Skip to main content

The Role of Floods on Pathogen Dispersion

  • Chapter
  • First Online:
Nature-Based Solutions for Flood Mitigation

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 107))

Abstract

Floods precipitate many infectious disease epidemics in humans and animals. These incidences are more prevalent in developing countries where about 80% of illnesses and deaths in humans are water related. This chapter identifies three categories of flood-borne infections based on how floods influence their occurrence patterns. The first category includes acute infections such as cholera and leptospirosis, caused by bacteria that are carried mechanically by water and are often ingested with water or food. These infections thrive in areas with high human population densities with poor sanitation. In these settings, floods enhance transmission of infectious agents between hosts. The second category is vector-borne infections such as malaria, Rift Valley fever, and schistosomiasis. They are transmitted by vectors that breed in inundated areas. Their epidemics often follow flood events by weeks or months depending on the duration of their development cycles. The last category is skin and eye infections that occur following direct contact with contaminated water. All these diseases can be controlled more effectively if the standard surveillance and control measures are integrated with nature-based solutions (NBS) for flood management. Examples the NBS that can be used include re-forestation, tree planting especially along streams, and development of green infrastructure in cities to enhance water retention, infiltration, and replenishment of groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. OECD (2016) Financial management of flood risk. Financial management of flood risk. OECD Publishing, Paris. https://doi.org/10.1787/9789264257689-en

    Book  Google Scholar 

  2. O’Connor J, Costa J (2004) The world’s largest floods, past and present – their causes and magnitudes. US Geological Survey

    Google Scholar 

  3. Suprayogo D, van Noordwijk M, Hairiah K, Meilasari N, Rabbani AL, Ishaq RM et al (2020) Infiltration-friendly agroforestry land uses on. Land 9

    Google Scholar 

  4. Myhre G, Alterskjær K, Stjern CW, Hodnebrog, Marelle L, Samset BH et al (2019) Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-52277-4

    Article  CAS  Google Scholar 

  5. Toepfer K (2004) Water and sustainable development. In: Schiffries C, Brewster A (eds). National Council for Science and the Environment, Washington

    Google Scholar 

  6. WHO (2015) Floods and health – fact sheets for health professionals. 12. https://www.euro.who.int/__data/assets/pdf_file/0016/252601/Floods-and-health-Fact-sheets-for-health-professionals.pdf

  7. Du W, FitzGerald GJ, Clark M, Hou X-Y (2010) Health impacts of floods. Prehosp Disaster Med 25:265–272. https://doi.org/10.1017/S1049023X00008141

    Article  Google Scholar 

  8. Powell J, Pennington J, Jonnes F (2006) Flood-related diseases in poultry and livestock. https://www.jumpjet.info/Emergency-Preparedness/Disaster-Mitigation/Water/Flood-Related_Diseases_in_Poultry_and_Livestock.pdf. Accessed 30 Dec 2020

  9. World Health Organization(WHO) (2021) Water-related diseases: information sheets. https://www.who.int/water_sanitation_health/diseases-risks/diseases/diseasefact/en/. Accessed25 Dec 2020

  10. Atwill E, Xunde L, Grace D, Gannon V, Ángel JC (2002) Zoonotic waterborne pathogen loads in livestock. In: Dufour A, Bartram J (eds.) Animal waste, water quality and human health. World Health Organisation, Geneva, Unites States Environmental Protection Agency, and IWA Publishing

    Google Scholar 

  11. Smith P, Davis SJ, Creutzig F, Fuss S, Minx J, Gabrielle B et al (2016) Biophysical and economic limits to negative CO2 emissions. Nat Clim Chang 6:42–50. https://doi.org/10.1038/nclimate2870

    Article  CAS  Google Scholar 

  12. Agency EP (2019) Sources of greenhouse gas emissions. In: Climate change. pp 1–2. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions%0A; http://www.epa.gov/climatechange/ghgemissions/sources/transportation.html

