Skip to main content

Freshwater and Matter Inputs in the Aegean Coastal System

  • Chapter
  • First Online:
The Aegean Sea Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 127))

Abstract

Largely using monitored data, we estimated water and nutrient fluxes to the Aegean Sea for two time periods, a past period (from 1980 to 1994 regarding discharge and 1980–1994 or broadly 1995–2000 regarding nutrients) and a recent period (between 2012 and 2015 for both, discharge and nutrients). The total water fluxes entering the Aegean were estimated to 481.4 km3/year, of which 62.3% were derived from the Black Sea via the Dardanelles straits, 26.8% by direct precipitation, 10.4% by the Balkan and Asian Minor rivers, and 2.2% by submarine springs. Regarding nutrients, considering only the Balkan rivers (in lack of data from Turkish rivers), the total fluxes of DIN (dissolved inorganic nitrogen) were 268.5 and of P-PO4 7.17 kt/year. The main DIN sources were the Black Sea inputs (48.4%) and precipitation (38.4%), whereas for phosphorus the rivers were the main contributors (46%). Considering this result, combined with the anticipated dramatic increase of hydropower production, there are concerns of enhanced future P limitation regarding marine photosynthesis as a result of more efficient phosphorus retention in reservoirs. Since silica is also massively retained within reservoirs, changes in riverine Si:N:P stoichiometry are expected to affect phytoplankton composition. Natural sediment fluxes were estimated to 61.8 Mt/year; however, sediment flux assessment includes large uncertainties. Retention of excessive sediment amounts within reservoirs, combined with a sea level rise, is expected to induce significant land losses in coastal areas. Finally, the Aegean Sea is still under threat regarding organic pollution, while there is a need for toxic pollutants monitoring and control in the circum-Aegean area to safeguard this spectacular environment for future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coll M, Piroddi C, Steenbeek J, Kaschner K, Lasram FBR, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:1–36. https://doi.org/10.1371/journal.pone.0011842

    Article  CAS  Google Scholar 

  2. United Nations Environment Programme/Mediterranean Action Plan (UNEP/MAP) (2012) Initial integrated assessment of the Mediterranean Sea: fulfilling step 3 of the ecosystem approach process. UNEP/MAP, Athens

    Google Scholar 

  3. Jordà G, Von Schuckmann K, Josey SA, Caniaux G, García-lafuente J, Sammartino S, Özsoy E, Polcher J, Notarstefano G, Poulain P et al (2017) The Mediterranean Sea heat and mass budgets: estimates, uncertainties and perspectives. Prog Oceanogr 156:174–208. https://doi.org/10.1016/j.pocean.2017.07.001

    Article  Google Scholar 

  4. Romanou A, Tselioudis G, Zerefos CS, Clayson CA, Curry JA, Andersson A (2010) Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J Clim 23:5268–5287. https://doi.org/10.1175/2010JCLI3525.1

    Article  Google Scholar 

  5. Uckac S, Garcia-Gorriz E, Stips A (2006) General estuarine transport model (GETM) validation by using In-situ measurements and remote sensing Data in the Aegean Sea. European Commission, Joint Research Centre, Luxembourg

    Google Scholar 

  6. Zodiatis G (1994) Advection of Black Sea water in the North Aegean Sea. Glob Atmos Ocean Syst 2:41–60

    Google Scholar 

  7. Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769. https://doi.org/10.1175/JHM600.1

    Article  Google Scholar 

  8. Tixeront J (1969) Le bilan hydrologique de la mer noire et de la mer Mediterranee. Int Assoc Sci Hydrol Bull 14:61–69. https://doi.org/10.1080/02626666909493754

    Article  Google Scholar 

  9. Mariotti A, Struglia MV (2002) The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J Clim 15:1674–1690

    Article  Google Scholar 

  10. Skliris N, Zika JD, Herold L, Josey SA, Marsh R (2018) Mediterranean Sea water budget long-term trend inferred from salinity observations. Clim Dyn 51:2857–2876. https://doi.org/10.1007/s00382-017-4053-7

    Article  Google Scholar 

  11. Jarosz E, Teague WJ, Book JW, Beşiktepe ŞT (2013) Observed volume fluxes and mixing in the Dardanelles Strait. J Geophys Res Ocean 118:5007–5021. https://doi.org/10.1002/jgrc.20396

    Article  Google Scholar 

  12. Huffman G, Adler R, Bolvin D, Nelkin E (2010) The TRMMMulti-satellite precipitation analysis (TMPA). In: Satellite rainfall applications for surface hydrology. Springer, Dordrecht, pp 3–22

    Chapter  Google Scholar 

  13. Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr 80:199–217. https://doi.org/10.1016/j.pocean.2009.02.001

    Article  Google Scholar 

  14. Zervakis V, Georgopoulos D, Karageorgis AP, Theocharis A (2004) On the response of the Aegean Sea to climatic variability: a review. Int J Climatol 24:1845–1858. https://doi.org/10.1002/joc.1108

    Article  Google Scholar 

  15. Montreuil O, Ludwig W (2013) Rivers of the Mediterrenean Sea: water discharge and nutrient fluxes. UNEP/MAP, MED POL

    Google Scholar 

  16. Kanakidou M, Mihalopoulos N, Kindap T, Im U, Vrekoussis M, Gerasopoulos E, Dermitzaki E, Unal A, Koçak M, Markakis K et al (2011) Megacities as hot spots of air pollution in the East Mediterranean. Atmos Environ 45:1223–1235. https://doi.org/10.1016/j.atmosenv.2010.11.048

