Skip to main content

Nature-Based Solutions Impact on Urban Environment Chemistry: Air, Soil, and Water

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 107))

Abstract

Urban areas are the largest source of pollutants that directly or indirectly will end up in the air, soil, and water. It is paramount to find solutions to reduce the impact of pollution on climate change, ecosystem services, biodiversity loss, and human health. Nature-based solutions (NBS) can mitigate the effects of anthropogenic activities significantly and act as a buffer to immobilize filtrate and uptake pollutants. There is a wide range of advantages of implementing NBS to reduce air, water, and soil pollution since they increase ecosystem services supply. This is key to make cities more liveable and sustainable, especially in areas where there are the largest agglomerations of people. This chapter will review the impacts of the air, soil, and water pollution on ecosystems, biodiversity, human health, and the NBS that can be used to minimize this.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.worldbank.org/en/topic/urbandevelopment/overview (Accessed 30-08-2020).

  2. 2.

    https://www.iucn.org/theme/ecosystem-management/our-work/iucn-global-standard-nature-based-solutions (Accessed 30-08-2020).

  3. 3.

    https://www.unenvironment.org/beatpollution/global-response-pollution (Accessed 30-08-2020).

  4. 4.

    https://climate.nasa.gov/news/2291/fourteen-years-of-carbon-monoxide-from-mopitt/ (Consulted in 15/10/2020).

  5. 5.

    https://www.epa.gov/air-trends/carbon-monoxide-trends (Consulted in 15/10/2020).

  6. 6.

    https://cait.wri.org/ (Consulted in 15/10/2020).

  7. 7.

    https://www.epa.gov/ghgemissions/overview-greenhouse-gases (Consulted in 15/10/2020).

  8. 8.

    https://www.eea.europa.eu/help/glossary/eper-chemicals-glossary/sulphur-oxides-sox (Consulted on 17/10/2020).

  9. 9.

    https://www.who.int/news/item/15-11-2019-what-are-health-consequences-of-air-pollution-on-populations (Consulted in 17/10/2020).

  10. 10.

    https://en.unesco.org/waterquality-iiwq/wq-challenge (Consulted in 25/10/2020).

  11. 11.

    https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/imperviousness-density-2018.

  12. 12.

    https://www.registrucentras.lt/.

  13. 13.

    https://www.un.org/waterforlifedecade/waterforlifevoices/groundwater.shtml (Assessed in 21-11-2020).

  14. 14.

    https://frtr.gov/matrix2/section4/4-35.html (Consulted in 10-12-2020).

  15. 15.

    http://www.cpeo.org/techtree/ttdescript/compost.htm (Accessed in 10-12-2020).

References

  1. Lewis AC (2018) The changing face of urban air pollution. Science 359:744–745

    CAS  Google Scholar 

  2. Pereira P, Barcelo D, Panagos P (2020) Soil and water threats in a changing environment. Environ Res 186:109501

    CAS  Google Scholar 

  3. EEA (2016) Urban sprawl in Europe. Joint EEA-FOEN report. Luxembourg Publications Office of the European Union

    Google Scholar 

  4. Wei YD, Ewing R (2018) Urban expansion, sprawl and inequality. Landsc Urban Plann 177:259–265

    Google Scholar 

  5. Hatab AA, Cavinato MER, Lindemer A, Lagerkvist CJ (2019) Urban sprawl, food security and agricultural systems in developing countries: a systematic review of the literature. Cities 94:129–142

    Google Scholar 

  6. Li G, Li F (2019) Urban sprawl in China: differences and socioeconomic drivers. Sci Total Environ 673:367–377

    CAS  Google Scholar 

  7. Cadenas-Rodriguez M, Dupont-Courtade L, Oueslati W (2016) Air pollution and urban structure linkages: evidence from European cities. Renew Sust Energ Rev 53:1–9

    Google Scholar 

  8. Sarkodie S, Owusu PA, Leirvik T (2020) Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environ Res Lett 15:034049

    Google Scholar 

  9. Yuan Y, Chen D, Wu S, Mo L, Tong G, Yan D (2019) Urban sprawl decreases the value of ecosystem services and intensifies the supply scarcity of ecosystem services in China. Sci Total Environ 697:134170

    Google Scholar 

  10. Hankey S, Marshall JD (2017) Urban form, air pollution, and health. Curr Environ Health Rep 4:491–503

    CAS  Google Scholar 

  11. Viana M, de Leeuw F, Bartonova A, Castell N, Ozturk E, Gonzalez Ortiz A (2020) Air quality mitigation in European cities: status and challenges ahead. Eviron Int 143:105907

    CAS  Google Scholar 

  12. Liu G, Xiao M, Zhang X, Gal C, Chen X, Liu L, Pan S, Wu J, Tang L Clements-Croome D (2017) A review of air filtration technologies for sustainable and healthy building ventilation. Sustain Cities Soc 32:375–396

    Google Scholar 

  13. Sadr SMK, Saroj DP, Mierzwa JC, McGrane SJ, Skouteris G, Farmani R, Kazos X, Aumeier B, Kouchaki B, Ouki SK (2018) A multi expert decision support tool for the evaluation of advanced wastewater treatment trains: a novel approach to improve urban sustainability. Environ Sci Pol 90:1–10

    Google Scholar 

  14. Tan PY, Wang J, Sia A (2013) Perspectives on five decades of the urban greening of Singapore. Cities 32:24–32

    Google Scholar 

  15. Brilhante O, Klaas J (2018) Green city concept and a method to measure green city performance over time applied to fifty cities globally: influence of GDP, population size and energy efficiency. Sustainability 10:2031

    Google Scholar 

  16. Haase D (2015) Reflections about blue ecosystem services in cities. Sustain Water Q Ecol 5:77–83

    Google Scholar 

  17. Andreucci MB, Russo A, Olszewska-Guizzo A (2019) Designing urban green blue infrastructure for mental health and elderly wellbeing. Sustainability 11:6425

    Google Scholar 

  18. He BJ, Zhu J, Zhao DX, Gou ZH, Qi JD, Wang J (2019) Co-benefits approach: opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 86:147–157

    Google Scholar 

  19. Zuniga-Teran AA, Gerlak AK, Mayer B, Evans TP, Lansey KE (2020) Urban resilience and green infrastructure systems: towards a multidimensional evaluation. Curr Opin Environ Sustain 44:42–47

    Google Scholar 

  20. Alves A, Vojinovic Z, Kapelan Z, Sanchez A, Gersonius B (2020) Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci Total Environ 703:134980

    CAS  Google Scholar 

  21. Mulligan J, Buckachi V, Clause JC, Jewell R, Kirimi F, Odbert C (2020) Hybrid infrastructures, hybrid governance: new evidence from Nairobi (Kenya) on green-blue-grey infrastructure in informal settlements. Anthropocene 29:100227

    Google Scholar 

  22. Gopalakrishnan V, Ziv G, Hirabayashi S, Bakshi BR (2019) Nature-based solutions can compete with technology for mitigating air emissions across the United States. Environ Sci Technol 53:13228–13237

    CAS  Google Scholar 

  23. Xing Y, Jones P, Donnison I (2017) Characterisation of nature-based solutions for the built environment. Sustainability 9:149. https://doi.org/10.3390/su9010149

    Article  Google Scholar 

  24. Liquete C, Udias A, Conte G, Grizzetti B, Masi F (2016) Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits. Ecosyst Serv 22:392–401

    Google Scholar 

  25. Okta Pribadi D, Pauleit S (2016) Peri-urban agriculture in Jabodetabek metropolitan area and its relationship with the urban socioeconomic system. Land Use Policy 55:265–274

    Google Scholar 

  26. Francos M, Ubeda X, Pereira P (2020) Impact of bonfires on soil properties in an urban park in Vilnius (Lithuania). Environ Res 181:108895

    CAS  Google Scholar 

  27. Tresch S, Frey D, Le Bayon RC, Zanetta A, Rasche F, Fliessbach A, Moretti M (2019) Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Sci Total Environ 658:1614–1629

    CAS  Google Scholar 

  28. Pereira P (2020) Ecosystem services in a changing environment. Sci Total Environ 702:135008

    CAS  Google Scholar 

  29. WHO (2016) Ambient air pollution: a global assessment of a burden disease. WHO, Geneve, p 131

    Google Scholar 

  30. IQAIR (2020) 2019 world air quality report. Region & City PM2.5 ranking. https://www.iqair.com/

  31. Byrne B, Strong K, Colebatch O, You Y, Wunch D, Ars S, Jones DBA, Fogal P, Mittermeier RL, Worthy D, Griffith T (2020) Monitoring urban greenhouse gases using open-path Fourier transform spectroscopy. Atmos Ocean 58:25–45

    Google Scholar 

  32. Mitchell LE, Lin JC, Bowling DR, Pataki DE, Strong C, Schauer AJ, Bares R, Bush SE, Stephans BB, Mendoza D, Malilla D, Holland L, Gurney KR, Ehleringer JR (2018) Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth. Proc Natl Acad Sci U S A 20:2912–2917

    Google Scholar 

  33. Gratani L, Varone L (2005) Daily and seasonal variation of CO2 in the city of Rome in relationship with the traffic volume. Atmos Environ 39:2619–2624

    CAS  Google Scholar 

  34. Zanni AM, Al B (2010) Emissions of CO2 from road freight transport in London: trends and policies for long run reductions. Energy Policy 38:1774–1786

    Google Scholar 

  35. WMO (2018) Greenhouse gas bulletin. The state of greenhouse gases in the atmosphere based on global observations through 2017 14, 8 p

    Google Scholar 

  36. Gonzalez RM, Marrero GA, Rodrigiez-Lopez J, Marrero AS (2019) Analyzing CO2 emissions from passenger cars in Europe: a dynamic panel data approach. Energy Policy 129:1271–1281

    CAS  Google Scholar 

  37. EEA (2019) Annual European Union greenhouse gas inventory 1990–2017 and inventory report 2019. European Commission DG Climate Action BU 5 2/158 B-1049 Brussels

    Google Scholar 

  38. Gregorczyk-Maga I, Maga M, Wachsmann A, Janik MK, Chrzastek-Janik O, Bajkowski M, Partyka P, Koziej M (2019) Air pollution may affect the assessment of smoking habits by exhaled carbon monoxide measurements. Environ Res 172:258–265

    CAS  Google Scholar 

  39. Borsdorf T, De Brugh JA, Hu H, Aben I, Hasekamp O, Landgraf J (2018) Measuring carbon monoxide with TROPOMI: first results and a comparison with ECMWF-IFS analysis data. Geophys Res Lett 45:2826–2832

    Google Scholar 

  40. Wang P, Elansky NF, Timofeev YM, Wang G, Golitsyn GS, Makarova MV, Rakitin VS, Shtabkin Y, Skorokhod AI, Grechko EI, Fokeeva EV, Safronov AN, Ran L, Wang T (2018) Long-term trends of carbon monoxide Total columnar amount in urban areas and background regions: ground- and satellite-based spectroscopic measurements. Adv Atmos Sci 35:785–795

    CAS  Google Scholar 

  41. Hůnová I, Bäumelt V, Modlík M (2020) Long-term trends in nitrogen oxides at different types of monitoring stations in the Czech Republic. Sci Total Environ 699:134378

    Google Scholar 

  42. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  43. Ito A, Tohjama Y, Saito T, Umezawa T, Hajaima T, Hirata R, Saito M, Terao Y (2019) Methane budget of East Asia, 1990–2015: a bottom-up evaluation. Sci Total Environ 676:40–42

    CAS  Google Scholar 

  44. Wunch D, Jones DBA, Toon GC, Deutscher NM, Hase F, Notholt J, Sussmann R, Warneke T, Kuenen J, van der Gon HD, Fisher JA, Maasakkers JD (2019) Emissions of methane in Europe inferred by total column measurements. Atmos Chem Phys 19:3963–3980

    CAS  Google Scholar 

  45. Wang YS, Zhou L, Wang MX, Zheng XH (2001) Trends of atmospheric methane in Beijing. Chemosph Global Change Sci 3:65–71

    CAS  Google Scholar 

  46. Wong CK, Pongetti TJ, Oda T, Rao P, Gurney KR, Newman S, Duren RM, Miller CE, Yung YL, Sander SP (2016) Methane budget of East Asia, 1990–2015: a bottom-up evaluation. Atmos Chem Phys 16:13121–13130

    CAS  Google Scholar 

  47. Jing X, Mira D, Cluff DL (2018) The combustion mitigation of methane as a non-CO2 greenhouse gas. Prog Energy Combust Sci 66:176–199

    Google Scholar 

  48. Yeung LY, Murray LT, Martinerie P, Witrant E, Hu H, Banerjee A, Orsi A, Chappellaz J (2019) Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature 570:224–227

    CAS  Google Scholar 

  49. van Dingenen R, Crippa M, Maenhout G, Guizzardi D, Dentener F (2018) Global trends of methane emissions and their impacts on ozone concentrations. EUR 29394 EN, Publications Office of the European Union, Luxembourg

    Google Scholar 

  50. Gao W, Tie X, Xu J, Huang R, Mao X, Zhou G, Chang L (2017) Long-term trend of O3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors. Sci Total Environ 603–604:425–433