  13. Vergé XPC, De Kimpe C, Desjardins RL (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric For Meteorol 142:255–269. https://doi.org/10.1016/j.agrformet.2006.06.011

    Article  Google Scholar 

  14. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 5:1–6. https://doi.org/10.1038/nclimate2100

    Article  Google Scholar 

  15. Rein B (2007) How do the 1982/83 and 1997/98 El Niños rank in a geological record from Peru? Quat Int 161:56–66. https://doi.org/10.1016/j.quaint.2006.10.023

    Article  Google Scholar 

  16. Booth M (2018) Climate change and the neglected tropical diseases. In: Advances in parasitology1st edn. Elsevier. https://doi.org/10.1016/bs.apar.2018.02.001

  17. Bett B, Kiunga P, Gachohi J, Sindato C, Mbotha D, Robinson T et al (2016) Effects of climate change on the occurrence and distribution of livestock diseases. Prev Vet Med. https://doi.org/10.1016/j.prevetmed.2016.11.019

  18. Yi L, Xu X, Ge W, Xue H, Li J, Li D et al (2019) The impact of climate variability on infectious disease transmission in China: current knowledge and further directions. Environ Res 173:255–261. https://doi.org/10.1016/j.envres.2019.03.043

    Article  CAS  Google Scholar 

  19. Yang C, Yu Z, Hao Z, Lin Z, Wang H (2013) Effects of vegetation cover on hydrological processes in a large region: Huaihe River Basin, China. J Hydrol Eng 18:1477–1483. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000440

    Article  Google Scholar 

  20. Bartens J, Day SD, Harris JR, Dove JE, Wynn TM (2008) Can urban tree roots improve infiltration through compacted subsoils for Stormwater management? J Environ Qual 37:2048–2057. https://doi.org/10.2134/jeq2008.0117

    Article  CAS  Google Scholar 

  21. Qiu J (2019) Effects of landscape pattern on pollination, Pest control, water quality, flood regulation, and cultural ecosystem services: a literature review and future research prospects. Curr Landsc Ecol Rep 4:113–124. https://doi.org/10.1007/s40823-019-00045-5

    Article  Google Scholar 

  22. Macdonald AJ, Mordecai EA ((2019)) Erratum: Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proceedings of the National Academy of Sciences of the United States of America 116, 22212–22218. https://doi.org/10.1073/pnas.1905315116. Proc Natl Acad Sci U S A. 2020;117: 20335. https://doi.org/10.1073/PNAS.2014828117

  23. Rulli MC, Santini M, Hayman DTS, D’Odorico P (2017) The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Sci Rep 7:41613. https://doi.org/10.1038/srep41613

    Article  CAS  Google Scholar 

  24. Bloom D, Khanna T (2008) The urban revolution. https://perencanamuda.wordpress.com/. Accessed 5 Dec 2020

  25. Fritsch M (1997) Health issues related to drainage water management. In: Management of agricultural drainage water quality, Water reports 13. http://www.fao.org/3/w7224e/w7224e0b.htm. Accessed 11 Nov 2020

  26. Konrad C (2016) Effects of urban development on floods. https://pubs.usgs.gov/fs/fs07603/. Accessed 5 Nov 2020

  27. Zambrano L, Pacheco-Muñoz R, Fernández T (2018) Influence of solid waste and topography on urban floods: the case of Mexico City. Ambio 47:771–780. https://doi.org/10.1007/s13280-018-1023-1

    Article  Google Scholar 

  28. Azman AS, Luquero FJ, Salje H, Mbaïbardoum NN, Adalbert N, Ali M, et al (2018) Micro-hotspots of risk in urban cholera epidemics. J Infect Dis 218: 1164–1168. https://doi.org/10.1093/infdis/jiy283. Environmental conditions that favor the survival of the pathogen are pH, ranging between 6.2–8.0, and temperature between 28–38°C

  29. Nadimpalli ML, Marks SJ, Montealegre MC, Gilman RH, Pajuelo MJ, Saito M et al (2020) Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol 5:787–795. https://doi.org/10.1038/s41564-020-0722-0

