Skip to main content

Plasma Technology: A Novel Approach for Deactivating Pathogens in Natural Eco-Systems

  • Chapter
  • First Online:
Cost-efficient Wastewater Treatment Technologies

Abstract

Providing clean and potable drinking water for humans is an essential component of the continuous and sustainable existence of humanity. However, the inactivation of harmful pathogenic microorganisms during water treatment to make the water safe and clean for human use is a requirement. Because of the shortcomings of current treatment technologies for the inactivation of pathogenic contaminants, new and emerging technologies are at the forefront as novel antimicrobial inactivation methods to meet the increasing demand for treatment of contaminated raw water. New and advanced technologies such as membrane filters, reverse osmosis, and ozonation have been explored for water treatment; however, most are cost-inefficient with robust treatment techniques. Therefore, this chapter aims at reviewing the application and mechanisms of using plasma technology as one of the cost-effective and sustainable technologies for the inactivation of waterborne pathogens and contaminated environmental samples. Besides, this review further focussed on some of the methods by which the different plasma discharges are generated and some of the optimum process parameters for the inactivation of microbial pathogens in water. In conclusion, some benefits and drawbacks of using plasma technology were identified, and further investigation of their application in the water sector was recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhikari B, Adhikari M, Ghimire B, Park G, Choi EH (2019) Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings. Sci Rep 9:1–15

    Article  CAS  Google Scholar 

  2. Jha N, Ryu JJ, Choi EH, Kaushik NK (2017) Generation and role of reactive oxygen and nitrogen species induced by plasma, lasers, chemical agents, and other systems in dentistry. Oxidative Med Cell Longev 2017:7542540

    Article  Google Scholar 

  3. Petersen RC (2017) Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophys 4:240

    Article  CAS  Google Scholar 

  4. Gharagozalian M, Dorranian D, Ghoranneviss M (2017) Water treatment by the AC gliding arc air plasma. J Theor Appl Phys 11:171–180

    Article  Google Scholar 

  5. Ajo P, Preis S, Vornamo T, Mänttäri M, Kallioinen M, Louhi-Kultanen M (2018) Hospital wastewater treatment with pilot-scale pulsed corona discharge for removal of pharmaceutical residues. J Environ Chem Eng 6:1569–1577

    Article  CAS  Google Scholar 

  6. Brandenburg R, Bogaerts A, Bongers W, Fridman A, Fridman G, Locke BR, Miller V, Reuter S, Schiorlin M, Verreycken T (2019) White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process Polym 16:1700238

    Article  Google Scholar 

  7. Langmuir I (1928) Oscillations in ionized gases. Proc Natl Acad Sci U S A 14:627

    Article  CAS  Google Scholar 

  8. Tonks L (1931) Plasma-electron resonance, plasma resonance and plasma shape. Phys Rev 38:1219

    Article  Google Scholar 

  9. Korachi M, Aslan N (2013) Low temperature atmospheric plasma for microbial decontamination. In: Microbial pathogens and strategies for combating them: science, technology and education, vol 1. Formatex Research Center, pp 453–459

    Google Scholar 

  10. Zainal MNF, Redzuan N, Misnal M (2015) Brief review: cold plasma. J Teknol 74:57–61

    Google Scholar 

  11. Pahwa A, Kumar H (2018) Influence of cold plasma technology on food packaging materials: a review. Int J Chem Stud 6:594–603

    Google Scholar 

  12. Bonitz M, Horing N, Ludwig P (2010) Introduction to complex plasmas. Springer Science & Business Media

    Book  Google Scholar 

  13. Cui Y, Cheng J, Chen Q, Yin Z (2018) The types of plasma reactors in wastewater treatment. IOP Conf Ser Earth Environ Sci 208:012002

    Article  Google Scholar 

  14. Bruggeman P, Schram DC (2010) On OH production in water containing atmospheric pressure plasmas. Plasma Sources Sci Technol 19:45025