    Article  CAS  Google Scholar 

  17. Powley HR, Krom MD, Emeis KC, Van Cappellen P (2014) A biogeochemical model for phosphorus and nitrogen cycling in the eastern Mediterranean Sea: part 2: response of nutrient cycles and primary production to anthropogenic forcing: 1950-2000. J Mar Syst 139:420–432. https://doi.org/10.1016/j.jmarsys.2014.08.017

    Article  Google Scholar 

  18. Tsiaras KP, Petihakis G, Kourafalou VH, Triantafyllou G (2014) Impact of the river nutrient load variability on the North Aegean ecosystem functioning over the last decades. J Sea Res 86:97–109. https://doi.org/10.1016/j.seares.2013.11.007

    Article  Google Scholar 

  19. Karydis M, Kitsiou D (2012) Eutrophication and environmental policy in the Mediterranean Sea: a review. Environ Monit Assess 184:4931–4984. https://doi.org/10.1007/s10661-011-2313-2

    Article  CAS  PubMed  Google Scholar 

  20. Krom MD, Kress N, Brenner S, Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol Oceanogr 36:424–432. https://doi.org/10.4319/lo.1991.36.3.0424

    Article  CAS  Google Scholar 

  21. Grizzetti B, Bouraoui F, Aloe A (2012) Changes of nitrogen and phosphorus loads to European seas. Glob Chang Biol 18:769–782. https://doi.org/10.1111/j.1365-2486.2011.02576.x

    Article  Google Scholar 

  22. United States Geological Survey shuttle radar topography mission 1 arc-second global. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects. Accessed 18 Jul 2016

  23. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  24. European Environment Agency (EEA) Copernicus Land Monitoring Service (2018) CORINE land cover CLC2018 version 2020_20u1. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018. Accessed 5 May 2020

  25. Ministry of Rural Development and Food of Greece Land Reclamation Projects and Exploitation of Soil – Water Resources-Rivers. http://www.minagric.gr/index.php/el/for-farmer-2/450-greek-content/eggeiesbeltioseis/sxedismowee/potamia. Accessed 1 May 2018

  26. Hellenic Centre for Marine Research Technical report on the evaluation of the existing monitoring network of environmental parameters and the need for upgrade and extension (2018) Hellenic integrated marine and inland water observing, Forecasting and Offshore Technology System (HIMIOFoTS). Institute of Marine Biological Resources and Inland Waters, Anavyssos

    Google Scholar 

  27. Ministry of Environment and Energy. Special Secretariat for Water National Water Monitoring Network of Greece. http://nmwn.ypeka.gr/?q=en. Accessed 1 May 2019

  28. Mentzafou A, Panagopoulos Y, Dimitriou E (2019) Designing the national network for automatic monitoring of water quality parameters in Greece. Water 11:1–22. https://doi.org/10.3390/w11061310

    Article  CAS  Google Scholar 

  29. Aksoy H (1982) Surface water. In: Water resources of Turkey. World water resources, vol 2. Springer, Cham, pp 127–158

    Chapter  Google Scholar 

  30. Donnelly C, Andersson JCM, Arheimer B (2016) Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol Sci J 61:255–273. https://doi.org/10.1080/02626667.2015.1027710

    Article  Google Scholar 

  31. Mentzafou A, Dimitriou E, Papadopoulos A (2015) Long-term hydrologic trends in the main greek. In: The handbook of environmental chemistry. Springer, Berlin, pp 41–53

    Google Scholar 

  32. Beven K (2012) Rainfall-runoff modelling: the primer.2nd edn. Wiley, Chichester

    Book  Google Scholar 

  33. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I – a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  34. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  35. National project Monitoring and Recording of the Water Status (Quality, Quantity, Pressures, Use) in Greece (2020)

    Google Scholar 

  36. Huffman GJ, Bolvin D, Nelkin EJ, Adler RF TRMM (TMPA) Precipitation L3 1 day 0.25 degree × 0.25 degree V7

    Google Scholar 

  37. Bakker MM, Govers G, Jones RA, Rounsevell MDA (2007) The effect of soil erosion on Europe’s crop yields. Ecosystems 10:1209–1219. https://doi.org/10.1007/s10021-007-9090-3

    Article  Google Scholar 

  38. García-Ruiz JM, Nadal-Romero E, Lana-Renault N, Beguería S (2013) Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198:20–36. https://doi.org/10.1016/j.geomorph.2013.05.023

    Article  Google Scholar 

  39. Vanmaercke M, Poesen J, Verstraeten G, de Vente J, Ocakoglu F (2011) Sediment yield in Europe: spatial patterns and scale dependency. Geomorphology 130:142–161. https://doi.org/10.1016/j.geomorph.2011.03.010

    Article  Google Scholar 

  40. Becvar M (2005) Estimating typical sediment concentration probability density functions from European rivers. MSc thesis, Cranfield University, UK: Cranfield

    Google Scholar 

  41. Kirkby MJ, Irvine BJ, Jones RJA, Govers G, Boer M, Cerdan O, Daroussin J, Gobin A, Grimm M, Le Bissonnais Y et al (2008) The PESERA coarse scale erosion model for Europe. I. – model rationale and implementation. Eur J Soil Sci 59:1293–1306. https://doi.org/10.1111/j.1365-2389.2008.01072.x

