Skip to main content

Evolution of 137Cs Activity Concentration in the Aegean Sea

  • Chapter
  • First Online:
The Aegean Sea Environment

Abstract

A review of the evolution of 137Cs activity concentrations in the Aegean Sea is presented almost 34 years after the Chernobyl accident. The data from field measurements are interpreted considering the different water masses present in the Aegean Sea, for better understanding of 137Cs spatial and temporal variation. The last 15 years, a lot of effort is given in the study of the vertical advection of 137Cs and the related processes in the deep basins of the Aegean Sea. These results provided significant information about the average values along with depth of the velocity and diffusion parameters. The role of 137Cs as a circulation and mixing tracer is undergoing a gradual weakening, since the gradient of its activity concentration between the water masses is small. 137Cs is proved to be a valuable radiotracer for identifying the Black Sea Water masses since they are still enriched with higher values of 137Cs compared to the background values in the Mediterranean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarkrog A, Boelskifte S, Dahlgaard H, Duniec S, Hallstadius L, Holm E, Smith JN (1987) Technetium-99 and Cesium-134 as long distance tracers in Arctic waters. Estuar Coast Shelf Sci 24:637–647

    CAS  Google Scholar 

  2. Buesseler KO, Livingston HD, Honjo S, Hay BJ, Konuk T, Kempe S (1990) Scavenging and particle deposition in the southwestern Black Sea-evidence from Chernobyl radiotracers. Deep-Sea Res 37(3):413–430

    CAS  Google Scholar 

  3. Ikeuchi Y, Amano H, Aoyama M, Berezhnov VI, Chaykovskaya E, Chumichev VB, Chung CS, Gastaud J, Hirose K, Hong GH, Kim CK, Kim SH, Miyao T, Morimoto T, Nikitin A, Oda K, Petterson HBL, Povinec PP, Tkalin A, Togawa O, Velatova NK (1999) Anthropogenic radionuclides in seawater of the far eastern seas. Sci Total Environ 237(238):203–212

    PubMed  Google Scholar 

  4. Pavlov V, Stanovoy V (2001) The problem of transfer of radionuclide pollution by sea ice. Mar Pollut Bull 42(4):319–323

    CAS  PubMed  Google Scholar 

  5. Povinec PP, Bailly du Bois P, Kershaw PJ, Nies H, Scotto P (2003) Temporal and spatial trends in the dispersion of 137Cs in surface waters of Nothern Eurorean seas-a record of 40 years of investigations. Deep-Sea Res II 50:2785–2801

    CAS  Google Scholar 

  6. Povinec PP, Hirose K, Honda T, Ito T, Scott EM, Togawa O (2004) Spatial distribution of 3H, 90Sr, 137Cs and 239,240Pu in surface waters of the Pacific and Indian oceans-GLOMARD database. J Environ Radioact 76:113–137

    CAS  PubMed  Google Scholar 

  7. Lee SH, Povinec PP, Gastaud J, Oregioni B, Coppola L, Jeandel C, Morgenstern U, Top Z (2004) Radionuclides as tracers of water masses in the Southern Ocean –ANTARES IV results. Proceedings of an international conference: isotopes in environmental studies, aquatic forum 2004. IAEA, Monaco. pp 43–46

    Google Scholar 

  8. Men W, He J, Wang F, Wen Y, Li Y, Huang J, Yu X (2015) Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident. Sci Rep 5:7757

    PubMed  PubMed Central  Google Scholar 

  9. Livingston HD, Povinec PP (2000) Anthropogenic marine radioactivity. Ocean Coast Manag 43:689–712

    Google Scholar 

  10. Fowler SW, Buat-Menard P, Yokoyama Y, Ballestra S, Holm E, Nguyen HV (1987) Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity. Nature 329:56–58

    CAS  PubMed  Google Scholar 

  11. Papucci C, Delfanti R (1999) 137Caesium distribution in the eastern Mediterranean Sea: recent changes and future trends. Sci Total Environ 237–238:67–75

    PubMed  Google Scholar 

  12. Delfanti R, Ozsoy E, Kaberi H, Schirone A, Salvi S, Conte F, Tsabaris C, Papucci C (2014) Evolution and fluxes of 137Cs in the Black Sea/Turkish straits system/North Aegean Sea. J Mar Syst 135:117–123