    Article  CAS  Google Scholar 

  30. Berendes DM, Leon JS, Kirby AE, Clennon JA, Raj SJ, Yakubu H et al (2019) Associations between open drain flooding and pediatric enteric infections in the MAL-ED cohort in a low-income, urban neighborhood in Vellore, India. BMC Public Health 19:1–11. https://doi.org/10.1186/s12889-019-7268-1

    Article  Google Scholar 

  31. ten Veldhuis JAE, Clemens FHLR, Sterk G, Berends BR (2010) Microbial risks associated with exposure to pathogens in contaminated urban flood water. Water Res 44:2910–2918. https://doi.org/10.1016/j.watres.2010.02.009

    Article  CAS  Google Scholar 

  32. CDC (2011) Guidance on microbial contamination in previously flooded outdoor areas. Atlanta. https://www.cdc.gov/nceh/ehs/docs/guidance_contamination_of_flooded_areas.pdf

  33. Yomwan P, Cao C, Rakwatin P, Suphamitmongkol W, Tian R, Saokarn A (2015) A study of waterborne diseases during flooding using Radarsat-2 imagery and a back propagation neural network algorithm. Geomat Nat Hazards Risk 6:289–307. https://doi.org/10.1080/19475705.2013.853325

    Article  Google Scholar 

  34. Tong S (2017) Flooding-related displacement and mental health. Lancet Planet Health 1:e124–e125. https://doi.org/10.1016/S2542-5196(17)30062-1

    Article  Google Scholar 

  35. Tempark T, Lueangarun S, Chatproedprai S, Wananukul S (2013) Flood-related skin diseases: a literature review. Int J Dermatol 52:1168–1176. https://doi.org/10.1111/ijd.12064

    Article  Google Scholar 

  36. Huang LY, Wang YC, Wu CC, Chen YC, Huang YL (2016) Risk of flood-related diseases of eyes, skin and gastrointestinal tract in Taiwan: a retrospective cohort study. PLoS One 11:1–11. https://doi.org/10.1371/journal.pone.0155166

    Article  CAS  Google Scholar 

  37. Okaka FO, Odhiambo BDO (2018) Relationship between flooding and out break of infectious diseases in Kenya: a review of the literature. J Environ Public Health 2018. https://doi.org/10.1155/2018/5452938

  38. CDC (1993) Public health consequences of a flood disaster, Iowa. MMWR Morb Mortal Wkly Rep. 1993;42: 653–656. https://www.cdc.gov/mmwr/preview/mmwrhtml/00021451.htm

  39. Faruque SM, Nair GB (2002) Molecular ecology of toxigenic Vibrio cholerae. Microbiol Immunol 46:59–66. https://doi.org/10.1111/j.1348-0421.2002.tb02659.x

    Article  CAS  Google Scholar 

  40. LaRocque R, Harris J (2020) Cholera: clinical features, diagnosis, treatment, and prevention. https://www.uptodate.com/contents/cholera-clinical-features-diagnosis-treatment-and-prevention/print. Accessed 3 Dec 2020

  41. Colombara DV, Cowgill KD, Faruque ASG (2013) Risk factors for severe cholera among children under five in rural and urban Bangladesh, 2000-2008: a hospital-based surveillance study. PLoS One 8:2000–2008. https://doi.org/10.1371/journal.pone.0054395

    Article  CAS  Google Scholar 

  42. World Health Organization(WHO) (2021) Number of reported cholera cases. https://www.who.int/gho/epidemic_diseases/cholera/cases_text/en/

  43. Harris J, LaRocque R, Qadri F, Ryan E, Calderwood S (2012) NIH public access - cholera. Lancet 379:2466–2476. https://doi.org/10.1016/S0140-6736(12)60436-X.Cholera

    Article  Google Scholar 

  44. Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296–326. https://doi.org/10.1128/CMR.14.2.296-326.2001