    Article  Google Scholar 

  42. Vanoni V (2006) Sedimentation engineering. American Society of Civil Engineers-ASCE, Reston

    Book  Google Scholar 

  43. Natural Resources Conservation Service (1983) United States Department of Agriculture National Engineering Handbook

    Google Scholar 

  44. Renfro GW (1975) Use of erosion equations and sediment delivery ratios for predicting sediment yield. In: Proceedings of the sediment yield workshop: present and prospective technology for predicting sediment yield and sources. USDA: 28–30 November, Washington, DC, pp 33–45

    Google Scholar 

  45. Williams JR, Berndt HD (1972) Sediment yield computed with universal equation. J Hydraul Div 98:2087–2098

    Article  Google Scholar 

  46. Maner SB (1958) Factors affecting sediment delivery rates in the red hills physiographic area. EOS Trans Am Geophys Union 39:669–675. https://doi.org/10.1029/TR039i004p00669

    Article  Google Scholar 

  47. McPherson HJ (1975) Sediment yields from intermediate-sized stream basins in southern Alberta. J Hydrol 25:243–257. https://doi.org/10.1016/0022-1694(75)90024-4

    Article  Google Scholar 

  48. Eurosion (2004) Living with coastal erosion in Europe: sediment and space for sustainability. Part II – maps and statistics. European Commission

    Google Scholar 

  49. Poulos SE, Chronis GT (1997) The importance of the river systems in the evolution of the Greek coastline. Bull Inst Oceanogr Monaco 18:75–96

    Google Scholar 

  50. Psilovikos A, Margoni S (2010) An empirical model of sediment deposition processes in Lake Kerkini, Central Macedonia Greece. Environ Monit Assess 164:573–592. https://doi.org/10.1007/s10661-009-0914-9

    Article  CAS  PubMed  Google Scholar 

  51. Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, Montanarella L, Alewell C (2015) The new assessment of soil loss by water erosion in Europe. Environ Sci Pol 54:438–447. https://doi.org/10.1016/j.envsci.2015.08.012

    Article  Google Scholar 

  52. Dimitriou E, Panagiotopoulos I, Mentzafou A, Anagnostou C (2018) Assessing the anthropogenic impacts on the fluvial water and sediment fluxes into the Thermaikos gulf, northern Greece. Environ Eng Manag J 17:1053–1068

    Article  Google Scholar 

  53. DSI Suspended Sediment Data For Surface Waters In Turkey (2006–2012) DSI: Ankara, 2013

    Google Scholar 

  54. BGR & UNESCO International Hydrogeological Map of Europe 1:1,500,000 (IHME1500). Digital map data v1.2 2019

    Google Scholar 

  55. European Environment Agency Nationally designated areas (CDDA) polygons for public access – version 17. https://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-14#tab-european-data. Accessed 1 May 2019

  56. Ministry of Agriculture and Forestry of the Republic of Turkey Ministry of Agriculture and Forestry of the Republic of Turkey Open Data Portal. http://veri.tarimorman.gov.tr/. Accessed 9 Jan 2020

  57. ICOLD (2011) Constitution status, Paris

    Google Scholar 

  58. Center for International Earth Science Information Network (CIESIN). Columbia University Documentation for the Gridded Population of the World. Version 4 (GPWv4). Revision 11 Data Sets

    Google Scholar 

  59. Kummu M, Taka M, Guillaume JHA Data from: gridded global datasets for gross domestic product and human development index over 1990-2015, Dataset

    Google Scholar 

  60. Hinkle D, Wiersma W, Jurs S (2003) Applied statistics for the behavioral sciences.5th edn. Houghton Mifflin, Boston

    Google Scholar 

  61. Marcuello C, Menéndez M (2003) Eurowaternet quantity. Technical guidelines for implementation. European Environment Agency

    Google Scholar 

  62. Bouraoui F, Grizzetti B, Aloe A (2010) Estimation of water fluxes into the Mediterranean Sea. J Geophys Res Atmos 115:1–12. https://doi.org/10.1029/2009JD013451

    Article  Google Scholar 

  63. Mattas C, Voudouris KS, Panagopoulos A (2014) Integrated groundwater resources management using the DPSIR approach in a GIS environment: a case study from the Gallikos River basin, North Greece. Water 6:1043–1068. https://doi.org/10.3390/w6041043

    Article  Google Scholar 

  64. Lazogiannis K, Paraskevopoulou V, Poulos S, Teou X, Kotsopoulos S, Farsirotou E, Ghionis G, Matiatos I, Panagopoulos A, Sifnioti DE, et al (2012) Seasonal variation of water discharge and suspended sediment concentration of the Pinios River (Thessaly) during the hydrological year 2012/13. In: Liakopoulos A, Kungolos A, Christodoulatos C, Koutsopsyros A, (eds.) Proceedings of the 12th international conference on protection and restoration of the environment, June 29 to July 3, 2014, Skiathos island, Greece. pp 325–331

    Google Scholar 

  65. Korzoun VI, Sokolov AA, Budyko MI, Voskresensky GP, Kalinin AA, Konoplyantsev ES, Korotkevich ES, Lvovich MI (1977) Atlas of world water balance. Maps and explanatory text. UNESCO Press, Paris