    Google Scholar 

  13. Gascó C, Antón MP, Pozuelo M, Meral J, González AM, Papucci C, Delfanti R (2002) Distributions of Pu, Am and Cs in margin sediments from the western Mediterranean (Spanish coast). J Environ Radioact 59(1):75–89

    PubMed  Google Scholar 

  14. Tsabaris C, Zervakis V, Kaberi H, Delfanti R, Georgopoulos D, Lampropoulou M, Kalfas CA (2014) 137Cs vertical distribution at the deep basins of the north and Central Aegean Sea, Greece. J Environ Radioact 132:47–56

    CAS  PubMed  Google Scholar 

  15. Tsabaris C, Kaberi H, Pappa FK, Leivadaros P, Delfanti R, Krasakopoulou E, Zervakis V (2020) Vertical distribution and temporal trends of 137Cs at Lemnos and Cretan deep basins of the Aegean Sea, Greece. Deep-Sea Res II Top Stud Oceanogr 171:104603

    CAS  Google Scholar 

  16. Liezers M, Farmer OT, Thomas M (2009) Low level detection of 135Cs and 137Cs in environmental samples by ICP-MS. J Radioanal Nucl Chem 282:309–313

    CAS  Google Scholar 

  17. Eliades J, Zhao X-L, Litherland AE, Kieser WE (2013) On-line chemistry for the AMS analysis of 90Sr and 135,137Cs. Nucl Instrum Methods Phys Res B 294:361–363

    CAS  Google Scholar 

  18. Roos P (2008) Analysis of radionuclides using ICPMS. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 295–330

    Google Scholar 

  19. Aoyama M, Hirose K, Miyao T, Igarashi Y (2000) Low level 137Cs measurements in deep seawater samples. Appl Radiat Isot 53:159–162

    CAS  PubMed  Google Scholar 

  20. Park JH, Chang BU, Kim YJ, Seo JS, Choi SW, Yun JY (2008) Determination of low 137Cs concentration in seawater using ammonium 12-molybdophosphate adsorption and chemical separation method. J Environ Radioact 99:1815–1818

    CAS  PubMed  Google Scholar 

  21. Evangeliou N, Florou H (2012) The dispersion of 137Cs in a shallow Mediterranean embayment (Saronikos Gulf – Elefsis Bay), estimated inventories and residence times. J Environ Radioact 113:87–97

    CAS  PubMed  Google Scholar 

  22. Tsabaris C, Ballas D (2005) On line gamma-ray spectroscopy at open sea. Appl Radiat Isot 62:83–89

    CAS  PubMed  Google Scholar 

  23. Tsabaris C (2008) Monitoring natural and artificial radioactivity enhancement in the Aegean Sea using floating measuring systems. Appl Radiat Isot 66:1599–1603

    CAS  PubMed  Google Scholar 

  24. Wedekind C, Schilling G, Grüttmüller M, Becker K (1999) Gamma-radiation monitoring network at sea. Appl Radiat Isot 50:733–741

    CAS  Google Scholar 

  25. Tsabaris C, Thanos I (2004) An underwater sensing system for monitoring radioactivity in the marine environment. Mediterr Mar Sci 5:5–17

    Google Scholar 

  26. Tsabaris C, Thanos I, Dakladas T (2005) The development and application of an underwater γ-spectrometer in the marine environment. Radioprotection 40(1):677–683

    Google Scholar 

  27. Tsabaris C, Bagatelas C, Dakladas T, Papadopoulos CT, Vlastou R, Chronis GT (2008) An autonomous in situ detection system for radioactivity measurements in the marine environment. Appl Radiat Isot 66:1419–1426

    CAS  PubMed  Google Scholar 

  28. Tsabaris C, Scholten J, Karageorgis AP, Comanducci JF, Georgopoulos D, Liong Wee Kwong L, Patiris DL, Papathanassiou E (2010) Underwater in situ measurements of radionuclides in selected submarine groundwater springs, Mediterranean Sea. Radiat Prot Dosimetry 142:273–281