    Article  CAS  Google Scholar 

  45. Guernier V, Goarant C, Benschop J, Lau CL (2018) A systematic review of human and animal leptospirosis in the Pacific Islands reveals pathogen and reservoir diversity. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0006503

  46. Casanovas-Massana A, Pedra G, Wunder E, Diggle P, Begon M, Ko A (2018) Quantification of Leptospira interrogans survival in soil and water microcosms. Appl Environ Microbiol 84:1–11

    Article  Google Scholar 

  47. Vijayachari P, Sugunan AP, Shriram AN (2008) Leptospirosis: an emerging global public health problem. J Biosci 33:557–569. https://doi.org/10.1007/s12038-008-0074-z

    Article  CAS  Google Scholar 

  48. Lau C, Smythe L, Weinstein P (2010) Leptospirosis: an emerging disease in travellers. Travel Med Infect Dis 8:33–39. https://doi.org/10.1016/j.tmaid.2009.12.002

    Article  Google Scholar 

  49. Bierque E, Thibeaux R, Girault D, Soupé-Gilbert ME, Goarant C (2020) A systematic review of Leptospira in water and soil environments. PLoS One 15:1–22. https://doi.org/10.1371/journal.pone.0227055

    Article  CAS  Google Scholar 

  50. Vanasco NB, Schmeling MF, Lottersberger J, Costa F, Ko AI, Tarabla HD (2008) Clinical characteristics and risk factors of human leptospirosis in Argentina (1999–2005). Acta Trop 107:255–258. https://doi.org/10.1016/j.actatropica.2008.06.007

    Article  CAS  Google Scholar 

  51. Batterman S, EIsenberg J, Hardin R, Kruk ME, Lemos MC, Michalak AM et al (2009) Sustainable control of water-related infectious diseases: a review and proposal for interdisciplinary health-based systems research. Environ Health Perspect 117:1023–1032. https://doi.org/10.1289/ehp.0800423

    Article  Google Scholar 

  52. Zala DB, Khan V, Sanghai AA, Dalai SK, Das VK (2018) Leptospira in the different ecological niches of the tribal union territory of India. J Infect Dev Ctries 12:849–854. https://doi.org/10.3855/jidc.10541

    Article  CAS  Google Scholar 

  53. Wynwood SJ, Graham GC, Weier SL, Collet TA, McKay DB, Craig SB (2014) Leptospirosis from water sources. Pathog Glob Health 108:334–338. https://doi.org/10.1179/2047773214Y.0000000156

    Article  Google Scholar 

  54. Torgerson PR, Hagan JE, Costa F, Calcagno J, Kane M, Martinez-Silveira MS et al (2015) Global burden of leptospirosis: estimated in terms of disability adjusted life years. PLoS Negl Trop Dis 9:e0004122. https://doi.org/10.1371/journal.pntd.0004122

    Article  Google Scholar 

  55. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS et al (2015) Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis:1–19. https://doi.org/10.1371/journal.pntd.0003898

  56. Allan KJ, Biggs HM, Halliday JEB, Kazwala RR, Maro VP, Cleaveland S et al (2015) Epidemiology of Leptospirosis in Africa: A Systematic Review of a Neglected Zoonosis and a Paradigm for ‘One Health’ in Africa. Zinsstag J, editor. PLoS Negl Trop Dis 9:e0003899. https://doi.org/10.1371/journal.pntd.0003899

    Article  Google Scholar 

  57. Ermert V, Fink AH, Jones AE, Morse AP (2011) Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J 10:35. https://doi.org/10.1186/1475-2875-10-35

    Article  Google Scholar 

  58. Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet 368:1106–1118. https://doi.org/10.1016/S0140-6736(06)69440-3

    Article  Google Scholar 

  59. Mas-Coma S, Valero MA, Bargues MD (2009) Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol 163:264–280. https://doi.org/10.1016/j.vetpar.2009.03.024

    Article  Google Scholar 

  60. Yang Y, Zheng SB, Yang Y, Cheng WT, Pan X, Dai QQ et al (2018) The three gorges dam: does the flooding time determine the distribution of schistosome-transmitting snails in the middle and lower reaches of the Yangtze river, China? Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15071304