    Google Scholar 

  66. United Nations Environment Programme/Mediterranean Action Plan (UNEP/MAP) (1978) Provisional inventory data on surface water in the Mediterranean. In: Meeting of experts on fresh water resources management in the Mediterranean region, Cannes, 25–29/04/1978. UNEP/WG. 16/INF.6; UNEP/MAP: Cannes

    Google Scholar 

  67. Vörösmarty CJ, Fekete BM, Tucker BA (1998) Discarge compilation from The Global River Discharge (RivDIS) project. Distributed Active Archive Center, Oak Ridge National Laboratory, PANGAEA

    Google Scholar 

  68. Sadaoui M, Ludwig W, Bourrin F, Romero E (2018) The impact of reservoir construction on riverine sediment and carbon fluxes to the Mediterranean Sea. Prog Oceanogr 163:94–111. https://doi.org/10.1016/j.pocean.2017.08.003

    Article  Google Scholar 

  69. Poulos S (2019) River systems and their water and sediment fluxes towards the marine regions of the Mediterranean Sea and Black Sea earth system. An overview. Mediterr Mar Sci 20:549–565. https://doi.org/10.12681/mms.19514

    Article  Google Scholar 

  70. Wang F, Polcher J (2019) Assessing the freshwater flux from the continents to the Mediterranean Sea. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-44293-1

    Article  CAS  Google Scholar 

  71. Ludwig W, Bouwman AF, Dumont E, Lespinas F (2010) Water and nutrient fluxes from major Mediterranean and Black Sea rivers: past and future trends and their implications for the basin-scale budgets. Global Biogeochem Cycles 24:1–14. https://doi.org/10.1029/2009GB003594

    Article  CAS  Google Scholar 

  72. UNEP/MAP/MED POL (2003) Riverine transport of water, sediments and pollutants to the Mediterranesn Sea. MAP technical reports series No. 141, UNEP/MAP, Athens

    Google Scholar 

  73. PERSEUS – UNEP/MAP Report (2015) Atlas of riverine inputs to the Mediterranean Sea. UNEP/MAP

    Google Scholar 

  74. Skoulikidis NT (2009) The environmental state of rivers in the Balkans-a review within the DPSIR framework. Sci Total Environ 407:2501–2516. https://doi.org/10.1016/j.scitotenv.2009.01.026

    Article  CAS  PubMed  Google Scholar 

  75. Skoulikidis NT, Sabater S, Datry T, Morais MM, Buffagni A, Dörflinger G, Zogaris S, del Mar Sánchez-Montoya M, Bonada N, Kalogianni E et al (2017) Non-perennial Mediterranean rivers in Europe: status, pressures, and challenges for research and management. Sci Total Environ 577:1–18. https://doi.org/10.1016/j.scitotenv.2016.10.147

    Article  CAS  PubMed  Google Scholar 

  76. Margat J, Treyer S (2004) L’eau des Méditerranéens: situation et perspectives. In: No. 158 de la Série des rapports techniques du PAM, PNUE/PAM; PNUE/PAM/PLAN BLEU, Athènes

    Google Scholar 

  77. Kohli A, Frenken K (2015) Evaporation from Artificial Lakes and reservoirs. FAO AQUASTAT reports, FAO

    Google Scholar 

  78. Schwarz U (2020) Rivers of the wider Mediterranean basin. Overview of hydropower plants and projects, hydromorphological status and protected areas. Geota, EuroNatur, RiverWatch, Vienna

    Google Scholar 

  79. Ducrocq V, Drobinski P, Gualdi S, Raimbault P (2016) The water cycle in the Mediterranean. In: The Mediterranean region under climate change: a scientific update. Marseille, IRD Éditions, pp 73–81

    Chapter  Google Scholar 

  80. Mentzafou A, Dimitriou E, Papadopoulos A (2015) Long-term hydrologic trends in the Main Greek Rivers: a statistical approach. In: Skoulikidis N, Dimitriou E, Karaouzas I (eds.) The rivers of Greece. Evolution, current status and perspectives. The handbook of environmental chemistry, vol 59. Springer, Berlin, pp 129–165

    Google Scholar 

  81. Quintana-Seguí P, Martin E, Sánchez E, Zribi M, Vennetier M, Vicente-Serrano S, Vidal J-P (2016) Drought: observed trends, future projections. In: Thiebault S, Moatti JP (eds.) The Mediterranean region under climate change. IRD Editions. pp 123-131

    Google Scholar 

  82. Mimikou MA (1993) Extreme variations of the hydrological cycle in Greece. Variability or change? [in Greek with English abstract]. Tech Chron 13:67–81

    Google Scholar 

  83. Skoulikidis N (2000) Impact of desertification processes on Greek river systems. In: Balabanis P, Peter D, Ghazi A, Tsogas M (eds.) Mediterranean desertification. Research results and policy implications. Proceedings of the international conference 29 October to 1 November 1996, Crete, Greece, vol 2 (EUR 19303)/European Commission. pp 277–285

    Google Scholar 

  84. Gunduz M, Özsoy E, Hordoir R (2020) A model of Black Sea circulation with strait exchange (2008-2018). Geosci Model Dev 13:121–138. https://doi.org/10.5194/gmd-13-121-2020