    CAS  PubMed  Google Scholar 

  29. Tsabaris C, Prospathopoulos A (2011) Automated quantitative analysis of in-situ NaI measured spectra in the marine environment using a wavelet-based smoothing technique. Appl Radiat Isot 69:1546–1553

    CAS  PubMed  Google Scholar 

  30. Davis P, Avadhanula MR, Cancio D, Carboneras P, Coughtrey P, Johansson G, Little RH, Watkins BH (1999) BIOMOVS II: an international test of the performances of environmental transfer models. J Environ Radioact 42:117–130

    CAS  Google Scholar 

  31. Scott EM, Gurbutt P, Harms I, Heling R, Kinehara Y, Nielsen SP, Osvath I, Preller R, Sazykina T, Wada A, Sjoeblom KL (1998) Radiological impact assessment within the IAEA Arctic assessment project (IASAP). Radiat Prot Dosimetry 75:257–261

    CAS  Google Scholar 

  32. Periáñez R, Bezhenar R, Iosjpe M, Maderich V, Nies H, Osvath I, Outola I, de With G (2015) A comparison of marine radionuclide dispersion models for the Baltic Sea in the frame of IAEA MODARIA program. J Environ Radioact 139:66–77

    PubMed  Google Scholar 

  33. Tracy BL, Carini F, Barabash S, Berkovskyy V, Brittain JE, Chouhan S, Eleftheriou G, Iosjpe M, Monte L, Psaltaki M, Shen J, Tschiersch J, Turcanu C (2013) The sensitivity of different environments to radioactive contamination. J Environ Radioact 122:1–8

    CAS  PubMed  Google Scholar 

  34. Sanchez-Cabeza JA, Ortega M, Merino J, Masque P (2002) Long-term box modeling of 137Cs in the Mediterranean Sea. J Mar Syst 33–34:457–472

    Google Scholar 

  35. Bezhenar R, Maderich V, Schirone A, Conte F, Martazinova V (2019) Transport and fate of 137Cs in the Mediterranean and black seas system during 1945–2020 period: a modelling study. J Environ Radioact 208–209:106023

    PubMed  Google Scholar 

  36. Monte L (2011) Customisation of the decision support system MOIRA–PLUS for applications to the marine environment. J Environ Radioact 102:1112–1116

    CAS  PubMed  Google Scholar 

  37. Toscano-Jimenez M, García-Tenorio R (2004) A three-dimensional model for the dispersion of radioactive substances in marine ecosystems. Application to the Baltic Sea after the Chernobyl disaster. Ocean Eng 31(8–9):999–1018

    Google Scholar 

  38. Staneva JV, Buesseler KO, Stanev EV, Livingston HD (1999) The application of radiotracers to a study of Black Sea circulation: validation of numerical simulations against observed weapons testing and Chernobyl 137Cs data. J Geophys Res 104(C5):1998JC900121

    Google Scholar 

  39. Buffoni G, Cappelletti A (1997) On the accumulation-dispersion processes of the tracer 137Cs in the Italian seas. J Environ Radioact 37(2):155–173

    CAS  Google Scholar 

  40. Lepicard S, Heling R, Maderich V (2004) POSEIDON/RODOS models for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, black and north seas. J Environ Radioact 72:153–161

    CAS  PubMed  Google Scholar 

  41. Eleftheriou G, Iosjpe M (2020) Evaluation of the environmental sensitivity of Aegean Sea based on radiological box modeling. J Environ Radioact 222:106360

    CAS  PubMed  Google Scholar 

  42. Eleftheriou G, Monte L, Brittain JE, Tsabaris C (2015) Modelling and assessment of the impact of radiocesium and radiostrontium dispersion in the Thermaikos gulf. Sci Total Environ 533:133–143

    CAS  PubMed  Google Scholar 

  43. United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources and effects of ionizing radiation. UNSCEAR 2000 Report to the General Assembly with Scientific Annexes. Volume I: Sources. United Nations, New York

    Google Scholar 

  44. Egorov VN, Polikarpov GG, Kulebakina LG, Stokozov NA, Yevtushenko DB (1993) Model of large-scale contamination of the Black Sea with the long-lived radionuclides 137Cs and 90Sr resulting from the Chernobyl NPP accident. (in Russian). Water Resour 20(3):326–330

