Skip to main content

Removal of Pharmaceuticals from Wastewater by Membrane Bioreactors: Factors, Mechanisms, and Perspectives

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 108)

Abstract

This chapter reviews the performance of membrane bioreactors (MBR) for the removal of pharmaceuticals from wastewater. Many factors affect pharmaceuticals removal by MBR. The factors include physicochemical characteristics of the pharmaceuticals and MBR operational parameters. The presence of a membrane allows various adsorption mechanisms for pharmaceuticals. Conceptually MBRs can deliver better removal of pharmaceuticals than conventional activated sludge (CAS) processes because of operation under longer solids retention times (SRTs), higher mixed liquor suspended solids (MLSS) concentrations, and complete retention of suspended solids. However, the available reports from lab and full-scale plants are sometimes conflicting. Further work is required to improve our understanding of the overall fate and degradation pathways of pharmaceuticals in MBRs.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448

    CAS  Google Scholar 

  2. Hai FI, Yamamoto K, Lee C-H (2019) Membrane biological reactors: theory, modeling, design, management and applications to wastewater reuse, 2nd edn. IWA Publishing, London, ISBN electronic: 9781780409177. https://doi.org/10.2166/9781780409177

  3. Hai FI, Nghiem LD, Khan SJ, Asif MB, Price WE, Yamamoto K (2019) Removal of emerging trace organic contaminants (TrOC) by MBR. In: Hai FI, Yamamoto K, Lee C-H (eds) Membrane biological reactors: theory, modeling, design, management and applications to wastewater reuse. IWA Publishing, London, pp 413–468. https://doi.org/10.2166/9781780409177_0413

    Chapter  Google Scholar 

  4. Boonyaroj V, Chiemchaisri C, Chiemchaisri W, Theepharaksapan S, Yamamoto K (2012) Toxic organic micro-pollutants removal mechanisms in long-term operated membrane bioreactor treating municipal solid waste leachate. Bioresour Technol 113:174–180

    CAS  Google Scholar 

  5. Johnson AC, Sumpter JP (2001) Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35:4697–4703

    CAS  Google Scholar 

  6. Sahar E, Messalem R, Cikurel H, Aharoni A, Brenner A, Godehardt M, Jekel M, Ernst M (2011) Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR). Water Res 45:4827–4836

    CAS  Google Scholar 

  7. Chang S, Waite TD, Schäfer AI, Fane AG (2003) Adsorption of the endocrine-active compound estrone on microfiltration hollow fiber membranes. Environ Sci Technol 37:3158–3163

    CAS  Google Scholar 

  8. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807

    CAS  Google Scholar 

  9. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152

    CAS  Google Scholar 

  10. Tadkaew N, Hai FI, McDonald JA, Khan SJ, Nghiem LD (2011) Removal of trace organics by MBR treatment: the role of molecular properties. Water Res 45:2439–2451

    CAS  Google Scholar 

  11. Cirja M, Ivashechkin P, Schäffer A, Corvini P (2008) Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev Environ Sci Biotechnol 7:61–78

    CAS  Google Scholar 

  12. Oulton RL, Kohn T, Cwiertny DM (2010) Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. J Environ Monit 12:1956–1978

    CAS  Google Scholar 

  13. Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387:1365–1377

    CAS  Google Scholar 

  14. Radjenovic J, Petroviic M, Barcelo D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–841

    CAS  Google Scholar 

  15. Gonzalez S, Petrovic M, Barcelo D (2007) Removal of a broad range of surfactants from municipal wastewater – comparison between membrane bioreactor and conventional activated sludge treatment. Chemosphere 67:335–343