    Google Scholar 

  51. Liu Y, Wang T (2020) Worsening urban ozone pollution in China from 2013 to 2017 – part 2: the effects of emission changes and implications for multi-pollutant control. Atmos Chem Phys 20:6323–6337

    CAS  Google Scholar 

  52. Chang LK, Choi JY, Lee S, Lee D, Jo YL, Kim CH (2020) Interpretation of decadal-scale ozone production efficiency in the Seoul metropolitan area: implication for ozone abatement. Atmos Environ 243:117846

    CAS  Google Scholar 

  53. Ahamad F, Griffths PT, Latif MT, Juneng L, Xiang CJ (2020) Ozone trends from two decades of ground level observation in Malaysia. Atmos 11:755

    CAS  Google Scholar 

  54. Chou CKK, Liu SC, Lin CY, Shiu CJ, Chang KH (2006) The trend of surface ozone in Taipei, Taiwan, and its causes: implications for ozone control strategies. Atmos Environ 21:3898–3908

    Google Scholar 

  55. Fernández-Guisuraga F, Castro A, Alves C, Calvo A, Alonso-Blanco E, Blanco-Alegre C, Rocha A, Fraile R (2016) Nitrogen oxides and ozone in Portugal: trends and ozone estimation in an urban and a rural site. Environ Sci Pollut Res 23:17171–17182

    Google Scholar 

  56. Querol X, Alastuey A, Reche C, Orio A, Pallares M, Reina F, Dieguez JJ, Mantilla E, Escudero M, Alonso L, Gangoiti G, Millan M (2016) On the origin of the highest ozone episodes in Spain. Sci Total Environ 572:379–389

    CAS  Google Scholar 

  57. Venkata VSV, Kommalapati RR, Huque Z (2018) Long-term meteorologically independent trend analysis of ozone air quality at an urban site in the greater Houston area. J Air Waste Manag Assoc 68:1051–1064

    Google Scholar 

  58. Vingarzan R, Taylor B (2003) Trend analysis of ground level ozone in the greater Vancouver/Fraser Valley area of British Columbia. Atmos Environ 37:2159–2171

    CAS  Google Scholar 

  59. Hůnová I, Bäumelt V (2018) Observation-based trends in ambient ozone in the Czech Republic over the past two decades. Atmos Environ 172:157–167

    Google Scholar 

  60. Sicard P, Serra R, Rossello P (2016) Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ Res 149:122–144

    CAS  Google Scholar 

  61. Mavroidis I, Ilia M (2012) Trends of NOx, NO2 and O3 concentrations at three different types of air quality monitoring stations in Athens, Greece. Atmos Environ 63:135–147

    CAS  Google Scholar 

  62. Munir S, Chen H, Ropkins K (2013) Quantifying temporal trends in ground level ozone concentration in the UK. Sci Total Environ 458–460:217–227

    Google Scholar 

  63. Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Malkawi M, Momeniha F, Gholampour A, Sadegh Hassanvand M, Naddafi K (2018) Long-term trends and health impact of PM2.5 and O3 in Tehran, Iran, 2006–2015. Environ Int 114:37–49

    CAS  Google Scholar 

  64. Bloomer BJ, Stehr JW, Piety CA, Salawitch RJ, Dickerson RR (2009) Observed relationships of ozone air pollution with temperature and emissions. Geophys Res Lett:36. https://doi.org/10.1029/2009GL037308

  65. Balmes JR, Eisner MD (2016) 74 – indoor and outdoor air pollution. In: Broaddus VC, Mason RJ, Ernst JD, King Jr TD, Lazarus SC, Murray JF, Nadel JA, Slutsky AS, Gotway MB (eds) Textbook of respiratory mediine, vol 2. 6th edn. Elsevier, Amsterdam, pp 1331–1342.e5

    Google Scholar 

  66. Aas W, Mortier A, Bowersox V, Cherian R, Faluvegi G, Fagerli H, Hand J, Klimont Z, Galy-Lacaux C, Lehmann CMB, Lund Myhre C, Myhre G, Olivié D, Sato K, Quaas J, Rao PSP, Schulz M, Shindell D, Skeie RB, Stein A, Takemura T, Tsyro S, Vet S, Xu X (2019) Global and regional trends of atmospheric sulfur. Sci Rep 9:953

    Google Scholar 

  67. Ray S, Kim KH (2014) The pollution status of sulfur dioxide in major urban areas of Korea between 1989 and 2010. Atmos Res 147–148:101–110

    Google Scholar 

  68. Sun S, Zhao G, Wang T, Jin J, Wang P, Lin Y, Li H, Ying Q, Mao H (2019) Past and future trends of vehicle emissions in Tianjin, China, from 2000 to 2030. Atmos Environ 209:182–191

    CAS  Google Scholar 

  69. Binyehmed FM, Abdullah AM, Zainal Z, Zawawi RM, Elhadi Elawad RE (2016) Trend and status of SO2 pollution as a corrosive agent at four different monitoring stations in the Klang Valley, Malaysia. Int J Adv Sci Tech Res 6:302–317

    Google Scholar 

  70. Jamaati H, Attarchi M, Hassani S, Farid E, Seyedmehdi SM, Pormehr PS (2018) Investigating air quality status and air pollutant trends over the metropolitan area of Tehran, Iran over the past decade between 2005 and 2014. Environ Health Toxicol 33:e2018010

    Google Scholar 

  71. Gil-Alana LA, Yaya OS, Carmona-Gonzalez N (2020) Air quality in London: evidence of persistence, seasonality and trends. Theor Appl Climatol 142:103–115

    Google Scholar 

  72. Brito J, Bernardo A, Zagalo C, Goncalves LL (2021) Quantitative analysis of air pollution and mortality in Portugal: current trends and links following proposed biological pathways. Sci Total Environ 755:142473

    CAS  Google Scholar 

  73. Munir S, Habeebullah TM, Seroji AR, Gabr SS, Mohammed AMF, Morsy EA (2013) Quantifying temporal trends of atmospheric pollutants in Makkah (1997–2012). Atmos Environ 77:647–655

    CAS  Google Scholar 

  74. Chaudhiri S, Dutta D (2014) Mann–Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environ Monit Assess 186:4719–4742

    Google Scholar 

  75. Ladim AA, Teixeira EC, Agudelo-Castaneda D, Schneider I, Silva LFO, Wiegant F, Kumar P (2018) Spatio-temporal variations of sulfur dioxide concentrations in industrial and urban area via a new statistical approach. Air Qual Atmos Health 11:801–813

    Google Scholar 

  76. EEA (2019) Air quality in Europe – 2019 report. EEA report. Publications Office of the European Union No 10/2019, Luxembourg

    Google Scholar 

  77. Wang K, Tian H, Hua S, Zhu C, Gao C, Xue Y, Hao J, Wang Y, Zhou J (2016) A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: temporal trends and spatial variation characteristics. Sci Total Environ 559:7–14

    CAS  Google Scholar 

  78. GESAMP (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment. In: Kershaw PJ (ed) IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Rep. Stud. GESAMP No. 90, 96 p

    Google Scholar 

  79. Wu WM, Yang J, Criddle CS (2017) Microplastics pollution and reduction strategies. Front Environ Sci Eng 11:6

    Google Scholar 

  80. Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126

    CAS  Google Scholar 

  81. Liu K, Wang X, Wei N, Song Z, Li D (2019) Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: implications for human health. Environ Int 132:105127

    CAS  Google Scholar 

  82. Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO, Jaafarzadeh N (2019) Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ Pollut 244:153–164

    CAS  Google Scholar 

  83. Akhbarizadeh R, Dobaradaran S, Amouei Torkmahalleh M, Saeedi R, Aibaghi R, Faraji Ghasemi F (2021) Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environ Res 192:110339

    CAS  Google Scholar 

  84. World Bank (2016) The cost of air pollution strengthening the economic case for action. World Bank, Washington

    Google Scholar 

  85. Yin H, Xu L (2018) Comparative study of PM10/PM2.5-bound PAHs in downtown Beijing, China: concentrations, sources, and health risks. J Clean Prod 177:674–683

    CAS  Google Scholar 

  86. Rosofsky A, Levy JI, Zanobetti A, Janulewicz P, Fabian MP (2018) Temporal trends in air pollution exposure inequality in Massachusetts. Environ Res 161:76–86

    CAS  Google Scholar 

  87. Aleksandropoulou V, Lazaridis M (2017) Trends in population exposure to particulate matter in urban areas of Greece during the last decade. Sci Total Environ 581–582:399–412

    Google Scholar 

  88. Union E (2018) Air pollution: our health still insufficiently protected. European Court of Auditors, Luxembourg

    Google Scholar 

  89. Liu M, Huang Y, Ma Z, Jin Z, Liu X, Wang H, liu Y, Wang J, Jantunen m BJ, Kinney PL (2017) Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environ Int 98:75–81

    CAS  Google Scholar 

  90. Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gumy S (2020) Half the world’s population are exposed to increasing air pollution. NPJ Clim Atmos Sci 3:23

    CAS  Google Scholar 

  91. Cohen AJ, Brauer M, Burnet R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389:1907–1918

    Google Scholar 

  92. Carugno M, Consonni D, Alberto Bertazzi P, Biggeri A, Baccini M (2017) Temporal trends of PM10 and its impact on mortality in Lombardy, Italy. Environ Pollut 227:280–286

    CAS  Google Scholar 

  93. Zhang C, Ding R, Xiao C, Xu Y, Cheng H, Zhu F, Lei R, Di D, Zhao Q, Cao J (2017) Association between air pollution and cardiovascular mortality in Hefei, China: a time-series analysis. Environ Pollut 229:790–797

    CAS  Google Scholar 

  94. Maji KJ, Arora M, Dikshit AK (2017) Burden of disease attributed to ambient PM2.5 and PM10 exposure in 190 cities in China. Environ Sci Pollut Res 24:11559–11572

    CAS  Google Scholar 

  95. Chooi Y, Kim H, Lee JT (2018) Temporal variability of short term effects of PM10 on mortality in Seoul, Korea. Sci Total Environ 644:122–128

    Google Scholar 

  96. Zhang Y, Peng M, Yu C, Zhang L (2017) Burden of mortality and years of life lost due to ambient PM10 pollution in Wuhan, China. Environ Pollut 230:1073–1080

    CAS  Google Scholar 

  97. Gu Y, Lin H, Liu H, Xiao J, Zeng W, Li Z, Lv X, Ma W (2017) The interaction between ambient PM10 and NO2 on mortality in Guangzhou, China. Int J Environ Res Public Health 14:1381

    Google Scholar 

  98. Maesano CN, Morel G, Matynia A, Ratsombath N, Bonnety J, Legros G, Da Costa P, Prud’homme J, Annesi-Maesano I (2020) Impacts on human mortality due to reductions in PM10 concentrations through different traffic scenarios in Paris, France. Sci Total Environ 698:134257

    CAS  Google Scholar 

  99. Greven FE, Vonk JM, Fischer P, Duijm F, Vink NM, Brunekreef B (2019) Air pollution during new Year’s fireworks and daily mortality in the Netherlands. Sci Rep 9:5735

    Google Scholar 

  100. Zoran MA, Savastru RS, Savastru DM, Tautan MN (2020) Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci Total Environ 738:139825

    CAS  Google Scholar 

  101. Chu B, Zhang S, Liu J, Ma Q, He H (2021) Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. J Environ Sci 99:346–353

    CAS  Google Scholar 

  102. Hashim BM, Al-Naseri SK, Al-Maliki A, Al-Ansari N (2021) Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci Total Environ 754:141978

    CAS  Google Scholar 

  103. Ju MJ, Oh J, Choi YH (2021) Changes in air pollution levels after COVID-19 outbreak in Korea. Sci Total Environ 750:141521

    CAS  Google Scholar 

  104. Jonson JE, Borken-Kleefeld J, Simpson D, Nyíri A, Posch M, Heyes C (2017) Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ Res Lett 12:094017

    Google Scholar 

  105. Olawoyin R, Schweitzer L, Zhang K, Okareh O, Slates K (2018) Index analysis and human health risk model application for evaluating ambient air-heavy metal contamination in Chemical Valley Sarnia. Ecotoxicol Environ Saf 148:72–81

    CAS  Google Scholar 

  106. Munawer ME (2018) Human health and environmental impacts of coal combustion and post-combustion wastes. J Sustain Min 17:87–96

    Google Scholar 

  107. Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H, Fornasier F, Tao F, Guo A, Paoletti E (2019) Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ Int 131:104966

    CAS  Google Scholar 

  108. Zhao Y, Hu J, Tan Z, Liu T, Zeng W, Li X, Huang C, Wang S, Huang Z, Ma W (2019) Ambient carbon monoxide and increased risk of daily hospital outpatient visits for respiratory diseases in Dongguan, China. Sci Total Environ 668:254–260

    CAS  Google Scholar 

  109. Barn P, Giles L, Héroux ME, Kosatsky T (2018) A review of the experimental evidence on the toxicokinetics of carbon monoxide: the potential role of pathophysiology among susceptible groups. Environ Health 17:13

    Google Scholar 

  110. Chossière GP, Malina R, Allroggen F, Eastham SD, Speth RL, Barrett SRH (2018) Country- and manufacturer-level attribution of air quality impacts due to excess NOx emissions from diesel passenger vehicles in Europe. Atmosph Environ 189:89–97