    CAS  Google Scholar 

  45. Kritidis P, Florou H (1990) Estimation of the 137Cs deposited in Aegean, Cretan and Ionian seas after the Chernobyl accident. Rapp Comm Int Mer Medit 32:318

    Google Scholar 

  46. Egorov VN, Povinec PP, Polikarpov GG, Stokozov NA, Gulin SB, Kulebakina LG, Osvath I (1999) 90Sr and 137Cs in the Black Sea after the Chernobyl NPP accident: inventories, balance and tracer applications. J Environ Radioact 43:137–155

    CAS  Google Scholar 

  47. Evangeliou N, Florou H, Bokoros P, Scoullos M (2009) Horizontal and vertical dispersion in two regions. J Environ Radioact 100:626–636

    CAS  PubMed  Google Scholar 

  48. Florou H, Nicolaou G, Evangeliou N (2010) The concentration of 137Cs in the surface of the greek marine environment. J Environ Radioact 101:654–657

    CAS  PubMed  Google Scholar 

  49. Science Council of Japan (2014) A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident. SCJ, Sectional Committee on Nuclear Accident, Committee on Comprehensive Synthetic Engineering

    Google Scholar 

  50. International Atomic Energy Agency (2015) The Fukushima Daiichi accident technical volume 4/5 radiological consequences. IAEA, Vienna

    Google Scholar 

  51. United Nations Scientific Committee on the Effects of Atomic Radiation (1982) Sources, effects and risks of ionizing radiation. UNESCEAR 1982 Report to the General Assembly with Scientific Annexes. United Nations, New York

    Google Scholar 

  52. Florou H (1992) Dispersion and behaviour of long lived radionuclides in marine ecosystems. PhD thesis (in Greek). Department of Zoology, University of Athens, Athens

    Google Scholar 

  53. Florou H, Kritidis P, Vosniakos F, Trindafyllis J, Delfanti R, Papucci C, Cigna A, Polikarpov GG, Egorov VN, Bologa AS, Patrascu V (2003) Caesium-137 in the eastern Mediterranean-impact sources and marine pathways. Fresen Environ Bull 12:3–9

    CAS  Google Scholar 

  54. Simopoulos SE (1989) Soil sampling and 137Cs analysis of the Chernobyl fallout in Greece. Appl Radiat Isot 40(7):607–613

    CAS  Google Scholar 

  55. Kritidis P, Florou H (2001) Radiological impact in Greece of the Chernobyl accident – a 10-y retrospective synopsis. Health Phys 80(5):440–446

    CAS  PubMed  Google Scholar 

  56. Florou H, Kriridis P (1994) The dispersion of 137Cs in the Aegean Sea. Radiochim Acta 66(67):415–417

    Google Scholar 

  57. De Cort M, Dubois G, Fridman S, Germenchuk M, Izrael Y, Janssens A, Jones A, Kelly G, Knaviskova E, Matveenko I, Nazarov I, Pokumeiko Y, Sitak V, Stukin E, Tabachny L, Tsaturov Y, Avdyushin S (1998) The atlas of Caesium deposition on Europe after the Chernobyl accident. EUR 16733 EN/RU. Publications Office of the European Union, Luxembourg

    Google Scholar 

  58. Nikitin AI, Medinets VI, Chumichev VB, Katrich IYu, Vakulovskii SM, Kozlov AI, Lepeshkin VI (1988) Radioactive contamination of the Black Sea as of October 1986 resulting from the accident at the Chernobyl atomic power station, (translated from Russian). Atomnaya Energiya 65(2):134

    Google Scholar 

  59. Vakulovsky SM, Katrich IYu, Krasnopevtsev YuV, Nikitin AI, Chumichev VB, Shkuro VN (1980) Spatial distribution and balance of 3H and 137Cs in the Black Sea in 1977, (translated from Russian). Atomnaya Energiya 49(2):105–108

    Google Scholar 

  60. Bologa AS, Patrascu V (1997) Radioactivity in the Romanian Black-Sea sector one decade after Chernobyl, International conference. IAEA, Vienna

