Skip to main content

Microbial Benthic Communities in the Aegean Sea

  • Chapter
  • First Online:
The Handbook of Environmental Chemistry

Abstract

The Aegean Sea, as part of the Mediterranean, is an ecologically and geologically diverse marine system, with a wide range of habitats including coastal and deep-sea oxic sediments, and submarine volcanoes with seafloor hydrothermal vents and CO2-venting active, and inactive, polymetallic (Au, Ag, Sb, Cu, Pb, Zn) hydrothermal chimneys. Generally, our knowledge regarding microbial community composition and function in the benthic layers such as the sediments and hydrothermal vents of the Aegean Sea is limited. Here, we summarize our current knowledge on benthic microbial communities in diverse marine habitats of the Aegean Sea. Data based on sequencing technologies, such as Sanger-based clone libraries, pyrosequencing, and Illumina sequencing are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Danovaro R, Manini E, Dell’anno A (2002) Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Appl Environ Microbiol 68:1468–1472

    Google Scholar 

  2. Danovaro R, Marrale D, Dell’anno A, Delia CN, Tselepides A, Fabiano M (2000) Bacterial response to seasonal changes in labile organic matter composition on the continental shelf and bathyal sediments of the Cretan Sea. Prog Oceanogr 46:345–366

    Google Scholar 

  3. Alexander M (1999) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  4. Boschker HTS, Graaf WD, Koster M, Meyer-Reil LA, Cappenberg TE (2001) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol Ecol 35:97–103

    Google Scholar 

  5. Macgillivray AR, Shiaris MP (1994) Relative role of eukaryotic and prokaryotic microorganisms in phenanthrene transformation in coastal sediments. Appl Environ Microbiol 60:1154–1159

    Google Scholar 

  6. White DC (1994) Is there anything else you need to understand about the microbiota that cannot be derived from analysis of nucleic acids? Microb Ecol 28:163–166

    Google Scholar 

  7. White DC, Fredrickson HF, Gehron MH, Smith GA, Martz RF (1983) The groundwater aquifer microbiota: biomass, community structure, and nutritional status. Dev Indust Microbiol 24:189–199

    Google Scholar 

  8. Anas A, Nilayangod C, Jasmin C, Vinothkumar S, Parameswaran PS, Nair S (2016) Diversity and bioactive potentials of culturable heterotrophic bacteria from the surficial sediments of the Arabian Sea. 3 Biotech 6:238

    Google Scholar 

  9. Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606

    Google Scholar 

  10. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Google Scholar 

  11. Canals M, Danovaro R, Luna GM (2019) Recent advances in understanding the ecology and functioning of submarine canyons in the Mediterranean Sea. Prog Oceanogr 179:102171

    Google Scholar 

  12. Azov Y (1991) Eastern Mediterranean – a marine desert? Mar Pollut Bull 23:225–232

    Google Scholar 

  13. Karageorgis AP, Anagnostou CL (2001) Particulate matter spatial-temporal distribution and associated surface sediment properties: Thermaikos Gulf and Sporades Basin, NW Aegean Sea. Cont Shelf Res 21:2141–2153

    Google Scholar 

  14. Nomikou P, Carey S, Papanikolaou D, Croff BK, Sakellariou D, Alexandri M, Bejelou K (2012) Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini caldera, Greece. Glob Planet Chang 90–91:135–151

    Google Scholar 

  15. Nomikou P, Carey S, Croff BK, Papanikolaou D, Bejelou K, Cantner K, Sakellariou D, Perros I (2014) Tsunami hazard risk of a future volcanic eruption of Kolumbo submarine volcano, NE of Santorini Caldera, Greece. Nat Hazards 72:1375–1390

    Google Scholar 

  16. Nomikou P, Hubscher C, Carey S (2019) The Christiana-Santorini-Kolumbo volcanic field. Elements 15:171–176

    Google Scholar 

  17. Nomikou P, Papanikolaou D, Alexandri M, Sakellariou D, Rousakis G (2013) Submarine volcanoes along the Aegean volcanic arc. Tectonophysics 597–598:123–146

    Google Scholar 

  18. Poulos SE, Chronis GTH, Collins MB, Lykousis V (2000) Thermaikos Gulf coastal system, NW Aegean Sea: an overview of water/sediment fluxes in relation to air-land-ocean interactions and human activities. J Mar Syst 25:47–76

    Google Scholar 

  19. Balopoulos ETH, Theocharis A, Kontoyiannis H, Varnavas S, Voutsinou-Taliadouri F, Iona A, Souvermezoglou A, Ignatiades L, Gotsis-Skretas O, Pavlidou A (1999) Major advances in the oceanography of the southern Aegean Sea–Cretan Straits system (Eastern Mediterranean). Prog Oceanogr 44:109–130