    Google Scholar 

  111. Rovira J, Domingo JL, Schuhmacher M (2020) Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Sci Total Environ 703:135538

    Google Scholar 

  112. Thilakaratne RA, Malig MJ, Basu R (2020) Examining the relationship between ambient carbon monoxide, nitrogen dioxide, and mental health-related emergency department visits in California, USA. Sci Total Environ 746:140915

    CAS  Google Scholar 

  113. Simonsen C, Thorsteinsson K, Nørmark Mortensen R, Torp-Pedersen C, Torp-Pedersen P, Andreasen JJ (2019) Carbon monoxide poisoning in Denmark with focus on mortality and factors contributing to mortality. Plos One 17. https://doi.org/10.1371/journal.pone.0210767

  114. Chossière GP, Malina R, Ashok A, Dedoussi IC, Eastham SD, Speth RL, Barrett SRH (2017) Public health impacts of excess NOx emissions from Volkswagen diesel passenger vehicles in Germany. Environ Res Lett 12:034014

    Google Scholar 

  115. Lin Y, Jiang F, Zhao J, Zhu G, He X, Ma X, Li S, Sabel CE, Wang H (2018) Impacts of O3 on premature mortality and crop yield loss across China. Atmosph Environ 194:41–47

    CAS  Google Scholar 

  116. Wu Y, Cui L, Meng Y, Cheng H, Fu H (2020) The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing. Chemosphere 241:125031

    CAS  Google Scholar 

  117. Liu Q, Harris JT, Chiu LS, Sun D, Houser PR, Yu M, Duffy DQ, Little MM, Yang C (2021) Spatiotemporal impacts of COVID-19 on air pollution in California, USA. Sci Total Environ 750:141592

    CAS  Google Scholar 

  118. Xiang J, Austin E, Gould T, Larson T, Shirai J, Liu Y, Marshall J, Seto E (2020) Impacts of the COVID-19 responses on traffic-related air pollution in a Northwestern US city. Sci Total Environ 747:141325

    CAS  Google Scholar 

  119. Gasperi J, Wright SL, Dris R, Collard F, Mandin C, Guerrouache M, Kelly FJ, Tassin B (2018) Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5

    Google Scholar 

  120. Prata JC, Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455

    CAS  Google Scholar 

  121. Gao M, Guttikunda SK, Carmichael GR, Wang Y, Liu Z, Stanier CO, Saide PE, Yu M (2015) Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Sci Total Environ 511:553–561

    CAS  Google Scholar 

  122. Zhao X, Yu X, Wang Y, Fan C (2016) Economic evaluation of health losses from air pollution in Beijing, China. Environ Sci Pollut Res 23:11716–11728

    CAS  Google Scholar 

  123. Gu Y, Wong TW, Law CK, Dong GH, Ho KF, Yang Y, Yim SHL (2018) Impacts of sectoral emissions in China and the implications: air quality, public health, crop production, and economic costs. Environ Res Lett 13:084008

    Google Scholar 

  124. Tai APK, Martin MV (2017) Impacts of ozone air pollution and temperature extremes on crop yields: spatial variability, adaptation and implications for future food security. Atmosph Environ 169:11–21

    CAS  Google Scholar 

  125. Liu X, Sun H, Feike T, Zhang X, Shao L, Chen S (2016) Assessing the impact of air pollution on grain yield of winter wheat – a case study in the North China plain. Plos One 11:e0162655

    Google Scholar 

  126. Brevik E, Slaughter L, Steffan J, Collier D, Barnhardt P, Pereira P (2020) Soil and human health: current status and future needs. Air Soil Water Res 13:1–23

    Google Scholar 

  127. Boente C, Matanzas N, Garcia-Gonzalez N, Rodriguez-Valdez E, Gallego JR (2017) Trace elements of concern affecting urban agriculture in industrialized areas: a multivariate approach. Chemosphere 183:546–556

    CAS  Google Scholar 

  128. Dala-Paula BM, Custodio FB, Knupp EAN, Palmieri HEL, Silva JBB, Gloria MBA (2018) Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environ Pollut 242:383–389

    CAS  Google Scholar 

  129. Ercilla-Montserrat M, Munoz P, Montero JI, Gabarrell X, Rieradevall J (2018) A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). J Clean Prod 195:385–395

    CAS  Google Scholar 

  130. Guan Q, Wang F, Xu C, Pan N, Lin J, Zhao R, Yang Y, Luo H (2018) Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, northwest China. Chemosphere 193:187–197

    Google Scholar 

  131. Huang Y, Chen Q, Deng M, Japenga J, Li T, Yang X, He Z (2018) Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in Southeast China. J Environ Manag 207:159–168

    CAS  Google Scholar 

  132. Nam KM, Li M, Wang Y, Wong KKH (2018) Spatio-temporal boundary effects on pollution-health costs estimation: the case of PM2.5 pollution in Hong Kong. Int J Urban Sci 23:498–518

    Google Scholar 

  133. Zhang M, Song Y, Cai X (2004) A health-based assessment of particulate air pollution in urban areas of Beijing in 2000–2004. Sci Total Environ 376:100–108

    Google Scholar 

  134. Du Y, Li T (2016) Assessment of health-based economic costs linked to fine particulate (PM2.5) pollution: a case study of haze during January 2013 in Beijing, China. Air Qual Atmos Health 9:439–445

    CAS  Google Scholar 

  135. Kan H, Chen B (2004) Particulate air pollution in urban areas of Shanghai, China: health-based economic assessment. Sci Total Environ 322:71–79

    CAS  Google Scholar 

  136. Zhang D, Aunan K, Seip HM, Larssen S, Liu S, Zhang D (2010) The assessment of health damage caused by air pollution and its implication for policy making in Taiyuan, Shanxi, China. Energy Policy 38:491–502

    Google Scholar 

  137. Lu X, Yao T, Fung JCH, Lin C (2016) Estimation of health and economic costs of air pollution over the Pearl River Delta region in China. Sci Total Environ 566–567:134–143

    Google Scholar 

  138. Renjie C, Bing Heng C, Hai Dong K (2010) A health-based economic assessment of particulate air pollution in 113 Chinese cities. China Environ Sci 30:410–415

    Google Scholar 

  139. Lee YJ, Lim YW, Yang JY, Kim CS, Shin YC, Shin DC (2011) Evaluating the PM damage cost due to urban air pollution and vehicle emissions in Seoul, Korea. J Environ Manag 92:603–609

    CAS  Google Scholar 

  140. Etchie TO, Sivanesan S, Adewuyi GO, Krishnamurthi K, Rao PS, Etchie AT, Pillarisetti A, Arora AT, Smith KR (2017) The health burden and economic costs averted by ambient PM2.5 pollution reductions in Nagpur, India. Environ Int 102:145–156

    CAS  Google Scholar 

  141. Bayat R, Ashrafi K, Shafiepour Motlagh M, Sadegh Hassanvand M, Daroudi R, Fink F, Künzli N (2019) Health impact and related cost of ambient air pollution in Tehran. Environ Res 176:108547

    CAS  Google Scholar 

  142. Vlachokostas C, Achillas C, Moussiopoulos N, Kalogeropoulos K, Sigalas G, Kalognomou EA, Banias G (2012) Health effects and social costs of particulate and photochemical urban air pollution: a case study for Thessaloniki, Greece. Air Qual Atmos Health 5:325–334

    CAS  Google Scholar 

  143. Monzon A, Guerrero MJ (2004) Valuation of social and health effects of transport-related air pollution in Madrid (Spain). Sci Total Environ 334–335:427–434

    Google Scholar 

  144. Sanchez Martinez G, Spadaro JV, Chapizanis D, Kendrovski V, Kochubovski M, Mudu P (2018) Health impacts and economic costs of air pollution in the metropolitan area of Skopje. Int J Environ Res Public Health 15:626

    Google Scholar 

  145. Curvelo Santana JC, Carvalho Miranda A, Kenji Yamamura CL, Catureba da Silva Filho S, Tambourgi EB, Lee Ho L, Tobal Berssaneti F (2020) Effects of air pollution on human health and costs: current situation in São Paulo, Brazil. Sustainability 12:4875

    Google Scholar 

  146. Miraglia SG, Saldiva PHN, Bohm GM (2005) An evaluation of air pollution health impacts and costs in Sao Paulo, Brazil. Environ Manag 35:667–676

    Google Scholar 

  147. Levy JI, Buonocore JJ, von Stackelberg K (2010) Evaluation of the public health impacts of traffic congestion: a health risk assessment. Environ Health 9:65

    Google Scholar 

  148. FAO (2015) Status of the World’s soil resources. FAO, Rome

    Google Scholar 

  149. Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil pollution: a hidden reality. FAO, Rome

    Google Scholar 

  150. Pereira P, Ferreira AJD, Pariente S, Cerda A, Walsh R, Keestra S (2016) Urban soils and sediments. J Soils Sediments 16:2493–2499

    Google Scholar 

  151. European Union (2013) Evaluation of expenditure and jobs for addressing soil contamination in member states. Final report to the European Commission, Directorate-General Environment

    Google Scholar 

  152. Liu L, Liu Q, Ma Q, Wu H, Qu Y, Gong Y, Yang Y, An Y, Zhou Y (2020) Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: concentrations, potential sources, and risk assessment. Environ Pollut 260:114083

    CAS  Google Scholar 

  153. Qu Y, Gong Y, Ma J, Wei H, Liu Q, Liu L, Wu H, Yang S, Chen Y (2020) Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China. Environ Pollut 260:114016

    CAS  Google Scholar 

  154. Lee J, Han MH, Kim EH, Lee CW, Jeong HS (2020) Assessment of radionuclide deposition on Korean urban residential area. J Radiat Protect Res 45:101–107

    Google Scholar 

  155. Toth G, Hermann T, Szatmári G, Pásztor L (2016) Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci Total Environ 565:1054–1062

    CAS  Google Scholar 

  156. Jiang B, Adebayo A, Jia J, Xing Y, Deng S, Guo S, Liang Y, Zhang D (2019) Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J Hazard Mater 362:187–195

    CAS  Google Scholar 

  157. Xu Y, Seshadri B, Bolan N, Sarkar B, Ok YS, Zhang W, Rumpel C, Sparks D, Farrell M, Hall T, Dong Z (2019) Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environ Int 125:478–488

    CAS  Google Scholar 

  158. Morgado RG, Loureiro S, González-Alcaraz MN (2018) Changes in soil ecosystem structure and functions due to soil contamination. In: Duarte AC, Cachada A, Rocha-Santos T (eds) Soil pollution. From monitoring to remediation. Elsevier, Amsterdam, pp 59–87

    Google Scholar 

  159. Ma J, Ullah S, Niu A, Liao Z, Qin Q, Xu S, Lin C (2020) Heavy metal pollution increases CH4 and decreases CO2 emissions due to soil microbial changes in a mangrove wetland: microcosm experiment and field examination. Chemosphere:128735

    Google Scholar 

  160. Geng S, Cao W, Yuan J, Wang Y, Guo Y, Ding A, Zhu Y, Dou J (2020) Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf 203:110931

    CAS  Google Scholar 

  161. Hoyos-Hernandez C, Courbert C, Simonucci C, David S, Vogel TM, Larose C (2019) Community structure and functional genes in radionuclide contaminated soils in Chernobyl and Fukushima. FEMS Microbiol Lett 366:fnz180

    CAS  Google Scholar 

  162. Gałązka A, Grządziel J, Gałązka R, Ukalska-Jaruga A, Strzelecka J, Smreczak B (2018) Genetic and functional diversity of bacterial microbiome in soils with long term impacts of petroleum hydrocarbons. Front Microbiol 9:1923

    Google Scholar 

  163. Pino-Otín MR, Muniz S, Val J, Navarro E (2017) Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms. Sci Total Environ 595:441–450

    Google Scholar 

  164. Wiedner K, Polifka S (2020) Effects of microplastic and microglass particles on soil microbial community structure in an arable soil (Chernozem). Soil 6:315–324

    CAS  Google Scholar 

  165. Du Z, Zhu Y, Zhang J, Li B, Wang J, Wang J, Zhang C, Cheng C (2018) Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. Ecotoxicol Environ Saf 164:571–578

    CAS  Google Scholar 

  166. Tripathi S, Srivastava P, Devi RS, Bhadouria R (2020) Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In: Vara Prasad MN (ed) Agrochemicals detection, treatment and remediation pesticides and chemical fertilizers. Elsevier, Amsterdam, pp 25–54

    Google Scholar 

  167. Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai M, Megharaj M (2020) Pesticides in the urban environment: a potential threat that knocks at the door. Sci Total Environ 711:134612

    Google Scholar 

  168. Gholizadeh A, Kopačková V (2019) Detecting vegetation stress as a soil contamination proxy: a review of optical proximal and remote sensing techniques. Int J Environ Sci Technol 16:2511–2524

    Google Scholar 

  169. Kumar A, Aery NC (2016) Impact, metabolism, and toxicity of heavy metals in plants. In: Singh A, Prasad S, Singh R (eds) Plant responses to xenobiotics. Springer, Singapore, pp 141–176

    Google Scholar 

  170. Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva SN, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KO, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ Nanotechnol Monit Manag 9:76–84