    CAS  Google Scholar 

  16. Gobel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372:361–371

    Google Scholar 

  17. Urase T, Kagawa C, Kikuta T (2005) Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors. Desalination 178:107–113

    CAS  Google Scholar 

  18. Li X, Hai FI, Nghiem LD (2011) Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresour Technol 102:5319–5324

    CAS  Google Scholar 

  19. Reemtsma T, Zywicki B, Stueber M, Kloepfer A, Jekel M (2002) Removal of sulfur-organic polar micropollutants in a membrane bioreactor treating industrial wastewater. Environ Sci Technol 36:1102–1106

    CAS  Google Scholar 

  20. Joss A, Zabczynski S, Gobel A, Hoffmann B, Loffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696

    CAS  Google Scholar 

  21. Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) The solids retention time – a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39:97–106

    CAS  Google Scholar 

  22. Asif MB, Ansari AJ, Chen S-S, Nghiem LD, Price WE, Hai FI (2018) Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review. Environ Sci Pollut Res 26:34085–34100

    Google Scholar 

  23. Onesios K, Yu J, Bouwer E (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20:441–466

    CAS  Google Scholar 

  24. Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    CAS  Google Scholar 

  25. Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372:361–371

    Google Scholar 

  26. Stevens-Garmon J, Drewes JE, Khan SJ, McDonald JA, Dickenson ERV (2011) Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Res 45:3417–3426

    CAS  Google Scholar 

  27. Joss A, Keller E, Alder AC, Gobel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152

    CAS  Google Scholar 

  28. Suarez S, Lema JM, Omil F (2010) Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Res 44:3214–3224

    CAS  Google Scholar 

  29. Kümmerer K, Al-Ahmad A (1997) Biodegradability of the anti-tumour agents 5-fluorouracil, cytarabine, and gemcitabine: impact of the chemical structure and synergistic toxicity with hospital effluent. Acta Hydrochim Hydrobiol 25:166–172

    Google Scholar 

  30. Corvini P, Schäffer A, Schlosser D (2006) Microbial degradation of nonylphenol and other alkylphenols – our evolving view. Appl Microbiol Biotechnol 72:223–243

    CAS  Google Scholar 

  31. Hai FI, Tadkaew N, McDonald JA, Khan SJ, Nghiem LD (2011) Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment? Bioresour Technol 102:6299–6303

    CAS  Google Scholar 

  32. Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Surampalli RY (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41:525–539

    CAS  Google Scholar 

  33. Li F, Yuasa A, Obara A, Mathews AP (2005) Aerobic batch degradation of 17-β estradiol (E2) by activated sludge: effects of spiking E2 concentrations, MLVSS and temperatures. Water Res 39:2065–2075

    CAS  Google Scholar 

  34. Shariati FP, Mehrnia MR, Salmasi BM, Heran M, Wisniewski C, Sarrafzadeh MH (2010) Membrane bioreactor for treatment of pharmaceutical wastewater containing acetaminophen. Desalination 250:798–800

    CAS  Google Scholar 

  35. Suarez S, Reif R, Lema JM, Omil F (2012) Mass balance of pharmaceutical and personal care products in a pilot-scale single-sludge system: influence of T, SRT and recirculation ratio. Chemosphere 89:164–171

    CAS  Google Scholar 

  36. Ternes TA, Joss A, Siegrist H (2004) Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38:392A–399A

    CAS  Google Scholar 

  37. Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T, Lee B, Servos M, Beland M, Seto P (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Total Environ 367:544–558

    CAS  Google Scholar 

  38. Kimura K, Hara H, Watanabe Y (2007) Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors. Environ Sci Technol 41:3708–3714

    CAS  Google Scholar 

  39. Tambosi JL, de Sena RF, Favier M, Gebhardt W, Jose HJ, Schroder HF, Moreira RdFPM (2010) Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination 261:148–156

    CAS  Google Scholar 

  40. Oppenheimer J, Stephenson R, Burbano A, Liu L (2007) Characterizing the passage of personal care products through wastewater treatment processes. Water Environ Res 79:2564–2577