    Google Scholar 

  61. Robinson AR, Malanotte-Rizzoli P, Hecht A, Michelato A, Roether W, Theocharis A, Unluata U, Pinardi N, Artegiani A, Bergamasco A, Bishop J, Brenner S, Christanidis S, Gacic M, Georgopoulos D, Golnaraghi M, Haussmann K, Junghaus HG, Lascaratos A, Latif MA, Leslie WG, Lozano CJ, Oguz T, Ozsoy E, Papageorgiou E, Pachini E, Rozentroub Z, Sansone E, Scarazzato P, Schlitzer R, Spezie GC, Tziperman E, Zodiatis G, Athanassiadou L, Gerges M, Osman M (1992) General circulation of the eastern Mediterranean. Earth Sci Rev 32:285–309

    Google Scholar 

  62. Kanivets VV, Voitsekhovitch OV, Simov VG, Golubeva ZA (1999) The post-Chernobyl budget of 137Cs and 90Sr in the Black Sea. J Environ Radioact 43:121–135

    CAS  Google Scholar 

  63. Florou E, Kritidis P, Halolou Ch (2002) Assessment of the radiological condition of Thermaikos gulf: sources – Diaspora – bio-indicators monitoring. Proceedings of the 1st environmental conference of Macedonia, Thessaloniki

    Google Scholar 

  64. Delfanti R, Tsabaris C, Papucci C, Kaberi H, Lorenzelli R, Zervakis V, Tangherlini M, Georgopoulos D (2004) Re-distribution of 137Cs Chernobyl signal in the Aegean Sea. Proceedings of international conference: isotopes in environmental studies, aquatic forum 2004. IAEA, Monaco, pp 89–92

    Google Scholar 

  65. Polikarpov GG, Kulebakina LG, Timoshchuk VI, Stokozov NA (1991) 90Sr and 137Cs in surface waters of the Dnieper River, the Black Sea and the Aegean Sea in 1987 and 1988. J Environ Radioact 13:25–38

    CAS  Google Scholar 

  66. Florou H (1996) 137Cs inventory in abiotic component and biota from the Aegean and Ionian sea – Greece. Chem Ecol 12(4):253–258

    CAS  Google Scholar 

  67. Othman I, Yassine T, Bhat IS (1994) The measurement of some radionuclides in the marine coastal environment of Syria. Sci Total Environ 153:57–60

    CAS  Google Scholar 

  68. Nonnis-Marzano F, Triulzi C (1994) A radioecological survey of Northern and middle Adriatic Sea before and after the Chernobyl event (1979-1990). Mar Pollut Bull 28(4):244–253

    Google Scholar 

  69. Florou H, Kritidis P, Vosniakos F, Triandafyllis J, Delfanti R, Papucci C, Cigna A, Polikarpov G, Egorov V, Bologa A, Patrasku V (1999) Caesium-137 distribution in the eastern Mediterranean and Black Sea-sources and Marine pathways. Proceedings at the 10th international symposium of MESAEP. Alicante

    Google Scholar 

  70. Delfanti R, Klein B, Papucci C (2003) Distribution of 137Cs and other radioactive tracers in the eastern Mediterranean: relationship to the deepwater transient. J Geophys Res Oceans 108:8108–8125

    Google Scholar 

  71. Eleftheriou G (2014) Estimation and spatial–temporal distribution of radionuclides in the aquatic environment. PhD thesis (in Greek). Physics Department, National Technical University of Athens, Athens. http://dspace.lib.ntua.gr/handle/123456789/40306

  72. Povinec PP, Aarkrog A, Buesseler KO, Delfanti R, Hirose K, Hong GH, Ito T, Livingston HD, Nies H, Noshkin VE, Shima S, Togawa O (2005) 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian oceans-WOMARS results. J Environ Radioact 81:63–87

    CAS  PubMed  Google Scholar 

  73. Yamada M, Nagaya Y (1998) Temporal variations of 137Cs concentrations in the surface seawater and marine organisms collected from the Japanese coast during the 1980’s. J Radioanal Nucl Chem 230:111–114

    CAS  Google Scholar 

  74. Pröhl G, Ehlken S, Fiedler I, Kirchner G, Klemt E, Zibold G (2006) Ecological half-lives of 90Sr and 137Cs in terrestrial and aquatic ecosystems. J Environ Radioact 91:41–72