    Article  Google Scholar 

  15. Foster JE (2017) Plasma-based water purification: challenges and prospects for the future. Phys Plasmas 24:055501

    Article  Google Scholar 

  16. Malik MA, Ghaffar A, Malik SA (2001) Water purification by electrical discharges. Plasma Sources Sci Technol 10:82

    Article  CAS  Google Scholar 

  17. Gupta TT, Ayan H (2019) Application of non-thermal plasma on biofilm: a review. Appl Sci 9:3548

    Article  CAS  Google Scholar 

  18. Chang J (2009) Thermal plasma solid waste and water treatments: a critical review. Int J Plasma Environ Sci Technol 3:67–84

    Google Scholar 

  19. Pankaj SK, Wan Z, Keener KM (2018) Effects of cold plasma on food quality: a review. Foods 7:4

    Article  Google Scholar 

  20. Corporation BM (2017) What is cold plasma? http://www.boviemedical.com/2016/01/04/what-is-cold-plasma/#. Accessed 29 Aug 2017

  21. Shim SY (2001) Water treatment apparatus using plasma reactor and method thereof. Google Patents

    Google Scholar 

  22. Vanraes P, Nikiforov AY, Leys C (2016) Electrical discharge in water treatment technology for micropollutant decomposition. In: Plasma science and technology—progress in physical states and chemical reactions. IntechOpen, p 429

    Google Scholar 

  23. Ruma M, Habib A, Basha RH (2016) A survey of non-thermal plasma and their generation methods. Int J Renew Energy Environ Eng 4:2348–0157

    Google Scholar 

  24. Shearn M, Sun X, Henry M, Yariv A, Scherer A (2010) Advanced plasma processing: etching, deposition, and wafer bonding techniques for semiconductor applications. IntechOpen

    Google Scholar 

  25. Bower C, Zhou O, Zhu W, Werder D, Jin S (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769

    Article  CAS  Google Scholar 

  26. Bates SC (2007) Net shape bulk diamond fabrication. Thoughtventions Unlimited LLC

    Google Scholar 

  27. Fridman G (2008) Direct plasma interaction with living tissue. p 69

    Google Scholar 

  28. Bárdos L, Baránková H (2010) Cold atmospheric plasma: sources, processes, and applications. Thin Solid Films 518:6705–6713

    Article  Google Scholar 

  29. Ursache M, Moraru R, Hnatiuc E, Nastase V, Mares M (2014) Comparative assessment of the relation between energy consumption and bacterial burden reduction using plasma activated water. In: 2014 International conference on optimization of electrical and electronic equipment (OPTIM). IEEE, pp 1036–1041

    Chapter  Google Scholar 

  30. Puligundla P, Mok C (2020) Microwave-and radio-frequency-powered cold plasma applications for food safety and preservation. In: Advances in cold plasma applications for food safety and preservation. Elsevier, pp 309–329

    Chapter  Google Scholar 

  31. Ramón R, Del Valle M, Valero F (2005) Use of a focused microwave system for the determination of Kjeldahl nitrogen in industrial wastewaters. Anal Lett 38:2415–2430

    Article  Google Scholar 

  32. Lo KV, Liao PH, Srinivasan A, Bailey S, Macsween J (2014) Briefing: H2O2 dosing strategy on microwave treatment of sewage sludge. J Environ Eng Sci 9:158–161

    Article  Google Scholar 

  33. Wong WT (2006) Applications of microwave technology to wastewater treatment. University of British Columbia

    Google Scholar 

  34. Ni Y, Lynch M, Modic M, Whalley R, Walsh J (2016) A solar powered handheld plasma source for microbial decontamination applications. J Phys D Appl Phys 49:355203

    Article  Google Scholar 

  35. Grinevich V, Kvitkova EY, Plastinina N, Rybkin V (2011) Application of dielectric barrier discharge for waste water purification. Plasma Chem Plasma Process 31:573–583