    CAS  Google Scholar 

  41. Chen J, Huang X, Lee D (2008) Bisphenol A removal by a membrane bioreactor. Process Biochem 43:451–456

    CAS  Google Scholar 

  42. Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664

    CAS  Google Scholar 

  43. Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122:259–265

    CAS  Google Scholar 

  44. Tadkaew N, Sivakumar M, Khan SJ, McDonald JA, Nghiem LD (2010) Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor. Bioresour Technol 101:1494–1500

    CAS  Google Scholar 

  45. Zhang T, Liu Y, Fang HHP (2005) Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process. Biotechnol Bioeng 92:173–182

    CAS  Google Scholar 

  46. Baldwin DD, Campbell CE (2001) Short-term effects of low pH on the microfauna of an activated sludge wastewater treatment system. Water Qual Res J Can 36:519–535

    CAS  Google Scholar 

  47. Morgan-Sagastume F, Allen DG (2003) Effects of temperature transient conditions on aerobic biological treatment of wastewater. Water Res 37:3590–3601

    CAS  Google Scholar 

  48. Sui Q, Huang J, Deng S, Chen W, Yu G (2011) Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. Environ Sci Tech 45:3341–3348

    CAS  Google Scholar 

  49. Vieno NM, Tuhkanen T, Kronberg L (2005) Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol 39:8220–8226

    CAS  Google Scholar 

  50. Hai FI, Tessmer K, Nguyen LN, Kang J, Price WE, Nghiem LD (2011) Removal of micropollutants by membrane bioreactor under temperature variation. J Membr Sci 383:144–151

    CAS  Google Scholar 

  51. Joss A, Andersen H, Ternes T, Richle PR, Siegrist H (2004) Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol 38:3047–3055

    CAS  Google Scholar 

  52. Thompson A, Griffin P, Stuetz R, Cartmell E (2005) The fate and removal of triclosan during wastewater treatment. Water Environ Res 77:63–67

    CAS  Google Scholar 

  53. Zwiener C, Frimmel FH (2003) Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac. Sci Total Environ 309:201–211

    CAS  Google Scholar 

  54. Park N, Vanderford BJ, Snyder SA, Sarp S, Kim SD, Cho J (2009) Effective controls of micropollutants included in wastewater effluent using constructed wetlands under anoxic condition. Ecol Eng 35:418–423

    Google Scholar 

  55. Yi T, Harper Jr WF (2007) The link between nitrification and biotransformation of 17α-ethinylestradiol. Environ Sci Tech 41:4311–4316

    CAS  Google Scholar 

  56. Vader JS, van Ginkel CG, Sperling FMGM, de Jong J, de Boer W, de Graaf JS, van der Most M, Stokman PGW (2000) Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 41:1239–1243

    CAS  Google Scholar 

  57. Yang S, Hai FI, Nghiem LD, Roddick F, Price WE, Moreira MT, Magram SF (2013) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol 141:97–108

    Google Scholar 

  58. Marco-Urrea E, Pérez-Trujillo M, Blánquez P, Vicent T, Caminal G (2010) Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR. Bioresour Technol 101:2159–2166

    CAS  Google Scholar 

  59. Kang A-R, Choi H-T, Song H-G (2008) Optimization of bisphenol A biodegradation by Trametes versicolor. Korean J Microbiol 44:37–42

    Google Scholar 

  60. Marco-Urrea E, Gabarrell X, Sarrà M, Caminal G, Vicent T, Reddy CA (2006) Novel aerobic perchloroethylene degradation by the white-rot fungus Trametes versicolor. Environ Sci Technol 40:7796–7802

    CAS  Google Scholar 

  61. Tran NH, Urase T, Kusakabe O (2010) Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. J Water Environ Technol 8:125–140

    Google Scholar 

  62. Nguyen LN, Hai FI, Yang S, Kang J, Leusch FDL, Roddick F, Price WE, Nghiem LD (2014) Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: role of biosorption and biodegradation. Int Biodeter Biodegr 88:169–175

