess 186:1639–1654

    Article  CAS  Google Scholar 

  150. Lewan E, Kreuger J, Jarvis N (2009) Implications of precipitation patterns and antecedent soil water content for leaching of pesticides from arable land. Agric Water Manag 96:1633–1640

    Article  Google Scholar 

  151. Garratt JA, Kennedy A, Wilkins RM, Ureña-Amate MD, González-Pradas E, Flores-Céspedes F, Fernández-Pérez M (2007) Modeling pesticide leaching and dissipation in a Mediterranean littoral greenhouse. J Agric Food Chem 55:7052–7061

    Article  CAS  Google Scholar 

  152. Boesten JJTI (2017) Effects of aged sorption on pesticide leaching to groundwater simulated with PEARL. Sci Total Environ 576:498–507

    Article  CAS  Google Scholar 

  153. Mendez A, Castillo L, Ruepert C, Hungerbuehler K, Ng CA (2018) Tracking pesticide fate in conventional banana cultivation in Costa Rica: a disconnect between protecting ecosystems and consumer health. Sci Total Environ 613–614:1250–1262

    Article  Google Scholar 

  154. Steffens K, Jarvis N, Lewan E, Lindström B, Kreuger J, Kjellström E, Moeys J (2015) Direct and indirect effects of climate change on herbicide leaching — a regional scale assessment in Sweden. Sci Total Environ 514:239–249

    Article  CAS  Google Scholar 

  155. Rouzies E, Lauvernet C, Barachet C, Morel T, Branger F, Braud I, Carluer N (2019) From agricultural catchment to management scenarios: a modular tool to assess effects of landscape features on water and pesticide behavior. Sci Total Environ 671:1144–1160

    Article  CAS  Google Scholar 

  156. Wang R, Yuan Y, Yen H, Grieneisen M, Arnold J, Wang D, Wang C, Zhang M (2019) A review of pesticide fate and transport simulation at watershed level using SWAT: current status and research concerns. Sci Total Environ 669:512–526

    Article  CAS  Google Scholar 

  157. Ammann L, Doppler T, Stamm C, Reichert P, Fenicia F (2020) Characterizing fast herbicide transport in a small agricultural catchment with conceptual models. J Hydrol 586:124812

    Article  CAS  Google Scholar 

  158. Dufilho AC, Falco S (2020) Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia. J Contam Hydrol 229:103584

    Article  CAS  Google Scholar 

  159. Paporisch A, Laor Y, Rubin B, Eizenberg H (2021) Simulating sulfosulfuron fate in soil under different weather scenarios to support weed management decisions. Pest Manag Sci 77:253–263

    Article  CAS  Google Scholar 

  160. Wu L, Chang H, Ma X (2017) A modified method for pesticide transport and fate in subsurface environment of a winter wheat field of Yangling, China. Sci Total Environ 609:385–395

    Article  CAS  Google Scholar 

  161. Mottes C, Lesueur-Jannoyer M, Le Bail M, Malézieux E (2014) Pesticide transfer models in crop and watershed systems: a review. Agron Sustain Dev 34:229–250

    Article  CAS  Google Scholar 

  162. Carsel R, Imhoff J, Hummel P, Cheplick J, Donigian A, Suarez L (2005) PRZM-3, a Model for predicting pesticide and nitrogen fate in the crop root and unsaturated soil zones: user’s manual for release 3.12.2. US Environ. Prot. Agency (EPA), 420 p

    Google Scholar 

  163. Larsbo M, Jarvis N (2003) MACRO 5.0. A model of water flow and solute transport in macroporous soil. Technical description. Rep Emergo, Swedish University of Agricultural Sciences, Uppsala, Sweden, 49 p

    Google Scholar 

  164. Šimůnek J, van Genuchten MT, Šejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J 7:587–600

    Article  Google Scholar 

  165. Alletto L, Pot V, Giuliano S, Costes M, Perdrieux F, Justes E (2015) Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma 243–244:18–28

    Article  Google Scholar 

  166. Villarreal R, Soracco CG, Salazar MP, Bellora GL, Valdés-Abellán J, Lozano LA (2020) Glyphosate dynamics prediction in a soil under conventional and no-tillage systems during the crop cycle. Rev Bras Cienc Solo 44:e0190130

    Article  CAS  Google Scholar 

  167. Lammoglia SK, Moeys J, Barriuso E, Larsbo M, Marín-Benito JM, Justes E, Alletto L, Ubertosi M, Nicolardot B, Munier-Jolain N, Mamy L (2017) Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems. Environ Sci Pollut Res 24:6895–6909

    Article  CAS  Google Scholar 

  168. Marín-Benito JM, Alletto L, Barriuso E, Bedos C, Benoit P, Pot V, Mamy L (2018) Pesticide fate modelling in conservation tillage: simulating the effect of mulch and cover crop on S-metolachlor leaching. Sci Total Environ 628–629:1508–1517

    Article  Google Scholar 

  169. Queyrel W, Habets F, Blanchoud H, Ripoche D, Launay M (2016) Pesticide fate modelling in soils with the crop model STICS: feasibility for assessment of agricultural practices. Sci Total Environ 542:787–802

    Article  CAS  Google Scholar 

  170. Wauchope RD, Rojas KW, Ahuja LR, Ma Q, Malone RW, Ma L (2004) Documenting the pesticide processes module of the ARS RZWQM agroecosystem model. Pest Manag Sci 60:222–239

    Article  CAS  Google Scholar 

  171. Brisson N, Launay M, Mary B, Beaudoin N (2009) Conceptual basis, formalisations and parameterization of the STICS Crop Model. Quæ, Versailles

    Google Scholar 

  172. Lammoglia SK, Makowski D, Moeys J, Justes E, Barriuso E, Mamy L (2017) Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticides losses. Sci Total Environ 580:117–129

    Article  CAS  Google Scholar 

  173. Leistra M, van der Linden AMA, Boesten JJTI, Tiktak A, van den Berg F (2001) PEARL model for pesticide behaviour and emissions in soil-plant systems: description of the processes. Alterra Rep 13. Wageningen University and Research Centre, Wageningen, The Netherlands, 115 p

    Google Scholar 

  174. Klein M (1995) PELMO: pesticide leaching model, user manual V 2.01. Fraunhofer- Institut für Umweltchemie und Ökotoxikogie, p D57392

    Google Scholar 

Download references

Acknowledgements

This research was funded by MCIU/AEI/FEDER UE, Project “RTI2018-101587-J-I00” and EU H2020-EJP-Soil-Innovative Soil Management Practices across Europe (i-SoMPE). Project “CLU-2019-05—IRNASA/CSIC Unit of Excellence”, funded by the Junta de Castilla y León and co-financed by the European Union (ERDF “Europe drives our growth”). M.J. Carpio thanks for her predoctoral contract co-funded by European Social Fund (ESF) and the Consejería de Educación (Junta de Castilla y León Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús M. Marín-Benito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carpio, M.J., Rodríguez-Cruz, M.S., Sánchez-Martín, M.J., Marín-Benito, J.M. (2021). Pesticide Fate in Soils Under Different Agricultural Management Practices. In: Rodríguez-Cruz, M.S., Sánchez-Martín, M.J. (eds) Pesticides in Soils. The Handbook of Environmental Chemistry, vol 113. Springer, Cham. https://doi.org/10.1007/698_2021_800

Download citation

Publish with us

Policies and ethics