    Google Scholar 

  20. Theocharis A, Balopoulos E, Kioroglou S, Kontoyiannis H, Iona A (1999) A synthesis of the circulation and hydrography of the South Aegean Sea and the straits of the Cretan Arc (March 1994–January 1995). Prog Oceanogr 44:469–509

    Google Scholar 

  21. Tselepides A, Zervakis V, Polychronaki T, Danovaro R, Chronis G (2000) Distribution of nutrients and particulate organic matter in relation to the prevailing hydrographic features of the Cretan Sea (NE Mediterranean). Prog Oceanogr 46:113–142

    Google Scholar 

  22. Camilli R, Nomikou P, Escartin J, Ridao P, Mallios A, Kilias SP, Argyraki A, The Caldera Science Team (2015) The Kallisti Limnes, carbon-dioxide-accumulating subsea pools. Sci Rep 5:12152

    Google Scholar 

  23. Carey S, Nomikou P, Croff BK, Lilley M, Lupton J, Roman C, Stathopoulou E, Bejelou K, Ballard R (2013) CO2 degassing from hydrothermal vents at Kolumbo submarine volcano, Greece, and the accumulation of acidic crater water. Geology 41:1035–1038

    Google Scholar 

  24. Rizzo AL, Caracausi A, Chavagnac V, Nomikou P, Polymenakou PN, Mandalakis M, Kotoulas G, Magoulas A, Castillo A, Lampridou D (2016) Kolumbo submarine volcano (Greece): an active window into the Aegean subduction system. Sci Rep 6:28013

    Google Scholar 

  25. Rizzo AL, Caracausi A, Chavagnac V, Nomikou P, Polymenakou PN, Mandalakis M, Kotoulas G, Magoulas A, Castillo A, Lampridou D, Marusczak N, Sonke JE (2019) Geochemistry of CO2-rich gases venting from submarine volcanism: the case of Kolumbo (Hellenic Volcanic Arc, Greece). Front Earth Sci 7:UNSP60

    Google Scholar 

  26. Sigurdsson H, Carey S, Alexandri M, Vougioukalakis G, Croff K, Roman C, Sakellariou D, Anagnostou C, Rousakis G, Ioakim C, Gogou A, Ballas D, Misaridis T, Nomikou P (2006) Marine investigations of Greece’s Santorini volcanic field. Eos 87:337–348

    Google Scholar 

  27. Christakis CA, Polymenakou PN, Mandalakis M, Nomikou P, Kristoffersen JB, Lampridou D, Kotoulas G, Mandalakis M (2018) Microbial community differentiation between active and inactive sulfide chimneys of the Kolumbo submarine volcano, Hellenic Volcanic Arc. Extremophiles. https://doi.org/10.1007/s00792-017-0971-x

  28. Kilias SP, Nomikou P, Papanikolaou D, Polymenakou PN, Godelitsas A, Argyraki A, Carey S, Gamaletsos P, Mertimekis TJ, Stathopoulou E, Goettlicher J, Steininger R, Betzelou K, Livanos I, Christakis C, Bell KC, Scoullos M (2013) New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano Kolumbo (Santorini), Greece. Sci Rep 3.:Art.No.2421. https://doi.org/10.1038/srep02421

  29. Oulas A, Polymenakou PN, Seshadri R, Tripp HJ, Mandalakis M, Paez-Espino DA, Pati A, Chain P, Nomikou P, Carey S, Kilias S, Christakis C, Kotoulas G, Magoulas A, Ivanova NN, Kyrpides NC (2016) Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology. Environ Microbiol. https://doi.org/10.1111/1462-2920.13095

  30. Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Links between geographic location, environmental factors, and microbial community composition in sediments of the Eastern Mediterranean Sea. Microb Ecol 49:367–378

    Google Scholar 

  31. Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50:447–462

    Google Scholar 

  32. Polymenakou PN, Christakis CA, Mandalakis M, Oulas A (2015) Pyrosequencing analysis of microbial communities reveals dominant cosmopolitan phylotypes in deep-sea sediments of the eastern Mediterranean Sea. Res Microbiol 166:448–457

    Google Scholar 

  33. Chronis G, Lykousis V, Anagnostou C, Karageorgis A, Stavrakakis S, Poulos S (2000) Sedimentological processes in the southern margin of the Cretan Sea (NE Mediterranean). Prog Oceanogr 46:143–162

    Google Scholar 

  34. Dando PR, Aliani S, Arab H, Bianchi CN, Brehmer M, Cocito S, Fowlers SW, Gundersen J, Hooper LE, Kölbh R, Kuevere J, Linke P, Makropoulos KC, Meloni R, Miquel J-C, Morri C, Müller S, Robinson C, Schlesner H, Sieverts S, Störr R, Stüben D, Thormm M, Varnavas SP, Ziebiss W (2000) Hydrothermal studies in the Aegean Sea. Phys Chem Earth B 25:1–8