    Google Scholar 

  171. Qin S, Liu H, Nie Z, Rengel Z, Gao W, Li W, Zhao P (2020) Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere 30:168–180

    Google Scholar 

  172. Sachan P, Lal N (2017) An overview of nickel (Ni2+) essentiality, toxicity and tolerance strategies in plants. Asian J Biol 2:1–15

    Google Scholar 

  173. Xiong TT, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C (2016) Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci 46:16–17

    CAS  Google Scholar 

  174. Abbas G, Murtaza B, Bibi I, Sahid M, Niazi NK, Khan MI, Amjad M, Hussain M (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Google Scholar 

  175. Samsøe-Petersen L, Larsen HK, Larsen PB, Bruun P (2002) Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol 36:3057–3063

    Google Scholar 

  176. Zhang S, Yao H, Lu Y, Yu X, Wang J, Sun S, Liu M, Li D, Li YF, Zhang D (2017) Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Sci Rep 7:12165

    Google Scholar 

  177. Tian L, Yin S, Ma Y, Kang H, Zhang X, Tan H, Meng H, Liu C (2019) Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: morphological characteristics have the greatest impact. Sci Total Environ 652:1149–1155

    Google Scholar 

  178. Kummerová M, Zezukla S, Babula P, Vanova L (2013) Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Chemosphere 90:665–673

    Google Scholar 

  179. Desalme D, Binet P, Chiapusio G (2013) Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants. Environ Sci Technol 47:3967–3981

    CAS  Google Scholar 

  180. Carvalho PN, Basto MCP, Almeida CMR, Brix H (2014) A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res 21:11729–11763

    Google Scholar 

  181. Sauvêtre A, Schröder P (2015) Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front Plant Sci 6:83

    Google Scholar 

  182. Carter LJ, Harris E, Williams M, Ryan JJ, Kookana RS, Boxall ABA (2014) Fate and uptake of pharmaceuticals in soil–plant systems. J Agric Food Chem 62:816–825

    CAS  Google Scholar 

  183. Marsoni M, De Mattia F, Labra F, Bruno A, Bracale M, Vannini C (2014) Uptake and effects of a mixture of widely used therapeutic drugs in Eruca sativa L. and Zea mays L. plants. Ecotoxicol Environ Saf 108:52–57

    CAS  Google Scholar 

  184. Carter LJ, Williams M, Böttcher C, Kookana RS (2015) Uptake of pharmaceuticals influences plant development and affects nutrient and hormone homeostases. Environ Sci Technol 49:12509–12518

    CAS  Google Scholar 

  185. Bartrons M, Peñuelas J (2017) Pharmaceuticals and personal-care products in plants. Trends Plant Sci 22:194–203

    CAS  Google Scholar 

  186. Sun C, Dudley S, Trumble J, Gan J (2018) Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environ Pollut 234:39–47

    CAS  Google Scholar 

  187. Valenca DC, Campos de Lelis DC, Pinho CF, Mendes Bezerra AC, Ferreira MA, Gama Junqueira NE, Macrae A, Medici LO, Reinert F, Silva BO (2020) Changes in leaf blade morphology and anatomy caused by clomazone and saflufenacil in Setaria viridis, a model C4 plant. S Afr J Bot 135:365–376

    CAS  Google Scholar 

  188. Timms KP, Wood LJ (2020) Sub-lethal glyphosate disrupts photosynthetic efficiency and leaf morphology in fruit-producing plants, red raspberry (Rubus idaeus) and highbush cranberry (Viburnum edule). Glob Ecol Conserv 24:e01319

    Google Scholar 

  189. Zaller JG, Cantelmo C, Dos Santos G, Muther S, Gruber E, Pallua P, Mandl K, Friedrich B, Hofstetter I, Schmuckenschlager B, Faber F (2018) Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. Environ Sci Pollut Res 25:23215–23226

    CAS  Google Scholar 

  190. Liu N, Zhong G, Zhou J, Liu Y, Pang Y, Cai H, Wu Z (2019) Separate and combined effects of glyphosate and copper on growth and antioxidative enzymes in Salvinia natans (L.) all. Sci Total Environment 655:1448–1456

    CAS  Google Scholar 

  191. Fei X, Lou Z, Christakos G, Ren Z, Liu Z, Lv X (2018) The association between heavy metal soil pollution and stomach cancer: a case study in Hangzhou City, China. Environ Geochem Health 40:2481–2490

    CAS  Google Scholar 

  192. Jia Z, Li S, Wang L (2018) Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Sci Rep 8:3256

    Google Scholar 

  193. Ingaramo P, Alarcón R, Muñoz-de-Toro M, Luque EH (2020) Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol Cell Endocrinol 518:110934

    CAS  Google Scholar 

  194. Peillex C, Pelletier M (2020) The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol 17:163–174

    CAS  Google Scholar 

  195. Alshahri F (2019) Natural and anthropogenic radionuclides in urban soil around non-nuclear industries (Northern Al Jubail), Saudi Arabia: assessment of health risk. Environ Sci Pollut Res 26:36226–36235

    CAS  Google Scholar 

  196. Gbadamosi MR, Banjoko OO, Abudu KA, Ogunbanjo OO, Ogunneye AL (2017) Radiometric evaluation of excessive lifetime cancer probability due to naturally occurring radionuclides in wastes dumpsites soils in Agbara, southwest, Nigeria. J Assoc Arab Univ Basic Appl Sci 24:315–324

    Google Scholar 

  197. Keshavarzi B, Najmeddin A, Moore F, Afshari Moghaddam P (2019) Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran. Ecotoxicol Environ Saf 167:365–375

    CAS  Google Scholar 

  198. Xiong TT, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Piertart A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51:5242–5251

    CAS  Google Scholar 

  199. Fazeli G, Karbassi A, Khoramnejadian S, Nasrabadi T (2019) Evaluation of urban soil pollution: A combined approach of toxic metals and polycyclic aromatic hydrocarbons (PAHs). Int J Environ Res 13:801–811

    CAS  Google Scholar 

  200. Ferreira AJD, Mendes Guilherme RIM, Ferreira CSS, Lorena de Oliveira MFM (2018) Urban agriculture, a tool towards more resilient urban communities? Curr Opin Environ Sci Health 5:93–97

    Google Scholar 

  201. Ferreira C, Walsh RPD, Ferreira AJD (2018) Degradation in urban areas. Curr Opin Environ Sci Health 5:19–25

    Google Scholar 

  202. UN-Water (2018) Sustainable development goal 6. Synthesis report on water and sanitation. New York. 195 pp

    Google Scholar 

  203. EEA (2018) European waters. Assessment of status and pressures 2018. Publications Office of the European Union, Luxembourg

    Google Scholar 

  204. Zhang Q, Wu Z, Guo G, Zhang H, Tarolli P (2020) Explicit the urban waterlogging spatial variation and its driving factors: the stepwise cluster analysis model and hierarchical partitioning analysis approach. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143041

  205. Islam Shajib HT, Bruun Hansen HC, Liang T, Holm PE (2019) Metals in surface specific urban runoff in Beijing. Environ Pollut 248:584–598

    Google Scholar 

  206. Dietrich M, Wolfe A, Burke M, Krekeler MPS (2019) The first pollution investigation of road sediment in Gary, Indiana: anthropogenic metals and possible health implications for a socioeconomically disadvantaged area. Environ Int 128:175–192

    CAS  Google Scholar 

  207. García-Rivero AE, Olivera J, Sallinas E, Yuli RA, Bulege W (2017) Use of Hydrogeomorphic indexes in SAGA-GIS for the characterization of flooded areas in Madre de Dios, Peru. Int J Appl Enge Res 12:9078–9086

    Google Scholar 

  208. UNEP (2016) A snapshot of the world’s water quality: towards a global assessment. United Nations Environment Programme, Nairobi, p 162

    Google Scholar 

  209. Liu J, Guo LC, Luo XL, Chen FR, Zeng EY (2014) Impact of anthropogenic activities on urban stream water quality: a case study in Guangzhou, China. Environ Sci Pollut Res 21:13412–13419

    CAS  Google Scholar 

  210. Wilbers GJ, Becker M, Nga LT, Sebesvari Z, Renaud FG (2014) Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Sci Total Environ 485–486:653–665

    Google Scholar 

  211. Zhu L, Chen B, Wang J, Shen H (2004) Pollution survey of polycyclic aromatic hydrocarbons in surface water of Hangzhou, China. Chemosphere 56:1085–1095

    CAS  Google Scholar 

  212. Zhou F, Huang G, Guo H, Zhang W, Hao Z (2007) Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Res 41:3429–3439

    CAS  Google Scholar 

  213. Suthar S, Sharma J, Chabukdhara C, Nema AK (2010) Water quality assessment of river Hindon at Ghaziabad, India: impact of industrial and urban wastewater. Environ Monit Assess 165:103–112

    CAS  Google Scholar 

  214. Revitt DM, Ellis JB (2016) Urban surface water pollution problems arising from misconnections. Sci Total Environ 551–552:163–174

    Google Scholar 

  215. Peng Y, Fang W, Krauss M, Brack W, Wang Z, Li F, Zhang X (2018) Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): occurrence, distribution, ecological risk. Environ Pollut 241:484–493

    CAS  Google Scholar 

  216. Montes-Grajales D, Fennix-Agudelo F, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci Total Environ 595:601–614

    CAS  Google Scholar 

  217. Mastroianni N, Bleda MJ, Lopez de Alda M, Barcelo D (2016) Occurrence of drugs of abuse in surface water from four Spanish river basins: spatial and temporal variations and environmental risk assessment. J Hazard Mater 316:134–142

    CAS  Google Scholar 

  218. Rovieri V, Guimaraes LL, Toma V, Correia AT (2020) Occurrence and ecological risk assessment of pharmaceuticals and cocaine in a beach area of Guarujá, São Paulo State, Brazil, under the influence of urban surface runoff. Environ Sci Pollut Res 27:45063–45075

    Google Scholar 

  219. Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J (2019) Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410–422

    CAS  Google Scholar 

  220. Sjerps RMA, Kooij PJF, van Loon A, Van Wezel AP (2019) Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235:510–518

    CAS  Google Scholar 

  221. Kamata M, Matsui Y, Asami M (2020) National trends in pesticides in drinking water and water sources in Japan. Sci Total Environ 744:140930

    CAS  Google Scholar 

  222. Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci Total Environ 596–597:303–320

    Google Scholar 

  223. Putt AE, MacIsaac EA, Herunter HE, Cooper AB, Selbie DT (2019) Eutrophication forcings on a peri-urban lake ecosystem: context for integrated watershed to airshed management. Plos One 14:e0219241

    CAS  Google Scholar 

  224. Duprey NN, Yasuhara M, Baker DM (2016) Reefs of tomorrow: eutrophication reduces coral biodiversity in an urbanized seascape. Glob Chang Biol 22:3550–3565

    Google Scholar 

  225. Wurtsbaugh A, Paerl HW, Dodds WK (2019) Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 6:e1373

    Google Scholar 

  226. Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Étrillard E, Levain E, Moatar F, Pannard A, Souchu P, Lefebvre A, Lefebvre G (2019) Eutrophication: a new wine in an old bottle? Sci Total Environ 651:1–11

    Google Scholar 

  227. Sinha E, Michalk AM, Balaji V (2017) Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357:405–408

    CAS  Google Scholar 

  228. Abdelhady AA, Khalil MM, Ismail E, Mohamed RSA, Ali A, Gamal Snousy M, Fan J, Zhang S, Xiao J (2019) Potential biodiversity threats associated with the metal pollution in the Nile–Delta ecosystem (Manzala lagoon, Egypt). Ecol Indic 98:844–853

    CAS  Google Scholar 

  229. Bonsignore M, Salvagio Manta D, Mirto S, Quinci EM, Ape F, Montalto V, Gristina M, Sprovieri M (2018) Bioaccumulation of heavy metals in fish, crustaceans, molluscs and echinoderms from the Tuscany coast. Ecotoxicol Environ Saf 162:554–562

    CAS  Google Scholar 

  230. Barchiesi F, Branciari R, Latini M, Roila R, Lediani G, Filippini G, Scortichini G, Piersanti A, Rocchegiani E, Ranucci D (2020) Heavy metals contamination in shellfish: benefit-risk evaluation in Central Italy. Foods 9:1720

    CAS  Google Scholar 

  231. Huang JS, Koongolla JB, Li HX, Pan LF, Liu S, He WH, Maharana D, Xu XR (2020) Microplastic accumulation in fish from Zhanjiang mangrove wetland, South China. Sci Total Environ 708:134839

    CAS  Google Scholar 

  232. Clasen B, Loro VL, Murassi CR, Tiecher TL, Moraes B, Zanella R (2018) Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci Total Environ 626:737–743

    CAS  Google Scholar 

  233. Ojemaye CY, Onwordi CT, Petrik L (2020) Herbicides in the tissues and organs of different fish species (Kalk Bay harbour, South Africa): occurrence, levels and risk assessment. Int J Environ Sci Technol 17:1637–1648

    CAS  Google Scholar 

  234. Díaz-Cruz MS, Molins-Delgado D, Serra-Roig MP, Kalogianni E, Skoulikidis NT, Barcelo D (2019) Personal care products reconnaissance in EVROTAS river (Greece): water-sediment partition and bioaccumulation in fish. Sci Total Environ 651:3079–3089