    Article  Google Scholar 

  85. Vespremeanu E (2003) Lucrarile Statiunii De Cercetari Marine Si Fluviale Sfantu Gheorghe. University of Bucharest, Bucharest

    Google Scholar 

  86. Soliatkin E (1963) O vodom balanse Cernovo Moria [in Russian]. Okeanologhia 3:986–999

    Google Scholar 

  87. Neumann G, Pierson W (1966) Principles of physical oceanography. Prentice-Hall

    Google Scholar 

  88. Şerpoianu G (1973) Le bilan hydrologique de la Mer Noire. Cercet Mar 5–6:145–153

    Google Scholar 

  89. Bondar C (1986) Considerations on water balance of the Black Sea. Report on the chemistry of seawater. In: Proceedings of the XXXIII international conference on chemical and physical oceanography of the Black Sea. University of Sweden, Göteborg. pp 2–4

    Google Scholar 

  90. Unluata U, Oğuz T, Latif M, Ozsoy E (1990) On the physical oceanography of the Turkish Straits. In: Pratt LJ (ed) The physical oceanography of sea straits. NATO ASI Series (Mathematical and Physical Sciences), vol 318. Springer. pp 25–60

    Google Scholar 

  91. Ozsoy E, Unluata U (1997) Oceanography of the Black Sea: a review of some recent results. Earth-Science Rev 42:231–272. https://doi.org/10.1016/S0012-8252(97)81859-4

    Article  Google Scholar 

  92. Vespremeanu E, Golumbeanu M (2018) The Black Sea. Physical, environmental and historical perspectives. Springer, Cham

    Google Scholar 

  93. Tugrul S, Besiktepe T, Salihoglu I (2002) Nutrient exchange fluxes between the Aegean and Black Seas through the Marmara Sea. Mediterr Mar Sci 3:33–42. https://doi.org/10.12681/mms.256

    Article  Google Scholar 

  94. Nittis K, Perivoliotis L, Korres G, Tziavos C, Thanos I (2006) Operational monitoring and forecasting for marine environmental applications in the Aegean Sea. Environ Model Softw 21:243–257. https://doi.org/10.1016/j.envsoft.2004.04.023

    Article  Google Scholar 

  95. Korres G, Lascaratos A, Hatziapostolou E, Katsafados P (2002) Towards an ocean forecasting system for the Aegean Sea. Glob Atmos Ocean Syst 8:191–218. https://doi.org/10.1080/1023673029000003534

    Article  Google Scholar 

  96. Kourafalou VH, Barbopoulos K (2003) High resolution simulations on the North Aegean Sea seasonal circulation. Ann Geophys 21:251–265. https://doi.org/10.5194/angeo-21-251-2003

    Article  Google Scholar 

  97. Zektser IS, Everett LG (2004) Groundwater resources of the world and their use. No. 6 in IHP-VI, series on groundwater no.6. UNESCO Press, Paris

    Google Scholar 

  98. Rodellas V, Garcia-Orellana J, Masqué P, Feldman M, Weinstein Y, Boyle EA (2015) Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc Natl Acad Sci U S A 112:3926–3930. https://doi.org/10.1073/pnas.1419049112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kallergis G (1979) Groundwater potential [in Greek]. In: Greek water resources. Athens, Association of Mining Enterprises, pp 456–471

    Google Scholar 

  100. Ministry for Development (2003) Master plan for the management of Greek water resources [in Greek]. Directorate of Aquatic and Natural Resources, Athens

    Google Scholar 

  101. Micheli F, Halpern BS, Walbridge S, Ciriaco S, Ferretti F, Fraschetti S, Lewison R, Nykjaer L, Rosenberg AA (2013) Cumulative human impacts on Mediterranean and Black Sea marine ecosystems : assessing current pressures and opportunities. PLoS One 8:1–10. https://doi.org/10.1371/journal.pone.0079889

    Article  CAS  Google Scholar 

  102. Kacar A (2011) Analysis of spatial and temporal variation in the levels of microbial fecal indicators in the major rivers flowing into the Aegean Sea, Turkey. Ecol Indic 11:1360–1365. https://doi.org/10.1016/j.ecolind.2011.02.010

    Article  CAS  Google Scholar 

  103. Ruhi A, Messager ML, Olden JD (2018) Tracking the pulse of the Earth’s fresh waters. Nat Sustain 1:198–203. https://doi.org/10.1038/s41893-018-0047-7

    Article  Google Scholar 

  104. Angelidis M, Markantonatos P, Bacalis N (1995) Impact of human activities on the quality of river water: the case of Evrotas river catchment basin, Greece. Environ Monit Assess 35:137–153. https://doi.org/10.1007/BF00633711

    Article  CAS  PubMed  Google Scholar 

  105. Skoulikidis NT (1989) Biogeochemie der groessten fluesse griechenlands. PhD thesis, University of Hamburg, Hamburg

    Google Scholar 

  106. Bellos D, Sawidis T, Tsekos I (2004) Nutrient chemistry of river Pinios (Thessalia, Greece). Environ Int 30:105–115. https://doi.org/10.1016/S0160-4120(03)00153-3

    Article  CAS  PubMed  Google Scholar 

  107. HCMR (2016) Monitoring of the ecological water quality of rivers, coastal and transitional waters of Greece to implement the Article 8 of Water Framework Directive 2000/60/EC. Ministry of Environment and Energy. Special Secretariat of Water, Anavyssos