  61. Tompkins AM, Ermert V (2013) A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar J 12:1–24. https://doi.org/10.1186/1475-2875-12-65

    Article  Google Scholar 

  62. World Health Organization (WHO) (2021) The “World malaria report 2019” at a glance. https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019. Accessed 5 Oct 2020

  63. Garcia LS (2010) Malaria. Clin Lab Med 30:93–129. https://doi.org/10.1016/j.cll.2009.10.001

    Article  Google Scholar 

  64. Williams J, Pinto J (2012) Training manual on malaria entomology for entomology and vector control technicians (basic level). https://www.paho.org/hq/dmdocuments/2012/2012-Training-manual-malaria-entomology.pdf

    Google Scholar 

  65. Gopalakrishnan R, Das M, Baruah I, Veer V, Dutta P (2013) Physicochemical characteristics of habitats in relation to the density of container-breeding mosquitoes in Asom, India. J Vector Borne Dis 50:215–219. http://www.ncbi.nlm.nih.gov/pubmed/24220081

    Google Scholar 

  66. Elsanousi YEA, Elmahi AS, Pereira I, Debacker M (2018) Impact of the 2013 Floods on the incidence of Malaria in Almanagil Locality, Gezira State, Sudan. PLoS Curr:10. https://doi.org/10.1371/currents.dis.8267b8917b47bc12ff3a712fe4589fe1

  67. Boyce R, Reyes R, Matte M, Ntaro M, Mulogo E, Metlay JP et al (2016) Severe flooding and malaria transmission in the Western Ugandan highlands: implications for disease control in an era of global climate change. J Infect Dis 214:1403–1410. https://doi.org/10.1093/infdis/jiw363

    Article  Google Scholar 

  68. Clements AC, Pfeiffer DU, Martin V, Otte MJ (2007) A Rift Valley fever atlas for Africa. Prev Vet Med 82:72–82. https://doi.org/10.1016/j.prevetmed.2007.05.006

    Article  Google Scholar 

  69. Jupp PG, Kemp A, Grobbelaar A, Leman P, Burt FJ, Alahmed AM et al (2002) The 2000 epidemic of Rift Valley fever in Saudi Arabia: mosquito vector studies. Med Vet Entomol 16:245–252. https://doi.org/10.1046/j.1365-2915.2002.00371.x

    Article  CAS  Google Scholar 

  70. Ikegami T, Makino S (2011) The pathogenesis of rift valley fever. Viruses 3:493–519. https://doi.org/10.3390/v3050493

    Article  CAS  Google Scholar 

  71. Nguku PM, Sharif SK, Mutonga D, Amwayi S, Omolo J, Mohammed O et al (2010) An investigation of a major outbreak of Rift Valley fever in Kenya: 2006–2007. Am J Trop Med Hyg 83:5–13. https://doi.org/10.4269/ajtmh.2010.09-0288

    Article  Google Scholar 

  72. Soumare B, Tempia S, Cagnolati V, Mohamoud A, Van Huylenbroeck G, Berkvens D (2007) Screening for Rift Valley fever infection in northern Somalia: a GIS based survey method to overcome the lack of sampling frame. Vet Microbiol 121:249–256. https://doi.org/10.1016/j.vetmic.2006.12.017

    Article  Google Scholar 

  73. Kimani T, Schelling E, Bett B, Ngigi M, Randolph T (2016) Public health benefits from livestock Rift Valley fever control: a simulation of two epidemics in Kenya. Ecohealth. https://doi.org/10.1007/s10393-016-1178-9

  74. Linthicum KJ, Davies FG, Kairo A, Bailey CL (1985) Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus). Isolations from Diptera collected during an inter-epizootic period in Kenya. J Hyg (Lond) 95:197–209. http://www.ncbi.nlm.nih.gov/pubmed/2862206