    Google Scholar 

  235. Achary MS, Satpathy SS, Panigrahi S, Mohanty AK, Padhi RK, Biswas S, Prabhu RK, Vijayalakshmi S, Panigrahy RC (2017) Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India. Food Control 72:232–243

    CAS  Google Scholar 

  236. Waring RH, Harris RM, Mitchell SC (2018) Plastic contamination of the food chain: A threat to human health? Maturitas 155:64–68

    Google Scholar 

  237. Jijie R, Solcan G, Niocara M, Micu D, Strungaru SA (2020) Antagonistic effects in zebrafish (Danio rerio) behavior and oxidative stress induced by toxic metals and deltamethrin acute exposure. Sci Total Environ 698:134299

    CAS  Google Scholar 

  238. Mahboob S, Al-Ghanim KA, Al-Balawi HF, Al-Misned F, Ahmed Z (2020) Toxicological effects of heavy metals on histological alterations in various organs in Nile tilapia (Oreochromis niloticus) from freshwater reservoir. J King Saud Univ Eng Sci 32:920–973

    Google Scholar 

  239. Green AJ, Planchart A (2018) The neurological toxicity of heavy metals: A fish perspective. Comp Biochem Physiol C Toxicol Pharmacol 208:12–19

    CAS  Google Scholar 

  240. Qi L, Ma SJ, Li S, Cui X, Peng X, Wang W, Ren Z, Han M, Zhang Y (2017) The physiological characteristics of zebra fish (Danio rerio) based on metabolism and behavior: A new method for the online assessment of cadmium stress. Chemosphere 184:1150–1156

    CAS  Google Scholar 

  241. Ahrendt C, Perez-Venegas DJ, Urbina M, Gonzalez C, Echeveste P, Aldana M, Pulgar J, Galbán-Malagón C (2020) Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Mar Pollut Bull 151:110795

    CAS  Google Scholar 

  242. Malinich TD, Chou N, Sepúlveda MS, Höök TO (2018) No evidence of microplastic impacts on consumption or growth of larval Pimephales promelas. Integr Environ Assess Manag 37:2912–2918

    CAS  Google Scholar 

  243. Foley CJ, Feiner ZS, Malinich TD, Höök TO (2018) A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci Total Environ 631–632:550–559

    Google Scholar 

  244. Cherr GN, Fairbairn E, Whitehead A (2017) Impacts of petroleum-derived pollutants on fish development. Annu Rev Anim Biosci 5:185–203

    CAS  Google Scholar 

  245. Gonçalves C, Teixeira Marins A, Blank do Amaral AM, Medina Nunes ME, Ellwanger Müller T, Severo E, Feijó A, Rodrigues CCR, Zanella R, Damian Prestes D, Clasen B, Loro VL (2020) Ecological impacts of pesticides on Astyanax jacuhiensis (Characiformes: Characidae) from the Uruguay river, Brazil. Ecotoxicol Environ Saf 205:111314

    Google Scholar 

  246. Rossi AS, Fanton N, Michlig MP, Repetti MR, Cazenave J (2020) Fish inhabiting rice fields: bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecol Indic 113:106186

    CAS  Google Scholar 

  247. Sula E, Aliko V, Barcelo D, Faggio C (2020) Combined effects of moderate hypoxia, pesticides and PCBs upon crucian carp fish, Carassius carassius, from a freshwater lake- in situ ecophysiological approach. Aquat Toxicol 228:105644

    CAS  Google Scholar 

  248. Santana MS, Sandrini-Neto L, Di Domenico N, Mela PM (2020) Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143829

  249. Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16

    Google Scholar 

  250. Martin JM, Bertram MG, Saaristo M, Ecker TE, Hannington SL, Michelangeli M, O’Bryan MK, Wong BBM (2019) Impact of the widespread pharmaceutical pollutant fluoxetine on behaviour and sperm traits in a freshwater fish. Sci Total Environ 650:1771–1778

    CAS  Google Scholar 

  251. Pico Y, Alvarez-Ruiz R, Alfarhan AH, El-Sheikh M, Alshahrani HO, Barceló D (2020) Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes. Sci Total Environ 701:135021

    CAS  Google Scholar 

  252. Jia Z, Bian J, Wang Y (2018) Impacts of urban land use on the spatial distribution of groundwater pollution, Harbin City, Northeast China. J Contam Hydrol 215:29–38

    CAS  Google Scholar 

  253. Smith M, Cross K, Paden M, Laban P (eds) (2016) Spring – managing groundwater sustainably. IUCN, Gland

    Google Scholar 

  254. Singh A, Patel AK, Deka JP, Das A, Kumar A, Kumar M (2019) Prediction of arsenic vulnerable zones in the groundwater environment of a rapidly urbanizing setup, Guwahati, India. Geochemistry. https://doi.org/10.1016/j.chemer.2019.125590

  255. Azzellino A, Colombo L, Lombi S, Marchesi V, Piana A, Andrea M, Alberti L (2019) Groundwater diffuse pollution in functional urban areas: the need to define anthropogenic diffuse pollution background levels. Sci Total Environ 656:1207–1222

    Google Scholar 

  256. Burri NM, Weatherl R, Moeck C, Schirmer M (2019) A review of threats to groundwater quality in the Anthropocene. Sci Total Environ 684:136–154

    CAS  Google Scholar 

  257. Howard K, Gerber R (2018) Impacts of urban areas and urban growth on groundwater in the Great Lakes Basin of North America. J Great Lakes Res 44:1–13

    CAS  Google Scholar 

  258. Costa CW, Lorandi R, Lollo JA, Severino SV (2019) Potential for aquifer contamination of anthropogenic activity in the recharge area of the Guarani aquifer system, southeast of Brazil. Groundw Sustain Dev 8:10–23

    Google Scholar 

  259. Li Q, Guo S, Fu K, Liao L, Xu Y, Cheng S (2020) Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ Sci Pollut Res 27:9000–9011

    CAS  Google Scholar 

  260. Lapworth DJ, Das P, Shaw S, Mukherjee A, Civil W, Petersen JO, Gooddy DC, Wakefield O, Finlayson A, Krishan G, Sengupta P, MacDonald AM (2018) Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. Environ Pollut 240:938–949

    CAS  Google Scholar 

  261. Khan A, Michelsen N, Marandi A, Hossain R, Abed Hossain M, Roehl KE, Zahid A, Qumrul Hassan M, Schüth C (2020) Processes controlling the extent of groundwater pollution with chromium from tanneries in the Hazaribagh area, Dhaka, Bangladesh. Sci Total Environ 710:136213

    CAS  Google Scholar 

  262. Grimmeisen F, Lehmann MF, Liesch T, Goeppert N, Klinger J, Zopfi J, Goldscheider N (2017) Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system. Sci Total Environ 583:202–213

    CAS  Google Scholar 

  263. García-Gil A, Garrido Schneider E, Mejías M, Barcelo D, Vázquez-Suñé E, Díaz-Cruz S (2018) Occurrence of pharmaceuticals and personal care products in the urban aquifer of Zaragoza (Spain) and its relationship with intensive shallow geothermal energy exploitation. J Hydrol 556:629–642

    Google Scholar 

  264. Rodriguez F, Le Delliou AL, Andrieu H, Gironas J (2020) Groundwater contribution to sewer network Baseflow in an urban catchment-case study of pin sec catchment, Nantes, France. Water 12:689

    Google Scholar 

  265. Busico G, Cuoco E, Sirna M, Mastrocicco M, Tedesco D (2017) Aquifer vulnerability and potential risk assessment: application to an intensely cultivated and densely populated area in Southern Italy. Arab J Geosci 10:222

    Google Scholar 

  266. Karges U, Becker J, Püttmann W (2018) 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume. Sci Total Environ 619–620:712–720

    Google Scholar 

  267. Kringel R, Rechenburg A, Kuitcha D, Fouépé A, Bellenberg S, Kengne IM, Fomo MA (2016) Mass balance of nitrogen and potassium in urban groundwater in Central Africa, Yaounde/Cameroon. Sci Total Environ 547:382–395

    CAS  Google Scholar 

  268. Verlicchi P, Grillini V (2020) Surface water and groundwater quality in South Africa and Mozambique—analysis of the Most critical pollutants for drinking purposes and challenges in water treatment selection. Water 12:305

    CAS  Google Scholar 

  269. Gbadebo AM (2020) Assessment of quality and health risk of peri-urban groundwater supply from selected areas of Abeokuta, Ogun State, Southwestern Nigeria. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00746-5

  270. Hepburn E, Madden C, Szabo D, Coggan TL, Clarke B, Currell M (2019) Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environ Pollut 248:101–113

    CAS  Google Scholar 

  271. Moreau M, Hadfield J, Hughey J, Sanders F, Lapworth DJ, White D, Civil W (2019) A baseline assessment of emerging organic contaminants in New Zealand groundwater. Sci Total Environ 686:425–439

    CAS  Google Scholar 

  272. Akbari M, Najafi Alamdarlo H, Habibollah MS (2020) The effects of climate change and groundwater salinity on farmers’ income risk. Ecol Indic 110:105893

    CAS  Google Scholar 

  273. Mas-Pla J, Mencio A (2019) Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Environ Sci Pollut Res 26:184–222

    Google Scholar 

  274. Kabisch N, Frantzeskaki N, Pauleit S, Naumann S, Davis M, Artmann M, Haase D, Knapp S, Korn H, Stadler J, Zaunberger K, Bonn A (2016) Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol Soc 21:39

    Google Scholar 

  275. Raymond CM, Frantzeskaki N, Kabisch N, Perry P, Breil M, Razvan Nita M, Geneletti D, Calfapietra C (2017) A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ Sci Pol 77:15–24

    Google Scholar 

  276. Han D, Shen H, Duan W, Chen L (2020) A review on particulate matter removal capacity by urban forests at different scales. Urban For Urban Green 48:126565

    Google Scholar 

  277. Sgrigna G, Baldacchini C, Dreveck S, Cheng Z, Calfapietra C (2020) Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Sci Total Environ 718:137310

    CAS  Google Scholar 

  278. Räsänen JV, Holopainen T, Joutsensaari J, Ndam C, Pasanen P, Rinnan A, Kivimäenpää M (2013) Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees. Environ Pollut 183:64–70

    Google Scholar 

  279. Beckett KP, Freer-Smith PH, Taylor G (2000) Particulate pollution capture by urban trees: effect of species and windspeed. Glob Chang Biol 6:995–1003

    Google Scholar 

  280. Chen L, Liu C, Zhang L, Zou R, Zhang Z (2017) Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci Rep 7:3206

    Google Scholar 

  281. Nguyen T, Yu X, Zhan Z, Liu M, Liu X (2015) Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. J Environ Sci 27:33–41

    Google Scholar 

  282. Liang D, Ma C, Wang YQ, Wang YJ, Chen-xi Z (2016) Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ Sci Pollut Res 23:21176–21186

    CAS  Google Scholar 

  283. Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green 4:115–123

    Google Scholar 

  284. Nyelele C, Kroll CN, Nowak DJ (2019) Present and future ecosystem services of trees in the Bronx, NY. Urban For Urban Green 42:10–20

    Google Scholar 

  285. Tallis M, Taylor G, Sinnet D, Freer-Smith P (2011) Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc Urban Plan 103:129–138

    Google Scholar 

  286. Jim CY, Chen WY (2008) Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J Environ Manag 88:665–676

    CAS  Google Scholar 

  287. Wu J, Wang Y, Qiu S, Peng J (2019) Using the modified i-tree eco model to quantify air pollution removal by urban vegetation. Sci Total Environ 688:673–683

    CAS  Google Scholar 

  288. Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3:65–78

    Google Scholar 

  289. Nowak DJ, Hirabayashi S, Doyle M, McGovern M, Pasher J (2018) Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For Urban Green 29:40–48

    Google Scholar 

  290. Uni D, Katra I (2017) Airborne dust absorption by semi-arid forests reduces PM pollution in nearby urban environments. Sci Total Environ 598:984–992

    CAS  Google Scholar 

  291. Rieger I, Kowarik I, Cherubuni P, Cierjacks A (2017) A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales. Sci Total Environ 574:1261–1275

    CAS  Google Scholar 

  292. Isaifan RJ, Baldauf RW (2020) Estimating economic and environmental benefits of urban trees in desert regions. Front Ecol Evol 8:16

    Google Scholar 

  293. Ma Z, Chen HYH, Bork EW, Carlyke CN, Chang SX (2020) Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob Ecol Biogeogr 29:1817–1828

    Google Scholar 

  294. Rytter RM, Rytter L (2020) Carbon sequestration at land use conversion – early changes in total carbon stocks for six tree species grown on former agricultural land. For Ecol Manag 13:484–494

    Google Scholar 

  295. Meineke E, Youngsteadt E, Dunn RR, Frank SD (2016) Urban warming reduces aboveground carbon storage. Proc R Soc B 283:20161574

    Google Scholar 

  296. Machacova K, Borak L, Agyei T, Schindler T, Soosaar K, Mander U (2020) Trees as net sinks for methane (CH4) and nitrous oxide (N2O) in the lowland tropical rain forest on volcanic Réunion Island. New Phytol. https://doi.org/10.1111/nph.17002