    Google Scholar 

  108. Krom MD, Herut B, Mantoura RFC (2004) Nutrient budget for the eastern Mediterranean: implications for phosphorus limitation. Limnol Oceanogr 49:1582–1592. https://doi.org/10.4319/lo.2004.49.5.1582

    Article  CAS  Google Scholar 

  109. Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis T (2003) Assessment of the surface water quality in northern Greece. Water Res 37:4119–4124. https://doi.org/10.1016/S0043-1354(03)00398-1

    Article  CAS  PubMed  Google Scholar 

  110. European Environment Agency (EEA) (2018) European waters. Assessment of status and pressures. EEA report no 7/2018, European Environment Agency (EEA), Copenhagen

    Google Scholar 

  111. Skoulikidis N, Zogaris S, Karaouzas I (2021) Rivers of the Balkans. In: Rivers of Europe. Academic Press, Elsevier, Amsterdam

    Google Scholar 

  112. Souvermezoglou E, Krasakopoulou E, Pavlidou A (2014) Temporal and spatial variability of nutrients and oxygen in the North Aegean Sea during the last thirty years. Mediterr Mar Sci 15:805–822. https://doi.org/10.12681/mms.1017

    Article  Google Scholar 

  113. Malagó A, Bouraoui F, Grizzetti B, De Roo A (2019) Modelling nutrient fluxes into the Mediterranean Sea. J Hydrol Reg Stud 22:100592. https://doi.org/10.1016/j.ejrh.2019.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  114. Krom MD, Emeis KC, Van Cappellen P (2010) Why is the eastern Mediterranean phosphorus limited? Prog Oceanogr 85:236–244. https://doi.org/10.1016/j.pocean.2010.03.003

    Article  Google Scholar 

  115. Konidaris A, Georgoulas A, Angelidis P, Kotsovinos N (2008) Simulation of the discharge of brackish waters from the Dardanelles into the North Aegean. In: Proceedings of the international conference studying, modeling and sense making of planet earth, Mytilene, Greece, 6/6/2008. pp 1–8

    Google Scholar 

  116. Polat C, Tugrul S (1996) Chemical exchange between the Mediterranean and Black Sea via the Turkish straits. Bull Inst Océanogr Monaco 17:167–186

    Google Scholar 

  117. Zeri C, Beşiktepe Ş, Giannakourou A, Krasakopoulou E, Tzortziou M, Tsoliakos D, Pavlidou A, Mousdis G, Pitta E, Scoullos M et al (2014) Chemical properties and fluorescence of DOM in relation to biodegradation in the interconnected Marmara-North Aegean Seas during August 2008. J Mar Syst 135:124–136. https://doi.org/10.1016/j.jmarsys.2013.11.019

    Article  Google Scholar 

  118. Siokou-Frangou I, Bianchi M, Christaki U, Christou ED, Giannakourou A, Gotsis O, Ignatiades L, Pagou K, Pitta P, Psarra S et al (2002) Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea). J Mar Syst 33–34:335–353. https://doi.org/10.1016/S0924-7963(02)00065-9

    Article  Google Scholar 

  119. Krasakopoulou Ε, Zeri C, Souvermezoglou E, Pitta E (2021) Ιnsights into the nutrients and carbon pools and dynamics in the Aegean Sea. In: The handbook of environmental chemistry. Springer, Cham (this issue)

    Google Scholar 

  120. Neal C, Reynolds B, Neal M, Hughes S, Wickham H, Hill L, Rowland P, Pugh B (2003) Soluble reactive phosphorus levels in rainfall, cloud water, throughfall, stemflow, soil waters, stream waters and groundwaters for the Upper River Severn area, Plynlimon, mid Wales. Sci Total Environ 314–316:99–120. https://doi.org/10.1016/S0048-9697(03)00099-8

    Article  CAS  PubMed  Google Scholar 

  121. Neal C, Reynolds B, Neal M, Hill L, Wickham H, Pugh B (2003) Nitrogen in rainfall, cloud water, throughfall, stemflow, stream water and groundwater for the Plynlimon catchments of mid-Wales. Sci Total Environ 314–316:121–151. https://doi.org/10.1016/S0048-9697(03)00100-1

    Article  CAS  PubMed  Google Scholar 

  122. De A (2016) Air quality and climate in the Mediterranean region. Sub-chapter 1.4.3 Atmospheric deposition to nutrient depleted seawater. In: The Mediterranean region under climate change. a scientific update. IRD editions: Marseille. pp 165–169

    Google Scholar 

  123. Karaouzas I, Smeti E, Vourka A, Vardakas L, Mentzafou A, Tornés E, Sabater S, Muñoz I, Skoulikidis NT, Kalogianni E (2018) Assessing the ecological effects of water stress and pollution in a temporary river – implications for water management. Sci Total Environ 618:1591–1604. https://doi.org/10.1016/j.scitotenv.2017.09.323

    Article  CAS  PubMed  Google Scholar 

  124. Markaki Z, Loÿe-Pilot MD, Violaki K, Benyahya L, Mihalopoulos N (2010) Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. Mar Chem 120:187–194. https://doi.org/10.1016/j.marchem.2008.10.005

    Article  CAS  Google Scholar 

  125. Kouvarakis G, Mihalopoulos N, Tselepides A, Stavrakakis S (2001) On the importance of atmospheric inputs of inorganic nitrogen species on the productivity of the Eastern Mediterranean Sea. Global Biogeochem Cycles 15:805–817. https://doi.org/10.1029/2001GB001399

