Skip to main content

The Aegean Sea: Wind Waves and Tides

  • Chapter
  • First Online:
The Aegean Sea Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 127))

Abstract

The wind waves and the periodic elevation and fall of the sea surface in coastal areas, i.e. the tides, are the first manifestations of ocean behaviour that mankind ever observed. Thousands of years ago, Aristotle at the Euripus Strait in the city of Halkis and the nearby shoreline tried to understand why the sea was flooding onto the land and then receding away from it revealing the coastline stretches of sea bottom, known to us as the ‘intertidal zone’, that hours ago were flooded with sea water. As ocean science progressed, various aspects of the oceanic environment came into light regarding physical, chemical, biological and geological characteristics of the sea water. However, wind waves and tides are basic oceanic phenomena that exert a lot of influence on issues related to human activities in the ocean and particularly at the coastal areas. This chapter presents elements of our up-to-date knowledge on wind waves and tides in the Aegean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Longuet-Higgins M (1952) On the statistical distribution of the heights of sea waves. J Mar Res 11(3):245–266

    Google Scholar 

  2. Pierson WJ, James RW, Neumann G (2012) Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics. Literary Licensing, Whitefish, p 310

    Google Scholar 

  3. Phillips OM (1957) On the generation of waves by turbulent wind. J Fluid Mech 2(5):417–445

    Article  Google Scholar 

  4. Miles JW (1957) On the generation of surface waves by shear flows. J Fluid Mech 3(2):185–204

    Article  Google Scholar 

  5. Hasselmann K (1962) On the non-linear energy transfer in a gravity-wave spectrum. 1. General theory. J Fluid Mech 12(4):481–500

    Article  Google Scholar 

  6. Mei CC (1989) The applied dynamics of ocean surface waves. World Scientific, Singapore, p 740

    Google Scholar 

  7. Sorensen RM (1993) Basic wave mechanics: for coastal and ocean engineers. Wiley, Hoboken, p 284

    Google Scholar 

  8. Young IR (1999) Wind generated ocean waves. Elsevier, Amsterdam, p 288

    Google Scholar 

  9. Lavrenov I (2003) Wind-waves in oceans: dynamics and numerical simulations. Springer, Berlin, p 376

    Book  Google Scholar 

  10. Μassel SR (2017) Ocean surface waves: their physics and prediction. World Scientific, Singapore, p 512

    Book  Google Scholar 

  11. Cavaleri L, Alves J-HGM, Ardhuin F, Babanin A, Banner M, Belibassakis K, Benoit M, Donelan M, Groenweg J, Herbers THC, Hwang P, Janssen PAEM, Janssen T, Lavrenov IV, Magne R, Monbaliu J, Onorato M, Polnikov V, Resion D, Rogers WE, Sheremet A, Smith JMK, Tolman HL, Van Vledder G, Wolf J, Young I (2007) Wave modeling – the state of the art. Prog Oceanogr 75(4):603–674

    Article  Google Scholar 

  12. US Army Coastal Engineering Research Center (2002) Shore protection manual. Department of the Army, Waterways Experiment Station, Corps of Engineers, Coastal Engineering Research Center, p 532

    Google Scholar 

  13. Chakrabarti SK (1994) Offshore structure modeling. World Scientific, Singapore, p 470

    Book  Google Scholar 

  14. Soukissian TH, Chronis G (2000) Poseidon: a marine environmental monitoring, forecasting and information system for the Greek seas. Mediterr Mar Sci 1(1):71

    Article  Google Scholar 

  15. Soukissian TH, Chronis GT, Nittis K, Diamanti C (2002) Advancement of operational oceanography in Greece: the case of the poseidon system. J Atmos Ocean Sci 8(2–3):93–107

    Article  Google Scholar 

  16. Sverdrup HU, Munk WH (1947) Wind, sea and swell; theory of relations for forecasting. U. S. Navy Hydrographic Office

    Google Scholar 

  17. Bretschneider CL (1958) Revisions in wave forecasting: deep and shallow water. Beach Erosion Board, U.S. Corps of Engineers

    Google Scholar 

  18. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1996) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge, p 532

    Google Scholar 

  19. Lefèvre JM, Aouf L (2012) Latest developments in wave data assimilation. In: Proceedings of ECMWF workshop on ocean waves. pp 175–188

    Google Scholar 

  20. Soukissian T, Prospathopoulos A, Korres G, Papadopoulos A, Hatzinaki M, Kambouridou M (2008) A new wind and wave atlas of the Hellenic Seas. In: ASME 2008 27th international conference on offshore mechanics and arctic engineering

    Google Scholar 

  21. Papadopoulos A, Katsafados P, Kallos G, Nickovic S (2002) The weather forecasting system for POSEIDON-an overview. Glob Atmos Ocean Syst 8(2–3):219–237

    Article  Google Scholar 

  22. Ayat B (2013) Wave power atlas of eastern Mediterranean and Aegean seas. Energy 54:251–262

    Article  Google Scholar 

  23. Jadidoleslam N, Ozger M, Agiralioglu N (2016) Wave power potential assessment of Aegean Sea with an integrated 15-year data. Renew Energy 86:1045–1059

    Article  Google Scholar 

  24. Xanthaki F, Giannaraki C, Zafeiraki EF, Kaldellis JK (2017) Exploitation of wave energy potential in Aegean Sea: Greece. Springer, Cham