  297. Safford H, Larry E, McPherson EG, Nowak DJ, Westphal LM (2013) Urban forests and climate change. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. www.fs.usda.gov/ccrc/topics/urban-forests

  298. De la Sota S, Ruffato-Ferreira VJ, Ruiz-Garcia L, Alvarez S (2019) Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For Urban Green 40:145–151

    Google Scholar 

  299. Doukalianou F, Radoglou K, Agnelli AE, Kitikidou K, Milios E, Orfanoudakis M, Lagomarsino A (2019) Annual greenhouse-gas Emissions from Forest soil of a Peri-urban conifer Forest in Greece under different thinning intensities and their climate-change mitigation potential. For Sci 65:387–400

    Google Scholar 

  300. Li Y, Babcock Jr RW (2014) Green roofs against pollution and climate change. A review. Agron Sustain Dev 34:695–705

    Google Scholar 

  301. Teotónio I, Matos Silva I, Oliveira CC (2018) Eco-solutions for urban environments regeneration: the economic value of green roofs. J Clean Prod 199:121–135

    Google Scholar 

  302. Shafique M, Xue X, Luo X (2020) An overview of carbon sequestration of green roofs in urban areas. Urban For Urbasn Green 47:126515

    Google Scholar 

  303. Berardi U, GhaffarianHoseini A, GhaffarianHoseini A (2014) State-of-the-art analysis of the environmental benefits of green roofs. Appl Energy 115:411–428

    Google Scholar 

  304. Møller Francis LJ, Bergen JM (2017) Benefits of green roofs: a systematic review of the evidence for three ecosystem services. Urban For Urban Green 28:167–176

    Google Scholar 

  305. Yang J, Yu Q, Gong P (2008) Quantifying air pollution removal by green roofs in Chicago. Atmos Environ 42:7266–7273

    CAS  Google Scholar 

  306. Gourdji S (2018) Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec. Environ Pollut 241:378–387

    CAS  Google Scholar 

  307. Kuronuma T, Watanabe H (2017) Relevance of carbon sequestration to the physiological and morphological traits of several Green roof plants during the first year after construction. Am J Plant Sci 8:72981

    Google Scholar 

  308. Charoenkit S, Yiemwattana S (2017) Role of specific plant characteristics on thermal and carbon sequestration properties of living walls in tropical climate. Build Environ 115:67–79

    Google Scholar 

  309. Agra H, Klein T, Vasl A, Shalom H, Kadas G, Blaustein L (2017) Sedum-dominated green-roofs in a semi-arid region increase CO2 concentrations during the dry season. Sci Total Environ 584–585:1147–1151

    Google Scholar 

  310. Teemusk A, Kull A, Kanal A, Mander U (2019) Environmental factors affecting greenhouse gas fluxes of green roofs in temperate zone. Sci Total Environ 649:133699

    Google Scholar 

  311. Karteris M, Theodoridou I, Mallinis G, Tsiros E, Karteris A (2016) Towards a green sustainable strategy for Mediterranean cities: assessing the benefits of large-scale green roofs implementation in Thessaloniki, northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data. Renew Sust Energ Rev 58:510–525

    Google Scholar 

  312. Azeñas V, Janner I, Medrano H, Gulías J (2018) Performance evaluation of five Mediterranean species to optimize ecosystem services of green roofs under water-limited conditions. J Environ Manag 212:236–247

    Google Scholar 

  313. Collazo-Ortega M, Rosas U, Reyes-Santiago J (2017) Towards providing solutions to the air quality crisis in the Mexico City metropolitan area: carbon sequestration by succulent species in Green roofs. PlosOne 31:9

    Google Scholar 

  314. Zaid SM, Perisamy E, Hussein H, Myeda NE, Zainon N (2018) Vertical greenery system in urban tropical climate and its carbon sequestration potential: A review. Ecol Indic 91:57–70

    Google Scholar 

  315. Hu Y, Zheng J, Kong X, Sun J, Li Y (2019) Carbon footprint and economic efficiency of urban agriculture in Beijing – a comparative case study of conventional and home-delivery agriculture. J Clean Prod 234:615–625

    Google Scholar 

  316. Clayden A, Green T, Hockey J, Powell M (2018) Cutting the lawn − natural burial and its contribution to the delivery of ecosystem services in urban cemeteries. Urban For Urban Green 33:99–106

    Google Scholar 

  317. Tang Y, Chen A, Zhao S (2016) Carbon storage and sequestration of urban street trees in Beijing, China. Front Ecol Evol 4:53

    Google Scholar 

  318. Okunlola I, Ibironke S, Akinbobola T (2019) Net carbon sequestration and emission potential on lawns in the Federal University of Technology, Akure (Futa) Ondo State, Nigeria. Int J Res Agric For 6:1–16

    Google Scholar 

  319. Hewitt CN, Ashworth K, MacKenzie AR (2020) Using green infrastructure to improve urban air quality (GI4AQ). Ambio 49:62–73

    Google Scholar 

  320. Liu C, Li X (2012) Carbon storage and sequestration by urban forests in Shenyang, China. Urban For Urban Green 11:121–128

    Google Scholar 

  321. Zhao M, Kong ZH, Escobedo FJ, Gao J (2010) Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. J Environ Manag 91:807–813

    CAS  Google Scholar 

  322. Chen WY (2015) The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: a nationwide estimate. Cities 44:112–120

    Google Scholar 

  323. Kiran GS, Kinnary S (2011) Carbon sequestration by urban trees on roadsides of Vadodara city. Int J Eng Sci Technol 3:3066–3070

    Google Scholar 

  324. Ragula A, Chandra KK (2020) Tree species suitable for roadside afforestation and carbon sequestration in Bilaspur, India. Carbon Manage 11:369–380

    CAS  Google Scholar 

  325. Intasen M, Hauer RJ, Werner LP, Larsen E (2017) Urban forest assessment in Bangkok, Thailand. J Sustain For 36:148–163

    Google Scholar 

  326. Tuğluer M, Gül A, Keleş E, Faruk Uzun O (2017) Ecological importance and role in carbon sequestration of urban trees (In case of Isparta Anadolu Neighborhood). In: International symposium on new horizons in forestry, pp 156–164

    Google Scholar 

  327. Escobedo F, Varela S, Zhao M, Wagner JE, Zipperer W (2010) Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities. Environ Sci Pol 13:362–372

    CAS  Google Scholar 

  328. Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236

    CAS  Google Scholar 

  329. Martin NA, Chappekla AH, Loewenstein EF, Keever GJ (2012) Comparison of carbon storage, carbon sequestration, and air pollution removal by protected and maintained urban forests in Alabama, USA. Int J Biodivers Sci Ecosyst Serv Manag 8:265–272

    Google Scholar 

  330. Ning ZH, Chambers R, Abdollahi K (2016) Modeling air pollutant removal, carbon storage, and CO2 sequestration potential of urban forests in Scotlandville, Louisiana. USA iForest 9:860–867

    Google Scholar 

  331. Pasher J, McGovern M, Khoury M, Duffe J (2014) Assessing carbon storage and sequestration by Canada's urban forests using high resolution earth observation data. Urban For Urban Green 13:484–494

    Google Scholar 

  332. Pasher J, McGovern M (2016) Canadian urban tree canopy cover and carbon sequestration status and change 1990–2012. Urban For Urban Green 20:227–232

    Google Scholar 

  333. Martinez-Carretero E, Moreno G, Duplancic A, Abud A, Bento B, Alcalá JJ (2017) Urban forest of Mendoza (Argentina): the role of Morus alba (Moraceae) in carbon storage. Carbon Manag 8:237–244

    Google Scholar 

  334. Chaparro L, Terradas J (2009) Ecological services of urban forest in Barcelona. Centre de Recerca Ecologica i, Aplicacions Forestals, Universitat Autonoma de Barcelona, Bellaterra

    Google Scholar 

  335. Gratani L, Varone L, Bonito A (2016) Carbon sequestration of four urban parks in Rome. Urban For Urban Green 19:184–193

    Google Scholar 

  336. Jo HK (2002) Impacts of urban greenspace on offsetting carbon emissions for middle Korea. J Environ Manag 64:115–126

    Google Scholar 

  337. Park JO, Baek SG, Kwon MY, Je SM, Woo SY (2018) Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. For Sci Technol 14:97–104

    Google Scholar 

  338. Stoffberg GH, van Rooyen MW, van der Linde MJ, Groeneveld HT (2010) Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa. Urban For Urban Green 9:9–14

    Google Scholar 

  339. Agbelade DA, Onyekwelu JC (2020) Tree species diversity, volume yield, biomass and carbon sequestration in urban forests in two Nigerian cities. Urban Ecosyst 23:957–970

    Google Scholar 

  340. Ferreira CSS, Pereira P, Kalantari Z (2018) Human impact on soil. Sci Total Environ 644:830–834

    CAS  Google Scholar 

  341. Calzolari C, Tarocco T, Lombardo N, Marchi N, Ungaro F (2020) Assessing soil ecosystem services in urban and peri-urban areas: from urban soils survey to providing support tool for urban planning. Land Use Policy 99:105037

    Google Scholar 

  342. Liu R, Wang M, Chen W (2018) The influence of urbanization on organic carbon sequestration and cycling in soils of Beijing. Landsc Urban Plan 169:241–249

    Google Scholar 

  343. Sapkota M, Young J, Coldren C, Slaughter L, Longing S (2020) Soil physiochemical properties and carbon sequestration of urban landscapes in Lubbock, TX, USA. Urban For Urban Green 56:126847

    Google Scholar 

  344. Lebed-Sharlevich Y, Kulachkova S, Mozharova N (2019) Generation, sink, and emission of greenhouse gases by urban soils at different stages of the floodplain development in Moscow. J Soils Sediments 19:3204–3216

    CAS  Google Scholar 

  345. Sarzhanov DA, Vasenev VI, Vasenev II, Sotnikova S, Ryzhkov OV, Morin T (2017) Carbon stocks and CO2 emissions of urban and natural soils in central Chernozemic region of Russia. Catena:131–140

    Google Scholar 

  346. Lu C, Kotze DJ, Setälä HM (2020) Soil sealing causes substantial losses in C and N storage in urban soils under cool climate. Sci Total Environ 725:138369

    CAS  Google Scholar 

  347. Milnar M, Ramaswami A (2020) Impact of urban expansion and in situ greenery on community-wide carbon emissions: method development and insights from 11 US cities. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c02723

  348. Riches D, Porter I, Dingle G, Gendall A, Grover S (2020) Soil greenhouse gas emissions from Australian sports fields. Sci Total Environ 707:134420

    CAS  Google Scholar 

  349. Townsend-Small A, Czimczik CI (2010) Carbon sequestration and greenhouse gas emissions in urban turf. Geophys Res Lett 37:L02707

    Google Scholar 

  350. Vasanec VI, Kusyakov Y (2018) Urban soils as hot spots of anthropogenic carbon accumulation: review of stocks, mechanisms and driving factors. Land Degrad Dev 29:1607–1622

    Google Scholar 

  351. Lv H, Wang W, He X, Wei C, Xiao L, Zang B, Zhou W (2018) Association of urban forest landscape characteristics with biomass and soil carbon stocks in Harbin City, Northeastern China. PeerJ 6:e5825

    Google Scholar 

  352. Setälä HM, Francini G, Allen JA, Hui N, Jumpponen A, Kotze DJ (2016) Vegetation type and age drive changes in soil properties, nitrogen, and carbon sequestration in urban parks under cold climate. Front Ecol Evol 4:93

    Google Scholar 

  353. Llorach-Massana P, Muñoz P, Riera MR, Gabarrell X, Montero JI, Villalba G (2017) N2O emissions from protected soilless crops for more precise food and urban agriculture life cycle assessments. J Clean Prod 149:1118–1126

    CAS  Google Scholar 

  354. Kulak M, Graves A, Chatterton J (2013) Reducing greenhouse gas emissions with urban agriculture: A life cycle assessment perspective. Landsc Urban Plan 111:68–78

    Google Scholar 

  355. Häring V, Manka’abusi D, Akoto-Danso EK, Werner S, Atiah K, Steiner C, Lompo DJP, Adiku S, Buerkert A, Marschner B (2017) Effects of biochar, waste water irrigation and fertilization on soil properties in west African urban agriculture. Sci Rep 7:10738

    Google Scholar 

  356. Chen H, Ma J, Wang X, Xu P, Zheng S, Zhao Y (2018) Effects of biochar and sludge on carbon storage of urban Green roofs. Forests 9:413

    Google Scholar 

  357. Whiting GJ, Chanton JP (2003) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53:521–528

    Google Scholar 

  358. Sovik AK, Augustin J, Heikkinen K, Huttunen JT, Necki JM, Karjalainen SM, Klove B, Liikanen A, Mander U, Puustinen M, Teiter S, Wachniew P (2006) Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. J Environ Qual 35:2360–2373

    CAS  Google Scholar 

  359. Mander U, Dotro G, Ebie Y, Towprayoon S, Chiemchaisri C, Furlan Nogueira S, Jamsranjav B, Kasak K, Truu J, Tournebize J, Mitsch WJ (2014) Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecol Eng 66:19–35

    Google Scholar 

  360. de Klein JJM, van der Werf JJM (2014) Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecol Eng 66:36–42