    Article  CAS  Google Scholar 

  126. Markaki Z, Oikonomou K, Kocak M, Kouvarakis G, Chaniotaki A, Kubilay N, Mihalopoulos N (2003) Atmospheric deposition of inorganic phosphorus in the Levantine Basin, eastern Mediterranean: spatial and temporal variability and its role in seawater productivity. Limnol Oceanogr 48:1557–1568. https://doi.org/10.4319/lo.2003.48.4.1557

    Article  CAS  Google Scholar 

  127. Christodoulaki S, Petihakis G, Kanakidou M, Mihalopoulos N, Tsiaras K, Triantafyllou G (2013) Atmospheric deposition in the eastern Mediterranean. A driving force for ecosystem dynamics. J Mar Syst 109–110:78–93. https://doi.org/10.1016/j.jmarsys.2012.07.007

    Article  Google Scholar 

  128. Christodoulaki S, Petihakis G, Mihalopoulos N, Tsiaras K, Triantafyllou G, Kanakidou M (2016) Human-driven atmospheric deposition of N and P controls on the East Mediterranean marine ecosystem. J Atmos Sci 73:1611–1619. https://doi.org/10.1175/JAS-D-15-0241.1

    Article  Google Scholar 

  129. Maavara T, Parsons CT, Ridenour C, Stojanovic S, Dürr HH, Powley HR, Van Cappellen P (2015) Global phosphorus retention by river damming. Proc Natl Acad Sci U S A 112:15603–15608. https://doi.org/10.1073/pnas.1511797112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Donald DB, Parker BR, Davies JM, Leavitt PR (2015) Nutrient sequestration in the Lake Winnipeg watershed. J Great Lakes Res 41:630–642. https://doi.org/10.1016/j.jglr.2015.03.007

    Article  CAS  Google Scholar 

  131. Maavara T, Dürr HH, Van Cappellen P (2014) Worldwide retention of nutrient silicon by river damming: from sparse data set to global estimate. Global Biogeochem Cycles 28:842–855. https://doi.org/10.1002/2014GB004875

    Article  CAS  Google Scholar 

  132. Ittekkot V, Humborg C, Schäfer P (2000) Hydrological alterations and marine biogeochemistry: a silicate issue? Bioscience 50:776–782. https://doi.org/10.1641/0006-3568(2000)050[0776:HAAMBA]2.0.CO;2

    Article  Google Scholar 

  133. Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V (2000) Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29:45–50. https://doi.org/10.1579/0044-7447-29.1.45

    Article  Google Scholar 

  134. Alaton IA, Gurel M, Eremektar G, Ovez S, Tanik A, Seker DZ, Orhon D (2006) Urban wastewater treatment plants and reuse potential in Turkey: selected examples from the western cities. Int J Environ Pollut 28:115–127. https://doi.org/10.1504/IJEP.2006.010879

    Article  CAS  Google Scholar 

  135. Harmancioglu N, Altinbilek D (2020) Water resources of Turkey, vol 2. Springer, Cham

    Google Scholar 

  136. Stamou AI, Kamizoulis G (2009) Estimation of the effect of the degree of sewage treatment on the status of pollution along the coastline of the Mediterranean Sea using broad scale modelling. J Environ Manag 90:931–939. https://doi.org/10.1016/j.jenvman.2008.02.008

    Article  CAS  Google Scholar 

  137. Androulidakis YS, Kourafalou VH (2011) Evolution of a buoyant outflow in the presence of complex topography: the Dardanelles plume (North Aegean Sea). J Geophys Res Ocean 116:1–24. https://doi.org/10.1029/2010JC006316

    Article  Google Scholar 

  138. Karaouzas I, Kapetanaki N, Mentzafou A, Kanellopoulos TD, Skoulikidis N (2021) Heavy metal contamination status in Greek surface waters: a review with application and evaluation of pollution indices. Chemosphere 263:128–192. https://doi.org/10.1016/j.chemosphere.2020.128192

  139. Karageorgis AP, Nikolaidis NP, Karamanos H, Skoulikidis N (2003) Water and sediment quality assessment of the Axios River and its coastal environment. Cont Shelf Res 23:1929–1944. https://doi.org/10.1016/j.csr.2003.06.009

    Article  Google Scholar 

  140. Akcay H, Oguz A, Karapire C (2003) Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Res 37:813–822. https://doi.org/10.1016/S0043-1354(02)00392-5

    Article  CAS  PubMed  Google Scholar 

  141. Hart V (2000) The biogeochemistry and distribution of dissolved trace metals in the Aegean Sea. PhD thesis, University of Southampton, Faculty of Science, School of Ocean and Earth, Southampton

    Google Scholar 

  142. Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. review on occurrence and levels. Environ Pollut 141:555–570. https://doi.org/10.1016/j.envpol.2005.07.024

    Article  CAS  PubMed  Google Scholar 

  143. Lambropoulou D, Hela D, Koltsakidou A, Konstantinou I (2018) Overview of the pesticide residues in Greek rivers: occurrence and environmental risk assessment. In: Skoulikidis N, Dimitriou E, Karaouzas I (eds) The rivers of Greece. The handbook of environmental chemistry, vol 59. Springer, Berlin, pp 205–240