    Article  CAS  Google Scholar 

  36. Hernández-Arias A, Rodríguez-Méndez B, López-Callejas R, Alcántara-Díaz D, Valencia-Alvarado R, Mercado-Cabrera A, Peña-Eguiluz R, Muñoz-Castro A, Barocio S, De La Piedad-Beneitez A (2012) Inactivation of Escherichia coli in water by pulsed dielectric barrier discharge in coaxial reactor. J Water Health 10:371–379

    Article  Google Scholar 

  37. Hijosa-Valsero M, Molina R, Schikora H, Müller M, Bayona JM (2013) Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma. J Hazard Mater 262:664–673

    Article  CAS  Google Scholar 

  38. Mok YS, Jo J-O, Whitehead JC (2008) Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water. Chem Eng J 142:56–64

    Article  CAS  Google Scholar 

  39. Bista P (2019) To study about atmospheric pressure plasma jet and it's electrical characterization

    Google Scholar 

  40. Ma S, Kim K, Huh J, Hong Y (2017) Characteristics of microdischarge plasma jet in water and its application to water purification by bacterial inactivation. Sep Purif Technol 188:147–154

    Article  CAS  Google Scholar 

  41. Ma S, Kim K, Lee S, Moon S, Hong Y (2018) Effects of a porous dielectric in atmospheric-pressure plasma jets submerged in water. Phys Plasmas 25:083519

    Article  Google Scholar 

  42. Mance D, Wiese R, Kewitz T, Kersten H (2018) Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe. Eur Phys J D 72:98

    Article  Google Scholar 

  43. Wang P, Fan F-G, Zirilli F, Chen J (2012) A hybrid model to predict electron and ion distributions in entire interelectrode space of a negative corona discharge. IEEE Trans Plasma Sci 40:421–428

    Article  CAS  Google Scholar 

  44. Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D Appl Phys 38:R1

    Article  CAS  Google Scholar 

  45. Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001

    Article  Google Scholar 

  46. Yehia DA (2019) Characteristics of the dielectric barrier corona discharges. AIP Adv 9:045214

    Article  Google Scholar 

  47. Riba J-R, Morosini A, Capelli F (2018) Comparative study of AC and positive and negative DC visual corona for sphere-plane gaps in atmospheric air. Energies 11:2671

    Article  Google Scholar 

  48. Yehia DA, Abdel-Salam M, Mizuno A (2000) On assessment of ozone generation in dc coronas. J Phys D Appl Phys 33:831

    Article  CAS  Google Scholar 

  49. Bruggeman P, Graham L, Degroote J, Vierendeels J, Leys C (2007) Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin–water electrode system. J Phys D Appl Phys 40:4779

    Article  CAS  Google Scholar 

  50. Bruggeman P, Guns P, Degroote J, Vierendeels J, Leys C (2008) Influence of the water surface on the glow-to-spark transition in a metal-pin-to-water electrode system. Plasma Sources Sci Technol 17:045014

    Article  Google Scholar 

  51. Benetoli LODB, Cadorin BM, Postiglione CDS, Souza IGD, Debacher NA (2011) Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor. J Braz Chem Soc 22:1669–1678

    Article  CAS  Google Scholar 

  52. Miyazaki Y, Satoh K, Itoh H (2011) Pulsed discharge purification of water containing nondegradable hazardous substances. Electr Eng Jpn 174:1–8

    Article  Google Scholar 

  53. Magureanu M, Bradu C, Piroi D, Mandache NB, Parvulescu V (2013) Pulsed corona discharge for degradation of methylene blue in water. Plasma Chem Plasma Process 33:51–64

    Article  CAS  Google Scholar 

  54. Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N (2019) Applications of plasma-liquid systems: a review. Materials 12:2751