    Article  CAS  Google Scholar 

  75. Anon (2005) The risk of a Rift Valley fever incursion and its persistence within the community. EFSA J 238:1–128

    Google Scholar 

  76. Mbotha D, Bett B, Kairu-Wanyoike S, Grace D, Kihara A, Wainaina M et al (2017) Inter-epidemic Rift Valley fever virus seroconversions in an irrigation scheme in Bura, South-East Kenya. Transbound Emerg Dis. https://doi.org/10.1111/tbed.12674

  77. Thonnon J, Picquet M, Thiongane Y, Lo M, Sylla R, Vercruysse J (1999) Rift valley fever surveillance in the lower Senegal river basin: update 10 years after the epidemic. Trop Med Int Health 4:580–585. http://www.ncbi.nlm.nih.gov/pubmed/10499082

    Article  CAS  Google Scholar 

  78. ECDG (2015) Towards an EU research and innovation policy agenda for nature-based solutions and re-Naturing cities. Luxemborg

    Google Scholar 

  79. Pamungkas A, Purwitaningsih S (2019) Green and grey infrastructures approaches in flood reduction. Int J Disaster Resil Built Environ 10:343–362. https://doi.org/10.1108/IJDRBE-03-2019-0010

    Article  Google Scholar 

  80. World Health Organization (WHO) (1982) Manual on environmental management for mosquito control. Geneva. https://apps.who.int/iris/bitstream/handle/10665/37329/9241700661_eng.pdf;sequence=1

  81. Goarant C (2016) Leptospirosis: risk factors and management challenges in developing countries. Res Rep Trop Med 7:49–62. https://doi.org/10.2147/RRTM.S102543

    Article  Google Scholar 

  82. Kay D (2012) Effectiveness of best management practices for attenuating the transport of livestock derived pathogens within catchments. In: Dufour A, Bartram J (eds) Animal waste water quality and human health. IWA Publishing, London, pp 195–255

    Google Scholar 

  83. Merkuryeva G, Merkuryev Y, Sokolov BV, Potryasaev S, Zelentsov VA, Lektauers A (2015) Advanced river flood monitoring, modelling and forecasting. J Comput Sci 10:77–85. https://doi.org/10.1016/j.jocs.2014.10.004

    Article  Google Scholar 

  84. Phwitiko R (2018) Drones for cholera response: innovating for children in Malawi. https://medium.com/@unicef_malawi/drones-for-cholera-response-innovating-for-children-in-malawi-6dcab2c4de53#:~:text=UNICEF has introduced drones as,to be affected by cholera. Accessed 8 Feb 2021

    Google Scholar 

  85. Pasetto D, Finger F, Rinaldo A, Bertuzzo E (2017) Real-time projections of cholera outbreaks through data assimilation and rainfall forecasting. Adv Water Resour 108:345–356. https://doi.org/10.1016/j.advwatres.2016.10.004

    Article  Google Scholar 

  86. Anyamba A, Linthicum KJ, Tucker CJ (2001) Climate-disease connections: Rift Valley fever in Kenya. Cad Saude Publica 17:S133–S140. https://doi.org/10.1590/S0102-311X2001000700022

    Article  Google Scholar 

  87. WHO (2008) Communicable disease risk assessment and interventions: cyclone Nagri, Myanma. World Health Organization, Geneva

    Google Scholar 

  88. WHO (2018) Cholera control interim guidance. pp 1–12. https://www.who.int/immunization/monitoring_surveillance/burden/vpd/WHO_SurveillanceVaccinePreventable_02_Cholera_R2.pdf?ua=1

  89. World Health Organization (2018) Managing epidemics. https://www.who.int/emergencies/diseases/managing-epidemics/en/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Bett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bett, B., Tumusiime, D., Lindahl, J., Roesel, K., Delia, G. (2021). The Role of Floods on Pathogen Dispersion. In: Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P. (eds) Nature-Based Solutions for Flood Mitigation. The Handbook of Environmental Chemistry, vol 107. Springer, Cham. https://doi.org/10.1007/698_2021_761

Download citation

Publish with us

Policies and ethics