    Chapter  Google Scholar 

  144. The Commission on the Protection of the Black Sea Against Pollution (2019) Black Sea state of environment report 2009–2014/5. In: Krutov A (ed) Publications of the commission on the protection of the Black Sea Against Pollution (BSC): Instabul

    Google Scholar 

  145. Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544. https://doi.org/10.1086/629606

    Article  Google Scholar 

  146. Poulos SE, Collins MB (2002) Fluviatile sediment fluxes to the Mediterranean Sea: a quantitative approach and the influence of dams. In: Jones SJ, Frostick LE (eds) Sediment flux to basins: causes, controls and consequences. Geological Society, London, pp 227–245

    Google Scholar 

  147. Kanellopoulos TD, Angelidis MO, Karageorgis AP, Kaberi H, Kapsimalis V, Anagnostou C (2006) Geochemical composition of the uppermost prodelta sediments of the Evros River, northeastern Aegean Sea. J Mar Syst 63:63–78. https://doi.org/10.1016/j.jmarsys.2006.05.007

    Article  Google Scholar 

  148. Poulos S, Alexandrakis G (2005) Seasonal fluctuation of the sediments (in suspension) yield of parts of Greek river catchments and its relation to the corresponding values of water yield [in Greek with English abstract]. In: Proceedings of 7th hellenic hydrogeological conference, 4–6 October 2005, Athens, Greece; Geological Society of Greece, Athens. pp 437–444

    Google Scholar 

  149. Poulos S (1997) Sediment yield of Greek Rivers [in Greek]. In: Proceedings of 5th Hellenic symposium on oceanography and fisheries, vol I. Athens, National Centre of Marine Research, pp 481–482

    Google Scholar 

  150. Zarris D, Vlastara M, Panagoulia D (2011) Sediment delivery assessment for a transboundary Mediterranean catchment: the example of Nestos River catchment. Water Resour Manag 25:3785–3803. https://doi.org/10.1007/s11269-011-9889-8

    Article  Google Scholar 

  151. Paraskevopoulos-Georgiadis Ltd (2001) Pilot study for the assessment of water bodies as heavily modified-case study the Nestos River [in Greek]. In: Public power corporation, directory for the development of hydraulic works, Athens

    Google Scholar 

  152. Psilovikos A, Papaphilippou-Pennou E, Almpanakis K, Vouvalidis K (1994) Bedload transport and deposition in the river Slrymon artificial channel before its reach to the Kerkini reservoir [in Greek]. Bull Geol Soc Greece XXX:149–155

    Google Scholar 

  153. Crivelli AJ, Catsadorakis G, Malakou M, Rosecchi E (1997) Fish and fisheries of the Prespa lakes. Hydrobiologia 351:107–125. https://doi.org/10.1023/A:1003064509018

    Article  Google Scholar 

  154. Milliman JD, Syvitski JPM (1994) Geomorphic/tectonic control of Sediment discharge to the ocean: the importance of Small mountainous Rivers. In: National Research Council (ed) Material fluxes on the surface of the earth. The National Academies Press, Washington, pp 74–85

    Google Scholar 

  155. Milliman JD, Bonaldo D, Carniel S (2016) Flux and fate of river-discharged sediments to the Adriatic Sea. Adv Oceanogr Limnol 7:106–114. https://doi.org/10.4081/aiol.2016.5899

    Article  CAS  Google Scholar 

  156. Poulos SE, Collins M, Evans G (1996) Water-sediment fluxes of Greek rivers, southeastern alpine Europe: annual yields, seasonal variability, delta formation and human impact. Z Geomorphol 40:243–261

    Article  Google Scholar 

  157. Kao SJ, Milliman JD (2008) Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. J Geol 116:431–448. https://doi.org/10.1086/590921

    Article  Google Scholar 

  158. Townsend-Small A, McClain ME, Hall B, Noguera JL, Llerena CA, Brandes JA (2008) Suspended sediments and organic matter in mountain headwaters of the Amazon River: results from a 1-year time series study in the central Peruvian Andes. Geochim Cosmochim Acta 72:732–740. https://doi.org/10.1016/j.gca.2007.11.020

    Article  CAS  Google Scholar 

  159. Moon JY, Lee K, Tanhua T, Kress N, Kim IN (2016) Temporal nutrient dynamics in the Mediterranean Sea in response to anthropogenic inputs. Geophys Res Lett 43:5243–5251. https://doi.org/10.1002/2016GL068788

    Article  CAS  Google Scholar 

  160. Zogaris S, Skoulikidis N, Dimitriou E (2017) River and wetland restoration in Greece: lessons from biodiversity conservation initiatives. In: Skoulikidis N, Dimitriou E, Karaouzas I (eds) The rivers of Greece: evolution, current status and perspectives. Handbook of environmental chemistry, vol 59. Springer, Berlin, pp 403–431

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Th. Skoulikidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skoulikidis, N.T., Mentzafou, A. (2021). Freshwater and Matter Inputs in the Aegean Coastal System. In: Anagnostou, C.L., Kostianoy, A.G., Mariolakos, I.D., Panayotidis, P., Soilemezidou, M., Tsaltas, G. (eds) The Aegean Sea Environment. The Handbook of Environmental Chemistry, vol 127. Springer, Cham. https://doi.org/10.1007/698_2020_732

Download citation

Publish with us

Policies and ethics