    Article  CAS  Google Scholar 

  55. Ni Y (2017) Non-thermal air plasma discharges for food and water security applications. University of Liverpool

    Google Scholar 

  56. Boxman R, Parkansky N, Mamane H, Meirovitz M, Orkabi Y, Halperin T, Cohen D, Orr N, Gidalevich E, Alterkop B (2008) Pulsed submerged arc plasma disinfection of water: bacteriological results and an exploration of possible mechanisms. In: Plasma assisted decontamination of biological and chemical agents. Springer, pp 41–50

    Chapter  Google Scholar 

  57. Locke B, Sato M, Sunka P, Hoffmann M, Chang J-S (2006) Electrohydraulic discharge and non-thermal plasma for water treatment. Ind Eng Chem Res 45:882–905

    Article  CAS  Google Scholar 

  58. Clements JS, Sato M, Davis RH (1987) Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water. IEEE Trans Ind Appl IA-23:224–235

    Article  CAS  Google Scholar 

  59. Šunka P (2001) Pulse electrical discharges in water and their applications. Phys Plasmas 8:2587–2594

    Article  Google Scholar 

  60. Abou-Ghazala A, Katsuki S, Schoenbach KH, Dobbs F, Moreira K (2002) Bacterial decontamination of water by means of pulsed-corona discharges. IEEE Trans Plasma Sci 30:1449–1453

    Article  Google Scholar 

  61. Kebriaei M, Ketabi A, Niasar AH (2015) Pulsed corona discharge, a new and effective technique for water and air treatment. Biol Forum 7:1686

    Google Scholar 

  62. Hartmann W, Roemheld M, Rohde K, Spiess F (2009) Large area pulsed Corona discharge in water for disinfection and pollution control. IEEE Trans Dielectr Electr Insul 16:1061–1065

    Article  CAS  Google Scholar 

  63. Malik MA (2003) Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water. Plasma Sources Sci Technol 12:S26

    Article  CAS  Google Scholar 

  64. Ajo P, Krzymyk E, Preis S, Kornev I, Kronberg L, Louhi-Kultanen M (2016) Pulsed corona discharge oxidation of aqueous carbamazepine micropollutant. Environ Technol 37:2072–2081

    Article  CAS  Google Scholar 

  65. Gupta SB (2007) Investigation of a physical disinfection process based on pulsed underwater corona discharges. Forschungszentrum Karlsruhe

    Google Scholar 

  66. Lubicki P, Jayaram S (1997) High voltage pulse application for the destruction of the gram-negative bacterium Yersinia enterocolitica. Bioelectrochem Bioenerg 43:135–141

    Article  CAS  Google Scholar 

  67. Lukes P, Brisset J-L, Locke BR (2012) Biological effects of electrical discharge plasma in water and in gas-liquid environments. Plasma Chem Catal Gases Liquids 1:309–352

    Article  Google Scholar 

  68. Mouele ESM (2014), Water treatment using electrohydraulic discharge system,

    Google Scholar 

  69. Yantsis S, Chow-Fraser P, Li O, Guo Y, Chang J, Terui S, Watanabe K, Itoh M (2008) Zooplankton mortality in lake water treated by pulsed arc electrohydraulic discharge plasma. Int J Plasma Environ Sci Technol 2:128–133

    Google Scholar 

  70. Chang J, Urashima K (2008) Concurrent treatment of chemical and biological contaminants in water by a pulsed arc electrohydraulic discharge. In: Plasma assisted decontamination of biological and chemical agents. Springer, pp 87–97

    Chapter  Google Scholar 

  71. Yamatake A, Angeloni DM, Dickson SE, Emelko MB, Yasuoka K, Chang J-S (2006) Characteristics of pulsed arc electrohydraulic discharge for eccentric electrode cylindrical reactor using phosphate-buffered saline water. Jpn J Appl Phys 45:8298

    Article  CAS  Google Scholar 

  72. Li O (2010) Treatment of stormwater pond sediment by thermal plasma systems

    Google Scholar 

  73. Lin Q-X, Zhu L, He Z-H, Xia W, Xu X-Y (2015) The pulsed arc electrohydraulic discharge treatment study on waste water and its application. In: 2015 international conference on industrial technology and management science. Atlantis Press