    Google Scholar 

  361. Wu H, Zhang J, Ngo HH, Guo W, Liang S (2017) Evaluating the sustainability of free water surface flow constructed wetlands: methane and nitrous oxide emissions. J Clean Prod 147:152–156

    CAS  Google Scholar 

  362. Maucieri C, Barbera AC, Vymazal J, Borin M (2017) A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric For Meteorol 236:175–193

    Google Scholar 

  363. Gorsky AL, Racanelli GA, Belvin AC, Chambers RM (2019) Greenhouse gas flux from stormwater ponds in southeastern Virginia (USA). Anthropocene 28:100218

    Google Scholar 

  364. McPhillips L, Walter MT (2015) Hydrologic conditions drive denitrification and greenhouse gas emissions in stormwater detention basins. Ecol Eng 85:67–75

    Google Scholar 

  365. Badiou P, Page B, Ross L (2019) A comparison of water quality and greenhouse gas emissions in constructed wetlands and conventional retention basins with and without submerged macrophyte management for storm water regulation. Ecol Eng 127:292–301

    Google Scholar 

  366. Audet J, Vodder Carstensen M, Hoffmann CC, Lavaux L, Thiemer K, Davidson TA (2020) Greenhouse gas emissions from urban ponds in Denmark. Inland Waters 10:373–385

    CAS  Google Scholar 

  367. Peacock M, Audet J, Jordan S, Smeds J, Wallin MB (2019) Greenhouse gas emissions from urban ponds are driven by nutrient status and hydrology. Ecosphere 10:e02643

    Google Scholar 

  368. Stumpner EB, Kraus TEC, Liang YL, Bachand CM, Horwath WR, Bachand PAM (2018) Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based coagulants. Ecol Eng 111:176–185

    Google Scholar 

  369. Merriman LS, Moore TLC, Wang JW, Osmond DL, Al-Rubaei AM, Smolek AP, Blecken GT, Viklander M, Hunt WF (2017) Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones. Sci Total Environ 583:133–141

    CAS  Google Scholar 

  370. Mitsch WJ, Mander U (2018) Wetlands and carbon revisited. Ecol Eng 114:1–6

    Google Scholar 

  371. Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    CAS  Google Scholar 

  372. Chibueze Azubuike C, Blaise Chikere C, Chijioke OC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    Google Scholar 

  373. Ossai IC, Ahmed A, Hassan A, Shahul HF (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ Technol Innov 17:100526

    Google Scholar 

  374. Baldan E, Basaglia M, Fontana F, Shapleigh JP, Casella S (2015) Development, assessment and evaluation of a biopile for hydrocarbons soil remediation. Int Biodeterior Biodegrad 98:66–72

    CAS  Google Scholar 

  375. Kim T, Hong JK, Jho EH, Kang G, Yang DJ, Lee SJ (2019) Sequential biowashing-biopile processes for remediation of crude oil contaminated soil in Kuwait. J Hazard Mater 378:120710

    CAS  Google Scholar 

  376. Garcia-Carmona M, Romero-Freire A, Sierra Aragon M, Martinez-Garzon FJ, Martin Peinado FJ (2017) Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic. J Environ Manag 191:228–236

    CAS  Google Scholar 

  377. Iturbe R, Flores C, Chavez C, Bautista G, Torres L (2004) Remediation of contaminated soil using soil washing and biopile methodologies at a field level. J Soils Sediments 4:115

    CAS  Google Scholar 

  378. Llorens-Blanch G, Parladé E, Martinez-Alonso M, Gaju N, Caminal G, Blánquez P (2018) A comparison between biostimulation and bioaugmentation in a solid treatment of anaerobic sludge: drug content and microbial evaluation. Waste Manag 72:206–217

    CAS  Google Scholar 

  379. Morillo E, Villaverde J (2017) Advanced technologies for the remediation of pesticide-contaminated soils. Sci Total Environ 586:576–597

    CAS  Google Scholar 

  380. Gidudu B, Nkhalambayausi Chirwa EM (2020) The combined application of a high voltage, low electrode spacing, and biosurfactants enhances the bio-electrokinetic remediation of petroleum contaminated soil. J Clean Prod 276:122745

    CAS  Google Scholar 

  381. Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W (2017) Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci Total Environ 574:1599–1610

    CAS  Google Scholar 

  382. Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S, Yi H, Ren X (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    CAS  Google Scholar 

  383. Kong L, Gao Y, Zhou Q, Zhao X, Sun Z (2018) Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. J Hazard Mater 343:276–284

    CAS  Google Scholar 

  384. Rahman T, Seraj MF (2018) Available approaches of remediation and stabilisation of metal contamination in soil: A review. Am J Plant Sci 9:87344

    Google Scholar 

  385. Hatzinger PB, Lippincott DR (2019) Field demonstration of N-Nitrosodimethylamine (NDMA) treatment in groundwater using propane biosparging. Water Res 164:114923

    CAS  Google Scholar 

  386. EPA (2014) How to evaluate alternative cleanup technologies for underground storage tank sites. A guide for corrective action plan reviewers. Land emergency management 540IR

    Google Scholar 

  387. Gaur N, Narasimhulu K, PydiSetty Y (2018) Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod 198:1602–1631

    CAS  Google Scholar 

  388. Zouboulis AI, Moussas PA (2011) Groundwater and soil pollution: bioremediation. In: Nriagu JO (ed) Encyclopedia of environmental health. Elsevier, Amsterdam, pp 1037–1044

    Google Scholar 

  389. Das S, Dash HR (2014) Microbial bioremediation: a potential tool for restoration of contaminated areas. In: Das S (ed) Microbial biodegradation and bioremediation. Elsevier, Amsterdam, pp 1–21

    Google Scholar 

  390. Mosco MJ, Zytner RG (2017) Large-scale bioventing degradation rates of petroleum hydrocarbons and determination of scale-up factors. Biorem J 21:149–162

    Google Scholar 

  391. Priya R, Ramesh D, Khosla E (2020) Biodegradation of pesticides using density-based clustering on cotton crop affected by Xanthomonas malvacearum. Environ Dev Sustain 22:1353–1369

    Google Scholar 

  392. Miller RR (1996) Bioslurping. Ground-Water Remediation Technologies Analysis Center. Ground-Water Remediation Technologies Analysis Center, p 10

    Google Scholar 

  393. Kim S, Krajmalnik-Brown R, Kim JO, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497–498:250–259

    Google Scholar 

  394. Goswami M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P, Dey S, Tribeti P (2018) Bioaugmentation and biostimulation: a potential strategy for environmental remediation. J Microbiol Exp 6:223–231

    Google Scholar 

  395. Gopinath Kanissery R, Sims GK (2011) Biostimulation for the enhanced degradation of herbicides in soil. Appl Environ Soil Sci:843450

    Google Scholar 

  396. Chen P, Li J, Wang HY, Zheng RL, Sun GX (2017) Evaluation of bioaugmentation and biostimulation on arsenic remediation in soil through biovolatilization. Environ Sci Pollut Res 24:21739–21749

    CAS  Google Scholar 

  397. Simpanen S, Dahl M, Gerlach M, Mikkonen A, Malk V, Mikola J, Romantschuk M (2016) Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident. Environ Sci Pollut Res 23:25024–25038

    CAS  Google Scholar 

  398. Petsas AS, Vagi NC (2019) Trends in the bioremediation of pharmaceuticals and other organic contaminants using native or genetically modified microbial strains: a review. Curr Pharm Biotechnol 20:787–824

    CAS  Google Scholar 

  399. Cycoń M, Mrozik A, Piotrowska-Seget Z (2017) Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere 172:52–71

    Google Scholar 

  400. Varjani S, Upasani VN (2019) Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J Environ Manag 245:358–366

    CAS  Google Scholar 

  401. Kim JM, Le NT, Chung BS, Park JH, Bae JW, Madsen EL, Jeon CO (2008) Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 74:7313–73120

    CAS  Google Scholar 

  402. Zhang X, Yang YS, Lu Y, Wen YJ, Li PP, Zhang G (2018) Bioaugmented soil aquifer treatment for P-nitrophenol removal in wastewater unique for cold regions. Water Res 144:616–627

    CAS  Google Scholar 

  403. Tran HT, Lin C, Gui XT, Ngo HH, Kiprotich Cheruiyot N, Hoang HG, Vu CT (2021) Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. Sci Total Environ 753:142250

    CAS  Google Scholar 

  404. Ren X, Zeng G, Tang L, Wang J, Wan J, Deng Y, Liu Y, Peng B (2018) The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste Manag 72:138–149

    CAS  Google Scholar 

  405. Zhang Y, Zhu YG, Hout S, Qiao M, Nunan N, Garnier P (2011) Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes. Environ Sci Pollut Res 18:1574–1584

    CAS  Google Scholar 

  406. Chen X, Zhao Y, Zhang C, Zhang D, Yao C, Meng Q, Zhao R, Wei Z (2020) Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed. J Environ Manag 272:111109

    CAS  Google Scholar 

  407. Sanchez-Hernandez JC (2020) Vermiremediation of pharmaceutical-contaminated soils and organic amendments. In: The handbook of environmental chemistry. Springer, Berlin. https://doi.org/10.1007/698_2020_625

    Chapter  Google Scholar 

  408. Kokana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. In: Sparks DL (ed) Advances in agronomy. Elsevier, Amsterdam, pp 103–143

    Google Scholar 

  409. Kim JY, Oh S, Park YK (2020) Overview of biochar production from preservative-treated wood with detailed analysis of biochar characteristics, heavy metals behaviors, and their ecotoxicity. J Hazard Mater 384:121356

    CAS  Google Scholar 

  410. Izaurralde RC, McGill WB, Williams JR (2012) Development and application of the EPIC model for carbon cycle, greenhouse gas mitigation, and biofuel studies. In: Liebig MA, Franzluebbers AJ, Follett RF (eds) Managing agricultural greenhouse gases. Elsevier, Amsterdam, pp 293–308

    Google Scholar 

  411. Xu RK, Qafoku N, Van Ranst E, Li JY, Jiang J (2016) Adsorption properties of subtropical and tropical variable charge soils: implications from climate change and biochar amendment. In: Sparks DL (ed) Advances in agronomy. Elsevier, Amsterdam, pp 1–58

    Google Scholar 

  412. Carlile WR, Raviv M, Prasad M (2019) Organic soilless media components. In: Raviv M, Heinrich Lieth J, Bar-Tal A (eds) Soilless culture theory and practice. Elsevier, Amsterdam, pp 303–378

    Google Scholar 

  413. Kavitha B, Venkata Laxma Reddy P, Kim B, Lee SS, Pandey SK, Kim KH (2018) Benefits and limitations of biochar amendment in agricultural soils: a review. J Environ Manag 227:146–154

    CAS  Google Scholar 

  414. Dai Y, Zheng H, Jiang Z, Xing B (2020) Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis. Sci Total Environ 713:136635

    CAS  Google Scholar 

  415. Elliston T, Oliver IW (2020) Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris. Environ Sci Pollut Res 27:33410–33418

    CAS  Google Scholar 

  416. Llovet A, Mattana S, Chin-Pampillo C, Otero N, Carrey R, Mondini C, Gasco G, Margalef R, Alcañiz JM, Domene X, Ribas A (2021) Fresh biochar application provokes a reduction of nitrate which is unexplained by conventional mechanisms. Sci Total Environ 755:142430

    CAS  Google Scholar 

  417. Qi F, Dong Z, Lamb D, Naidu R, Bolan NS, Ok YS, Liu C, Khan N, Johir MAH, Semple KT (2017) Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemmosphere 180:564–573

    CAS  Google Scholar 

  418. Liu H, Xu F, Wang C, Zhang A, Li L, Xu H (2018) Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Sci Total Environ 645:702–709

    CAS  Google Scholar 

  419. Lu HP, Gasco G, Mendez A, Shen Y, Paz-Ferreiro J (2018) Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci Total Environ 622–623:899

    Google Scholar 

  420. Zielińska A, Oleszczuk P (2016) Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils. Environ Sci Pollut Res 23:21822–21832

    Google Scholar 

  421. Khosla K, Rathour R, Maurya R, Maheshwari N, Gnansounou E, Larroche C, Shekhar Thakur I (2017) Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. Bioresour Technol 245:743–750

    CAS  Google Scholar 

  422. Khalid S, Shahid M, Murtaza B, Bibi I, Natasha ANM, Khan Niazi N (2020) A critical review of different factors governing the fate of pesticides in soil under biochar application. Sci Total Environ 711:134645

    CAS  Google Scholar 

  423. Yavari S, Malakahmad A, Sapari NB, Yavari S (2016) Sorption-desorption mechanisms of imazapic and imazapyr herbicides on biochars produced from agricultural wastes. J Environ Chem Eng 4:3981–3989

    Google Scholar 

  424. Wu L, Bi E (2019) Sorption of ionic and neutral species of pharmaceuticals to loessial soil amended with biochars. Environ Sci Pollut Res 26:35871–35881

    CAS  Google Scholar 

  425. Puglisi E, Romaniello F, Galletti S, Boccaleri E, Frache A, Cocconcelli PS (2019) Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Sci Rep 9:14138