    PubMed  Google Scholar 

  75. Florou H, Kritidis P, Polikarpov G, Egorov V, Delfanti R, Papucci C (2001) Dispersion of Caesium-137 in the eastern Mediterranean and the Black Sea: the time evolution in relation to the sources and pathways. Proceedings of the North Aegean system functioning and inter-regional pollution meeting. National Centre for Marine Research, Kavala

    Google Scholar 

  76. Zervakis V, Theocharis A, Georgopoulos D (2005) Circulation and hydrography of the open seas. In: Papathanasiou E, Zenetos A (eds) State of the Hellenic marine environment. HCMR Publications, Athens, pp 104–110

    Google Scholar 

  77. Tsabaris C, Κaberi H, Delfanti R, Papucci C, Ζervakis V, Κalfas CA (2006) Radiocesium profiles at the deep basins of the Aegean Sea. 8th Panhellenic symposium in oceanography and fisheries. HCMR Publications, Thessaloniki, http://hdl.handle.net/123456789/2931

  78. Pappa FK, Patiris DL, Eleftheriou G, Tsabaris C, Kokkoris M, Vlastou R, Kaberi H (2011) Dispersion of 137Cs concentration in the basins of the Aegean Sea. HNPS Adv Nucl Phys 19:135–139. https://doi.org/10.12681/hnps.2525

    Article  Google Scholar 

  79. Zervakis V, Krasakopoulou E, Georgopoulos D, Souvermezoglou E (2003) Vertical diffusion and oxygen consumption during stagnation periods in the deep North Aegean. Deep-Sea Res 50:53–71

    CAS  Google Scholar 

  80. Zervakis V, Georgopoulos D, Karageorgis AP, Theocharis A (2004) On the response of the Aegean Sea to climatic variability: a review. Int J Climatol 24:1845–1858

    Google Scholar 

  81. Zervakis V, Georgopoulos D, Drakopoulos PG (2000) The role of the North Aegean in triggering the recent eastern Mediterranean climatic changes. J Geophys Res Oceans 105:26103–26116

    Google Scholar 

  82. Gertman I, Pinardi N, Popov Y, Hecht A (2006) Aegean Sea water masses during the early stages of the eastern Mediterranean climatic transient (1988-90). J Phys Oceanogr 36:1841–1859

    Google Scholar 

  83. Velaoras D, Kassis D, Perivoliotis L, Pagonis P, Hondronasios A, Nittis K (2013) Temperature and salinity variability in the Greek seas based on POSEIDON stations time series: preliminary results. Mediterr Mar Sci 14(3):5–18

    Google Scholar 

  84. Velaoras D, Krokos G, Theocharis A (2015) Recurrent intrusions of transitional waters of eastern Mediterranean origin in the Cretan Sea as a tracer of Aegean Sea dense water formation events. Prog Oceanogr 135:113–124

    Google Scholar 

  85. Velaoras D, Krokos G, Nittis K, Theocharis A (2014) Dense intermediate water outflow from the Cretan Sea: a salinity driven, recurrent phenomenon, connected to thermohaline circulation changes. J Geophys Res Oceans 119:JC009937

    Google Scholar 

  86. Theocharis A, Krokos G, Velaoras D, Korres G (2014) An internal mechanism driving the alternation of the Eastern Mediterranean dense/deep water sources. In: Borzelli GLE, Gačić M, Lionello P, Malanotte-Rizzoli P (eds) The Mediterranean Sea: temporal variability and spatial patterns. AGU Geophys Monograph Ser 202:113–137. https://doi.org/10.1002/9781118847572

Download references

Acknowledgments

The compilation of the presented data was supported by the MARRE project through National Strategic Reference Framework (NSRF) 2014–2020 co-financed by Greece and the European Union (European Social Fund ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Tsabaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsabaris, C. et al. (2021). Evolution of 137Cs Activity Concentration in the Aegean Sea. In: Anagnostou, C.L., Kostianoy, A.G., Mariolakos, I.D., Panayotidis, P., Soilemezidou, M., Tsaltas, G. (eds) The Aegean Sea Environment. The Handbook of Environmental Chemistry, vol 127. Springer, Cham. https://doi.org/10.1007/698_2020_731

Download citation

Publish with us

Policies and ethics