    Google Scholar 

  74. Ziuzina D, Patil S, Cullen P, Keener K, Bourke P (2013) Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol 114:778–787

    Article  CAS  Google Scholar 

  75. Alkawareek MY, Algwari QT, Laverty G, Gorman SP, Graham WG, O'connell D, Gilmore BF (2012) Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. PLoS One 7:e44289–e44289

    Article  CAS  Google Scholar 

  76. Yardimci O, Setlow P (2010) Plasma sterilization: opportunities and microbial assessment strategies in medical device manufacturing. IEEE Trans Plasma Sci 38:973–981

    Article  Google Scholar 

  77. Yasuda H, Miura T, Kurita H, Takashima K, Mizuno A (2010) Biological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Process Polym 7:301–308

    Article  CAS  Google Scholar 

  78. Alkawareek MY, Algwari QT, Laverty G, Gorman SP, Graham WG, O'connell D, Gilmore BF (2012) Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. PLoS One 7

    Google Scholar 

  79. Adamovich I, Baalrud SD, Bogaerts A, Bruggeman P, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden JG, Favia P (2017) The 2017 plasma roadmap: low temperature plasma science and technology. J Phys D Appl Phys 50:323001

    Article  Google Scholar 

  80. Flynn PB, Graham WG, Gilmore BF (2019) Acinetobacter baumannii biofilm biomass mediates tolerance to cold plasma. Lett Appl Microbiol 68:344–349

    Article  CAS  Google Scholar 

  81. Flynn PB, Higginbotham S, Nid’a HA, Gorman SP, Graham WG, Gilmore BF (2015) Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int J Antimicrob Agents 46:101–107

    Article  CAS  Google Scholar 

  82. Belgacem ZB, Carré G, Boudifa M, Charpentier E, Cawe B, Gellé M (2016) Effectiveness of non-thermal O2–N2 plasma on P. aeruginosa multilayer biofilms cultured on hydroxyapatite. IRBM 37:68–74

    Article  Google Scholar 

  83. Gilmore BF, Flynn PB, O’brien S, Hickok N, Freeman T, Bourke P (2018) Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol 36:627–638

    Article  CAS  Google Scholar 

  84. Mai-Prochnow A, Clauson M, Hong J, Murphy AB (2016) Gram positive and gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep 6:38610

    Article  CAS  Google Scholar 

  85. Kvam E, Davis B, Mondello F, Garner AL (2012) Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob Agents Chemother 56:2028–2036

    Article  CAS  Google Scholar 

  86. Abdel-Fattah TM, Cetinkaya E, Pell W, Hughes D, Malik M (2017) Biological decontamination of water using non-thermal plasma treatment. ECS Trans 75:1

    Article  CAS  Google Scholar 

  87. Banaschik R, Burchhardt G, Zocher K, Hammerschmidt S, Kolb JF, Weltmann K-D (2016) Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism. Bioelectrochemistry 112:83–90

    Article  CAS  Google Scholar 

  88. Zhang R, Wang L, Wu Y, Guan Z, Jia Z (2006) Bacterial decontamination of water by bipolar pulsed discharge in a gas–liquid–solid three-phase discharge reactor. IEEE Trans Plasma Sci 34:1370–1374

    Article  CAS  Google Scholar 

  89. Parkansky N, Boxman RL, Faktorovich SE, Alterkop BA, Berkh O, Vegerhof A (2019) Submerged arc removal of contaminants from liquids. Google Patents

    Google Scholar 

  90. Back JO, Obholzer T, Winkler K, Jabornig S, Rupprich M (2018) Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater. J Environ Chem Eng 6:7377–7385