    Google Scholar 

  426. Ru J, Huo Y, Yang Y (2020) Microbial degradation and valorization of plastic wastes. Front Microbiol 11:142

    Google Scholar 

  427. Bailes G, Lind M, Ely A, Powell M, Moore-Kucera J, Miles C, Inglis D, Brodhagen M (2013) Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture. J Vis Exp 75:50373

    Google Scholar 

  428. Sun Z, Brittain JE, Sokolova E, Thygesen E, Jakob Saltveit S, Rauch S, Meland S (2018) Aquatic biodiversity in sedimentation ponds receiving road runoff – what are the key drivers? Sci Toal Environ 610–611:1527–1535

    Google Scholar 

  429. Muller A, Österlund H, Marsalek J, Viklander M (2020) The pollution conveyed by urban runoff: A review of sources. Sci Total Environ 709:136125

    CAS  Google Scholar 

  430. Hsu TTD, Mitsch WJ, Martin JF, Lee J (2017) Towards sustainable protection of public health: the role of an urban wetland as a frontline safeguard of pathogen and antibiotic resistance spread. Ecol Eng 108:547–555

    Google Scholar 

  431. Liu G, He T, Liu Y, Chen Z, Li L, Huang Q, Xie Z, Xie Y, Wu L, Liu J (2019) Study on the purification effect of aeration-enhanced horizontal subsurface-flow constructed wetland on polluted urban river water. Environ Sci Pollut Res 26:12867–12880

    CAS  Google Scholar 

  432. Singh NK, Gupta G, Upadhyay AK, Rai UN (2019) Biological wastewater treatment for prevention of river water pollution and reuse: perspectives and challenges. In: Singh R, Kolok A, Bartelt-Hunt S (eds) Water conservation, recycling and reuse: issues and challenges. Springer, Singapore, pp 81–93

    Google Scholar 

  433. Sharley DJ, Sharp SM, Marshal S, Jeppe K, Pettigrove VJ (2017) Linking urban land use to pollutants in constructed wetlands: implications for stormwater and urban planning. Landsc Urban Plan 162:80–91

    Google Scholar 

  434. Malaviya P, Singh A (2012) Constructed wetlands for management of urban stormwater runoff. Crit Rev Environ Sci Technol 42:2153–2214

    CAS  Google Scholar 

  435. Haberl R, Grego S, Langergraber G, Kadlec RH, Cicalini AR, Dias SM, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003) Constructed wetlands for the treatment of organic pollutants. J Soil Sediments 3:109–124

    CAS  Google Scholar 

  436. Scholz M, Lee BW (2005) Constructed wetlands: a review. Int J Environ Stud 62:421–447

    Google Scholar 

  437. Gorito AM, Ribeiro AR, Almeida CMR, Silva AMT (2017) A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ Pollut 227:428–443

    CAS  Google Scholar 

  438. Wang M, Zhang DQ, Dong JW, Tan SK (2017) Constructed wetlands for wastewater treatment in cold climate – A review. J Environ Sci 57:293–311

    CAS  Google Scholar 

  439. Sandoval L, Zamora-Castro SA, Vidal-Álvarez M, Marín-Muñiz JL (2019) Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: a review. Appl Sci 9:685

    CAS  Google Scholar 

  440. Koskiaho J, Puustinen M (2019) Suspended solids and nutrient retention in two constructed wetlands as determined from continuous data recorded with sensors. Ecol Eng 137:65–75

    Google Scholar 

  441. Varma M, Gupta AK, Ghosal PS, Majumder A (2021) A review on performance of constructed wetlands in tropical and cold climate: insights of mechanism, role of influencing factors, and system modification in low temperature. Sci Total Environ 755:142540

    CAS  Google Scholar 

  442. Babatunde AO, Zhao YQ, O’Neill M, O’Sullivan O (2008) Constructed wetlands for environmental pollution control: a review of developments, research and practice in Ireland. Environ Int 34:116–126

    CAS  Google Scholar 

  443. Vymazal J, Březinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    CAS  Google Scholar 

  444. Liu H, Hu Z, Zhang J, Ngo HH, Guo W, Liang S, Fan J, Lu S, Wu H (2016) Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: a review. Bioresour Technol 214:797–805

    CAS  Google Scholar 

  445. Arden S, Ma X (2018) Constructed wetlands for greywater recycle and reuse: a review. Sci Total Environ 630:587–599

    CAS  Google Scholar 

  446. Tang S, Liao Y, Xu Y, Dang Z, Zhu X, Ji G (2020) Microbial coupling mechanisms of nitrogen removal in constructed wetlands: a review. Bioresour Technol 314:123759

    CAS  Google Scholar 

  447. Bakhshoodeh R, Alavi N, Oldham C, Santos RM, Babaei AA, Vymazal J, Paydary P (2020) Constructed wetlands for landfill leachate treatment: A review. Ecol Eng 146:105725

    Google Scholar 

  448. Ilyas H, Masih I (2017) The performance of the intensified constructed wetlands for organic matter and nitrogen removal: a review. J Environ Manag 198:372–383

    CAS  Google Scholar 

  449. Kadlec RH (2016) Large constructed wetlands for phosphorus control: A review. Water 8:243

    Google Scholar 

  450. Jain M, Majumder A, Sarathi Ghosal P, Kumar GA (2020) A review on treatment of petroleum refinery and petrochemical plant wastewater: a special emphasis on constructed wetlands. J Environ Manag 272:111057

    CAS  Google Scholar 

  451. Türker OC, Vymazal J, Türe C (2014) Constructed wetlands for boron removal: a review. Ecol Eng 64:350–359

    Google Scholar 

  452. Karimian N, Johnston SG, Burton ED (2018) Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: a review. Chemosphere 197:802–816

    Google Scholar 

  453. Guan Y, Wang B, Gao Y, Liu W, Zhao X, Huang X, Yu J (2017) Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China: a review. Pedosphere 27:42–51

    CAS  Google Scholar 

  454. Ilyas H, van Hullebusch ED (2020) Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: a review. Environ Sci Pollut Res 27:14342–14364

    CAS  Google Scholar 

  455. Ilyas H, van Hullebusch ED (2020) A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands. J Environ Chem Eng 8:103793

    CAS  Google Scholar 

  456. Vymazal J, Březinová T (2015) The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ Int 75:11–20

    CAS  Google Scholar 

  457. Vyzmal J (2018) Does clogging affect long-term removal of organics and suspended solids in gravel-based horizontal subsurface flow constructed wetlands? Chem Eng J 331:663–674

    Google Scholar 

  458. Benvenuti T, Hamerski F, Giacobbo A, Bernardes AM, Zoppas-Ferreira J, Rodrigues MAS (2018) Constructed floating wetland for the treatment of domestic sewage: a real-scale study. J Environ Chem Eng 6:5706–5711

    CAS  Google Scholar 

  459. Khalifa ME, Abou El-Reash YG, Ahmed MI, Rizk FW (2020) Effect of media variation on the removal efficiency of pollutants from domestic wastewater in constructed wetland systems. Ecol Eng 143:105668

    Google Scholar 

  460. Gizińska-Górna M, Jóźwiakowski K, Marzec M (2020) Reliability and efficiency of pollutant removal in four-stage constructed wetland of SSVF-SSHF-SSHF-SSVF type. Water 12:3153

    Google Scholar 

  461. Zheng Y, Wang X, Dzakpasu M, Ge Y, Xiong J, Zhao Y (2016) Feasibility study on using constructed wetlands for remediation of a highly polluted Urban River in A semi-arid region of China. J Water Sustain 6:139–148

    CAS  Google Scholar 

  462. Bai X, Zhu X, Jiang H, Wang Z, He C, Sheng L, Zhuang J (2020) Purification effect of sequential constructed wetland for the polluted water in Urban River. Water 12:1054

    CAS  Google Scholar 

  463. Schwammberger PF, Lucke T, Walker C, Trueman SJ (2019) Nutrient uptake by constructed floating wetland plants during the construction phase of an urban residential development. Sci Total Environ 677:390–403

    CAS  Google Scholar 

  464. Adyel TM, Hipsey MR, Oldham CE (2017) Temporal dynamics of stormwater nutrient attenuation of an urban constructed wetland experiencing summer low flows and macrophyte senescence. Ecol Eng 102:641–661

    Google Scholar 

  465. Zheng Y, Wang XC, Dzakpasu M, Ge Y, Zhao Y, Xiong J (2016) Performance of a pilot demonstration-scale hybrid constructed wetland system for on-site treatment of polluted urban river water in Northwestern China. Environ Sci Pollut Res 23:447–454

    Google Scholar 

  466. Griffiths LN, Mitsch WJ (2020) Nutrient retention via sedimentation in a created urban stormwater treatment wetland. Sci Total Environ 727:138337

    CAS  Google Scholar 

  467. Kabenge I, Ouma G, Aboagye D, Banadda N (2018) Performance of a constructed wetland as an upstream intervention for stormwater runoff quality management. Environ Sci Pollut Res 25:36765–36774

    CAS  Google Scholar 

  468. Qasaimeh A, AlSharie H, Masoud T (2015) A review on constructed wetlands components and heavy metal removal from wastewater. J Environ Prot 6:58324

    Google Scholar 

  469. Walaszek M, Bois P, Laurent J, Lenormand E, Wanko A (2018) Urban stormwater treatment by a constructed wetland: Seasonality impacts on hydraulic efficiency, physico-chemical behavior and heavy metal occurrence. Sci Total Environ 637–638:443–454

    Google Scholar 

  470. Maniquiz-Redillas MC, Kim LH (2016) Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environ Technol 37:2265–2272

    CAS  Google Scholar 

  471. Hamad MTMH (2020) Comparative study on the performance of Typha latifolia and Cyperus Papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands. Chemosphere 260:127551

    CAS  Google Scholar 

  472. Tromp K, Lima AT, Barendregt A, Verhoeven JTA (2012) Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. J Hazard Mater 203–204:290–298

    Google Scholar 

  473. Schmitt N, Wanko A, Laurent J, Bois P, Molle P, Mose R (2015) Constructed wetlands treating stormwater from separate sewer networks in a residential Strasbourg urban catchment area: micropollutant removal and fate. J Environ Chem Eng 3:2816–2824

    CAS  Google Scholar 

  474. Terzakis S, Fountoulakis MS, Georgaki I, Albantakis D, Sabathianakis I, Karathanasis AD, Kalogerakis N, Manios T (2008) Constructed wetlands treating highway runoff in the Central Mediterranean region. Chemosphere 72:141–149

    CAS  Google Scholar 

  475. Qin Z, Zhao Z, X Adam A, Li Y, Chen D, Mela SM, Li H (2019) The dissipation and risk alleviation mechanism of PAHs and nitrogen in constructed wetlands: the role of submerged macrophytes and their biofilms-leaves. Environ Int 131:104940

    CAS  Google Scholar 

  476. Li Y, Zhu G, Ng WJ, Tan SK (2014) A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci Total Environ 468–469:908–932

    Google Scholar 

  477. Vo HNP, Bui XT, Nguyen TMH, Koottatep T, Bandyopadhyay A (2018) Insights of the removal mechanisms of pharmaceutical and personal care products in constructed wetlands. Curr Pollut Rep 4:93–103

    Google Scholar 

  478. Zhang X, Jing R, Feng X, Dai Y, Tao R, Vymazal J, Cai J, Yang Y (2018) Removal of acidic pharmaceuticals by small-scale constructed wetlands using different design configurations. Sci Total Environ 639:640–647

    CAS  Google Scholar 

  479. Vystavna Y, Frkova Z, Marchand L, Vergeles Y, Stolberg F (2017) Removal efficiency of pharmaceuticals in a full-scale constructed wetland in East Ukraine. Ecol Eng 108:50–58

    Google Scholar 

  480. Park J, Cho KH, Lee E, Lee S, Cho J (2018) Sorption of pharmaceuticals to soil organic matter in a constructed wetland by electrostatic interaction. Sci Total Environ 635:1345–1350

    CAS  Google Scholar 

  481. Hijosa-Valsero M, Reyes-Contreras C, Domínguez C, Bécares E, Bayona JM (2016) Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: influent, effluent, pore water, substrate and plant roots. Chemosphere 145:508–517

    CAS  Google Scholar 

  482. Berberidou C, Kitsiou V, Lambropoulou DA, Antoniadis A, Ntonou E, Zalidis GC, Poulios I (2017) Evaluation of an alternative method for wastewater treatment containing pesticides using solar photocatalytic oxidation and constructed wetlands. J Environ Manag 195:133–139

    CAS  Google Scholar 

  483. Gikas GD, Vryzas Z, Tsihrintzis VA (2018) S-metolachlor herbicide removal in pilot-scale horizontal subsurface flow constructed wetlands. Chem Eng J 339:108–116

    CAS  Google Scholar 

Download references

Acknowledgments

Authors were partly funded by the Lithuanian National Ecosystem Services Assessment and Mapping (LINESAM) Project, which has received funding from the European Social Fund project LINESAM no. 09.3.3-LMTK- 712-01-0104, under a grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, P. et al. (2021). Nature-Based Solutions Impact on Urban Environment Chemistry: Air, Soil, and Water. In: Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P. (eds) Nature-Based Solutions for Flood Mitigation. The Handbook of Environmental Chemistry, vol 107. Springer, Cham. https://doi.org/10.1007/698_2021_760

Download citation

Publish with us

Policies and ethics