    CAS  Google Scholar 

  63. Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE (2013) Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation 85:483–490

    Google Scholar 

  64. Nguyen LN, Hai FI, Yang S, Kang J, Leusch FD, Roddick F, Price WE, Nghiem LD (2013) Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Bioresour Technol 148:234–241

    CAS  Google Scholar 

  65. Jelic A, Cruz-Morató C, Marco-Urrea E, Sarrà M, Perez S, Vicent T, Petrović M, Barcelo D (2012) Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Res 46:955–964

    CAS  Google Scholar 

  66. Zhang Y, Geißen S-U (2012) Elimination of carbamazepine in a non-sterile fungal bioreactor. Bioresour Technol 112:221–227

    CAS  Google Scholar 

  67. Ferrando-Climent L, Cruz-Morató C, Marco-Urrea E, Vicent T, Sarrà M, Rodriguez-Mozaz S, Barceló D (2015) Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere 136:9–19

    CAS  Google Scholar 

  68. Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Marco-Urrea E, Vicent T, Sarrà M (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47:5200–5210

    Google Scholar 

  69. Cruz-Morató C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E (2014) Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376

    Google Scholar 

  70. Badia-Fabregat M, Lucas D, Tuomivirta T, Fritze H, Pennanen T, Rodríguez-Mozaz S, Barceló D, Caminal G, Vicent T (2017) Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Sci Total Environ 579:366–377

    CAS  Google Scholar 

  71. Espinosa-Ortiz EJ, Rene ER, Pakshirajan K, van Hullebusch ED, Lens PN (2016) Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem Eng J 283:553–571

    CAS  Google Scholar 

  72. Libra JA, Borchert M, Banit S (2003) Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions. Biotechnol Bioeng 82:736–744

    CAS  Google Scholar 

  73. Hai FI, Yamamoto K, Nakajima F, Fukushi K (2009) Factors governing performance of continuous fungal reactor during non-sterile operation – the case of a membrane bioreactor treating textile wastewater. Chemosphere 74:810–817

    CAS  Google Scholar 

  74. Asif MB, Hai FI, Singh L, Price WE, Nghiem LD (2017) Degradation of pharmaceuticals and personal care products by white-rot fungi – a critical review. Curr Pollut Rep 3:88–103

    CAS  Google Scholar 

  75. Nguyen LN, Hai FI, Dosseto A, Richardson C, Price WE, Nghiem LD (2016) Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresour Technol 210:108–116

    CAS  Google Scholar 

  76. Nguyen LN, Hai FI, Price WE, Kang J, Leusch FD, Roddick F, van de Merwe JP, Magram SF, Nghiem LD (2015) Degradation of a broad spectrum of trace organic contaminants by an enzymatic membrane reactor: complementary role of membrane retention and enzymatic degradation. Int Biodeter Biodegr 99:115–122

    CAS  Google Scholar 

  77. Lloret L, Eibes G, Feijoo G, Moreira MT, Lema JM (2013) Application of response surface methodology to study the removal of estrogens in a laccase-mediated continuous membrane reactor. Biocatal Biotransformation 31:197–207

    CAS  Google Scholar 

  78. Nguyen LN, Hai FI, Price WE, Leusch FD, Roddick F, McAdam EJ, Magram SF, Nghiem LD (2014) Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor. Int Biodeter Biodegr 95:25–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal I. Hai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hai, F.I., Price, W.E. (2020). Removal of Pharmaceuticals from Wastewater by Membrane Bioreactors: Factors, Mechanisms, and Perspectives. In: Rodriguez-Mozaz, S., Blánquez Cano, P., Sarrà Adroguer, M. (eds) Removal and Degradation of Pharmaceutically Active Compounds in Wastewater Treatment. The Handbook of Environmental Chemistry, vol 108. Springer, Cham. https://doi.org/10.1007/698_2020_676

Download citation

Publish with us

Policies and ethics