    Book  Google Scholar 

  25. Lavidas G, Venugopal V (2017) A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea. Renew Energy 103:401–417

    Article  Google Scholar 

  26. Emmanouil G, Galanis G, Kalogeri C, Zodiatis G, Kallos G (2016) 10-year high resolution study of wind, sea waves and wave energy assessment in the Greek offshore areas. Renew Energy 90:399–419

    Article  Google Scholar 

  27. Zacharioudaki A, Korres G, Perivoliotis L (2015) Wave climate of the Hellenic seas obtained from a wave hindcast for the period 1960–2001. Ocean Dyn 65(6):795–816

    Article  Google Scholar 

  28. Soukissian T, Perivoliotis L, Prospathopoulos A, Papadopoulos A (2001) Performance of three numerical wave models on the Aegean Sea. In: First results, in 11th international offshore and polar engineering conference, ISOPE. pp 40–45

    Google Scholar 

  29. Soukissian T, Prospathopoulos A (2003) Implementation of the 3rd generation wave model WAM-Cycle 4 in Aegean Sea. Tech Chronica (Sci J Tech Chamber Greece) 23(1–2):13

    Google Scholar 

  30. Soukissian TH, Prospathopoulos AM (2006) The errors-in-variables approach for the validation of the WAM wave model in the Aegean Sea. Mediterr Mar Sci 7(1):47–61

    Article  Google Scholar 

  31. Soukissian T, Kechris C (2007) About applying linear structural method on ocean data: adjustment of satellite wave data. Ocean Eng 34(3–4):371–389

    Article  Google Scholar 

  32. Korres G, Ravdas M, Zacharioudaki A (2019) Mediterranean Sea Waves Hindcast (CMEMS MED-Waves), Copernicus Monitoring Environment Marine Service (CMEMS)

    Google Scholar 

  33. Soukissian T, Papadopoulos A, Skrimizeas P, Karathanasi F, Axaopoulos P, Avgoustoglou E, Kyriakidou H, Tsalis C, Voudouri A, Gofa F, Katsafados P (2017) Assessment of offshore wind power potential in the Aegean and Ionian seas based on high-resolution hindcast model results. AIMS Energy 5(2):268–289

    Article  Google Scholar 

  34. Soukissian T, Karathanasi F, Axaopoulos P, Voukouvalas EG, Kotroni V (2018) Offshore wind climate analysis and variability in the Mediterranean Sea. Int J Climatol 38:384–402

    Article  Google Scholar 

  35. Koletsis I, Kotroni V, Lagouvardos K, Soukissian T (2016) Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes. Renew Sustain Energy Rev 60:234–245

    Article  Google Scholar 

  36. Defant A (1961) Physical oceanography, vol 2. New York Pergamon Press, New York

    Google Scholar 

  37. Sanchez BV, Ray RD, Cartwright DE (1992) A proudman-function expansion of the M2 tide in the Mediterranean-Sea from satellite altimetry and coastal gauges. Oceanol Acta 15(4):325–337

    Google Scholar 

  38. Dressler R (1980) Hydrodynamisch-numerische Untersuchungen der M2 Gezeit und einiger Tsunamis im europaishen Mittelmer, in Mitteilungen der Institut fur Meereskunde. University of Hamburg, Hamburg, p 27

    Google Scholar 

  39. Tsimplis MN, Proctor R, Flather RA (1995) A 2-dimensional tidal model for the Mediterranean-Sea. J Geophys Res Oceans 100(C8):16223–16239

    Article  Google Scholar 

  40. Sterneck RV (1915) Hydrodynamische theorie der halbtagigen gezeiten des mittelmeeres. SB Akad Wiss Wien 124:905

    Google Scholar 

  41. Triantafyllou G, Lascaratos A (1990) A numerical model study of the shelf oscillations of the Aegean Sea. In: 3rd congress of oceanography and fisheries. Hellenic Centre for Marine Research, Athens

    Google Scholar 

  42. Tsimplis MN (1994) Tidal oscillations in the Aegean and Ionian seas. Estuar Coast Shelf Sci 39:201–208

    Article  Google Scholar 

  43. Tsimplis MN (1997) Tides and sea-level variability at the Strait of Euripus. Estuar Coast Shelf Sci 44(1):91–101

    Article  Google Scholar 

  44. Kontoyiannis H, Panagiotopoulos M, Soukissian T (2015) The Euripus tidal stream at Halkida/Greece: a practical, inexpensive approach in assessing the hydrokinetic renewable energy from field measurements in a tidal channel. J Ocean Eng Mar Energy 1(3):325–335

    Article  Google Scholar 

Download references

Acknowledgements

The part of this chapter dealing with wave climate analysis has been conducted using data available through EU Copernicus Monitoring Environment Marine Service (CMEMS) (DOI: https://doi.org/10.25423/CMCC/MEDSEA_HINDCAST_WAV_006_012), (http://marine.copernicus.eu/services-portfolio/access-to-products/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takvor Soukissian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soukissian, T., Kontoyiannis, H., Karathanasi, F., Belibassakis, K. (2020). The Aegean Sea: Wind Waves and Tides. In: Anagnostou, C.L., Kostianoy, A.G., Mariolakos, I.D., Panayotidis, P., Soilemezidou, M., Tsaltas, G. (eds) The Aegean Sea Environment. The Handbook of Environmental Chemistry, vol 127. Springer, Cham. https://doi.org/10.1007/698_2020_658

Download citation

Publish with us

Policies and ethics