    Article  CAS  Google Scholar 

  91. Shen J, Sun Q, Zhang Z, Cheng C, Lan Y, Zhang H, Xu Z, Zhao Y, Xia W, Chu PK (2015) Characteristics of dc gas-liquid phase atmospheric-pressure plasma and bacteria inactivation mechanism. Plasma Process Polym 12:252–259

    Article  CAS  Google Scholar 

  92. Becker K, Kersten H, Hopwood J, Lopez J (2010) Microplasmas: scientific challenges & technological opportunities. Eur Phys J D 60:437–439

    Article  CAS  Google Scholar 

  93. Becker KH (2018) 25 years of microplasma science and applications: a status report. Plasma Phys Technol 5:5–9

    Article  Google Scholar 

  94. Memar MY, Ghotaslou R, Samiei M, Adibkia K (2018) Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist 11:567–576

    Article  CAS  Google Scholar 

  95. Ziuzina D, Patil S, Cullen PJ, Keener K, Bourke P (2012) Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol 114

    Google Scholar 

  96. Gutsol A, Vaze N, Arjunan K, Gallagher M, Yang Y, Zhu J, Vasilets V, Fridman A (2008) Plasma for air and water sterilization. In: Plasma assisted decontamination of biological and chemical agents. Springer, pp 21–39

    Chapter  Google Scholar 

  97. Shaw P, Kumar N, Kwak HS, Park JH, Uhm HS, Bogaerts A, Choi EH, Attri P (2018) Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep 8:11268

    Article  Google Scholar 

  98. Bourke P, Ziuzina D, Han L, Cullen P, Gilmore B (2017) Microbiological interactions with cold plasma. J Appl Microbiol 123:308–324

    Article  CAS  Google Scholar 

  99. López M, Calvo T, Prieto M, Múgica-Vidal R, Muro-Fraguas I, Alba-Elías F, Alvarez-Ordóñez A (2019) A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications. Front Microbiol:622

    Google Scholar 

  100. Klockow PA, Keener KM (2009) Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. LWT-Food Sci Technol 42:1047–1053

    Article  CAS  Google Scholar 

  101. Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, Von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7:250–257

    Article  CAS  Google Scholar 

  102. Schwabedissen A, Łaciński P, Chen X, Engemann J (2007) PlasmaLabel–a new method to disinfect goods inside a closed package using dielectric barrier discharges. Contrib Plasma Physics 47:551–558

    Article  CAS  Google Scholar 

  103. Girard F, Badets V, Blanc S, Gazeli K, Marlin L, Authier L, Svarnas P, Sojic N, Clément F, Arbault S (2016) Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. RSC Adv 6:78457–78467

    Article  CAS  Google Scholar 

  104. Shaw P, Kumar N, Kwak HS, Park JH, Uhm HS, Bogaerts A, Choi EH, Attri P (2018) Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep 8:1–10

    Article  Google Scholar 

  105. Tharmalingam S, Alhasawi A, Appanna VP, Lemire J, Appanna VD (2017) Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications. Biol Chem 398:1193–1208

    Article  CAS  Google Scholar 

  106. Ziuzina D (2015) Atmospheric cold plasma as a tool for microbiological control. Doctoral theses

    Google Scholar 

  107. Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, Von Dem Hagen T, Weltmann K (2010) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:013002

    Article  Google Scholar 

  108. Misra N, Tiwari B, Raghavarao K, Cullen P (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3:159–170

    Article  Google Scholar 

  109. Han L, Sonal P, Daniela B, Milosavljević V, Cullen PJ, Bourke P (2016) Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl Environ Microbiol 82:450–458

    Article  CAS  Google Scholar 

  110. Patange A (2019) Atmospheric cold plasma interactions with microbiological risks in fresh food processing. Doctoral theses

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Folami, A.M., Iwarere, S.A., Swalaha, F.M. (2021). Plasma Technology: A Novel Approach for Deactivating Pathogens in Natural Eco-Systems. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 117. Springer, Cham. https://doi.org/10.1007/698_2021_791

Download citation

Publish with us

Policies and ethics