    Google Scholar 

  35. Ulvrova M, Paris R, Nomikou P, Kelfoun K, Leibrandt S, Tappin DR, Mccoy FW (2016) Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece). J Volcanol Geotherm Res 321:125–139

    Google Scholar 

  36. Price RE, Savov I, Planer-Friedrich B, Bühring S, Amend JP, Pichler T (2012) Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece. Chem Geol 348:15–26

    Google Scholar 

  37. Dando PR, Hughes JA, Leahy Y, Niven SJ, Taylor LJ, Smith C (1995) Gas venting rates from the submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Cont Shelf Res 15:913–929

    Google Scholar 

  38. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Google Scholar 

  39. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732):1350–1354

    Google Scholar 

  40. Pace NR, STAHLL DA, Lane DJ, Olsen GJ (1985) The analysis of natural microbial populations by ribosomal RNA sequences. Am Soc Microbiol News 51:4–12

    Google Scholar 

  41. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection if individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  42. Walters WA, Knight R (2014) Technology and techniques for microbial ecology via DNA sequencing. Ann Am Thorac Soc 11:S16–S20

    Google Scholar 

  43. Forde BB, O’toole PW (2013) Next-generation sequencing technologies and their impact on microbial genomics. Briefings Funct Gen 12:440–453

    Google Scholar 

  44. Slatko BE, Gardner AF, Ausubel FM (2018) Overview of next generation sequencing technologies. Curr Protoc Mol Biol 122:e59

    Google Scholar 

  45. Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J et al (2012) New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666e77

    Google Scholar 

  46. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115e20

    Google Scholar 

  47. Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, Huntemann M, Varghese N, White JR, Seshadri R, Smirnova T, Kirton E, Jungbluth SP, Woyke T, Eloe-Fadrosh EA, Ivanova NN, Kyrpides NC (2019) IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47(D1):D666–D677. https://doi.org/10.1093/nar/gky901

    Article  Google Scholar 

  48. Price RE, Lesniewski R, Nitzsche KS, Meyerdierks A, Saltikov C, Pichler T, Amend JP (2013) Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Front Microbiol 4:158

    Google Scholar 

  49. Nitzsche K (2010) Microbial diversity of hydrothermally influenced arsenic-rich sediments off the coast of Milos Island, Greece. Diploma thesis, TU Bergakademie, Freiberg, Germany

    Google Scholar 

  50. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y et al (2003) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174

    Google Scholar 

  51. Vetriani C, Voordeckers JW, Crespo-Medina M, O’brien CE, Giovanelli D, Lutz RA (2014) Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J 8:1510–1521

    Google Scholar 

  52. Finster K, Liesack W, Tindall BJ (1997) Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. Int J Syst Bacteriol 47(4):1212–1217

    Google Scholar 

  53. Schumacher W, Kroneck P (1992) Anaerobic energy metabolism of the sulfur-reducing bacterium "Spirillum" 5175 during dissimilatory nitrate reduction to ammonia. Arch Microbiol 157:464–470

    Google Scholar 

  54. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D et al (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668

    Google Scholar 

  55. Sun L, Toyonaga M, Ohashi A et al (2016) Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. Int J Syst Evol Microbiol 66(7):2635–2642

    Google Scholar 

  56. Mandalakis M, Gavriilidou A, Polymenakou PN, Christakis CA, Nomikou P, Medvecky M, Kilias SP, Kentouri M, Kotoulas G, Magoulas A (2019) Microbial strains isolated from CO2-venting Kolumbo submarine volcano show enhanced co-tolerance to acidity and antibiotics. Mar Environ Res 144:102–110

    Google Scholar 

  57. Overmann J, Scholz AH (2017) Microbiological research under the Nagoya protocol: facts and fiction. Trends Microbiol 25:85–88

    Google Scholar 

  58. Robinson DF (2010) Confronting biopiracy: challenges, cases and international debates. Earthscan Ltd, Dunstan House, 14a St Cross Street, London EC1N 8XA, UK

    Google Scholar 

  59. Montreal: Secretariat of the Convention on Biological Diversity (2011) Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf

Download references

Acknowledgments

This work was supported by the Hellenic Centre for Marine Research and the Institute of Marine Biology, Biotechnology and Aquaculture through the General Secretariat for Research and Technology, Hellenic Ministry of Development and Investments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi N. Polymenakou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polymenakou, P.N. et al. (2020). Microbial Benthic Communities in the Aegean Sea. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2020_685

Download citation

  • DOI: https://doi.org/10.1007/698_2020_685

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics