Skip to main content

Weather Systems Affecting the Meteorological Conditions over the Aegean Sea

  • Chapter
  • First Online:
The Aegean Sea Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 127))

Abstract

The meteorological conditions over the Aegean Sea are subjected to strong influences from the large-scale patterns of the general atmospheric circulation, the surrounding continents, the almost enclosed Mediterranean Sea, the complex topography and coastline, as well as the mesoscale and local phenomena imposed on the synoptic-scale atmospheric circulation. This chapter discusses the most important circulation patterns that affect the area determining not only the weather conditions but also the climatic characteristics. The discussion unravels seasonal and spatial characteristics of the weather and climate patterns giving also a particular emphasis on the formation of cyclones (cyclogenesis). The role of upper-air conditions and air-sea interaction is highlighted, especially demonstrating the remarkable patterns of explosive cyclones and Mediterranean tropical-like cyclones (medicanes). This chapter also provides a preliminary analysis of air temperature and precipitation over the Aegean Sea unveiling spatiotemporal variabilities and trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3803

  2. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784–812. https://doi.org/10.1175/1520-0493(1981)109<0784:titghf>2.0.co;2

    Article  Google Scholar 

  3. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–679. https://doi.org/10.1126/science.269.5224.676

    Article  CAS  PubMed  Google Scholar 

  4. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126. https://doi.org/10.1175/1520-0493(1987)115<1083:csapol>2.0.co;2

    Article  Google Scholar 

  5. Krichak SO, Alpert P (2005) Signatures of the NAO in the atmospheric circulation during wet winter months over the Mediterranean region. Theor Appl Climatol 82:27–39. https://doi.org/10.1007/s00704-004-0119-7

    Article  Google Scholar 

  6. Ahrens CD (2011) Essentials of meteorology: an invitation to the atmosphere. Brooks/Cole, Pacific Grove

    Google Scholar 

  7. Flocas HA, Karacostas TS (1996) Cyclogenesis over the Aegean Sea: identification and synoptic categories. Meteorol Appl 3:53–61. https://doi.org/10.1002/met.5060030106

    Article  Google Scholar 

  8. Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Climate 12:1685–1696. https://doi.org/10.1175/1520-0442(1999)012<1685:ococit>2.0.co;2

    Article  Google Scholar 

  9. Lionello P, Trigo IF, Gil V et al (2016) Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A Dyn Meteorol Oceanogr 68:29391. https://doi.org/10.3402/tellusa.v68.29391

    Article  Google Scholar 

  10. Metaxas DA, Bartzokas A (1994) Pressure covariability over the Atlantic, Europe and N. Africa. Application: centers of action for temperature, winter precipitation and summer winds in Athens, Greece. Theor Appl Climatol 49:9–18. https://doi.org/10.1007/BF00866284

    Article  Google Scholar 

  11. Kallos G, Kassomenos P, Pielke RA (1993) Synoptic and mesoscale weather conditions during air pollution episodes in Athens, Greece. Boundary-Layer Meteorol 62:163–184. https://doi.org/10.1007/BF00705553

    Article  Google Scholar 

  12. Holton JR (2004) An introduction to dynamic meteorology. Elsevier Academic Press, Burlington

    Google Scholar 

  13. Trigo IF, Bigg GR, Davies TD (2002) Climatology of cyclogenesis mechanisms in the Mediterranean. Mon Weather Rev 130:549–569. https://doi.org/10.1175/1520-0493(2002)130<0549:cocmit>2.0.co;2

    Article  Google Scholar 

  14. Campins J, Genovés A, Picornell MA, Jansà A (2011) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31:1596–1614. https://doi.org/10.1002/joc.2183

    Article  Google Scholar 

  15. Katsafados P, Papadopoulos A, Korres G, Varlas G (2016) A fully coupled atmosphere-ocean wave modeling system for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms. Geosci Model Dev 9:161–173. https://doi.org/10.5194/gmd-9-161-2016

    Article  Google Scholar 

  16. Varlas G, Katsafados P, Papadopoulos A, Korres G (2018) Implementation of a two-way coupled atmosphere-ocean wave modeling system for assessing air-sea interaction over the Mediterranean Sea. Atmos Res 208:201–217. https://doi.org/10.1016/j.atmosres.2017.08.019

    Article  Google Scholar 

  17. Maheras P, Flocas HA, Patrikas I, Anagnostopoulou CHR (2001) A 40 year objective climatology of surface cyclones in the mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130. https://doi.org/10.1002/joc.599

    Article  Google Scholar 

  18. Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “Bomb”. Mon Weather Rev 108:1589–1606. https://doi.org/10.1175/1520-0493(1980)108<1589:sdcot>2.0.co;2

    Article  Google Scholar 

  19. Kouroutzoglou J, Flocas HA, Keay K et al (2011) Climatological aspects of explosive cyclones in the Mediterranean. Int J Climatol 31:1785–1802. https://doi.org/10.1002/joc.2203

    Article  Google Scholar 

  20. Sanders F (1986) Explosive cyclogenesis in the West-Central North Atlantic Ocean, 1981–84. Part I: composite structure and mean behavior. Mon Weather Rev 114:1781–1794. https://doi.org/10.1175/1520-0493(1986)114<1781:ecitwc>2.0.co;2

    Article  Google Scholar 

  21. Lagouvardos K, Kotroni V, Nickovic S et al (1999) Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean. Meteorol Appl 6:371–383. https://doi.org/10.1017/S1350482799001309

    Article  Google Scholar 

  22. Strahl JLS, Smith PJ (2001) A diagnostic study of an explosively developing extratropical cyclone and an associated 500-hPa trough merger. Mon Weather Rev 129:2310–2328. https://doi.org/10.1175/1520-0493(2001)129<2310:adsoae>2.0.co;2

    Article  Google Scholar 

  23. Kouroutzoglou J, Avgoustoglou EN, Flocas HA et al (2018) Assessment of the role of sea surface fluxes on eastern Mediterranean explosive cyclogenesis with the aid of the limited-area model COSMO.GR. Atmos Res 208:132–147. https://doi.org/10.1016/j.atmosres.2017.10.005

    Article  Google Scholar 

  24. Katsafados P, Mavromatidis E, Papadopoulos A, Pytharoulis I (2011) Numerical simulation of a deep Mediterranean storm and its sensitivity on sea surface temperature. Nat Hazards Earth Syst Sci 11:1233–1246. https://doi.org/10.5194/nhess-11-1233-2011

    Article  Google Scholar 

  25. Lagouvardos K, Kotroni V, Defer E (2007) The 21-22 January 2004 explosive cyclogenesis over the Aegean Sea: observations and model analysis. Q J Roy Meteorol Soc 133:1519–1531. https://doi.org/10.1002/qj.121

    Article  Google Scholar 

  26. Varlas G (2017) Development of an integrated modeling system for simulating the air-ocean wave interactions. PhD dissertation, Department of Geography, Harokopio University of Athens, p 212. https://www.didaktorika.gr/eadd/handle/10442/41238

  27. Papadopoulos A (2005) Weather systems. In: Papathanassiou E, Zenetos A (eds) State of t. Hellenic Centre for Marine Research Institute of Oceanography, pp 56–60

    Google Scholar 

  28. Emanuel K (2005) Genesis and maintenance of “Mediterranean hurricanes”. Adv Geosci 2:217–220

    Article  Google Scholar 

  29. Pytharoulis I, Craig GC, Ballard SP (2000) The hurricane-like Mediterranean cyclone of January 1995. Meteorol Appl 7:261–279. https://doi.org/10.1017/S1350482700001511

    Article  Google Scholar 

  30. Fita L, Romero R, Luque A et al (2007) Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Hazards Earth Syst Sci 7:41–56

    Article  Google Scholar 

  31. Moscatello A, Marcello Miglietta M, Rotunno R (2008) Observational analysis of a Mediterranean ‘hurricane’ over south-eastern Italy. Weather 63:306–311. https://doi.org/10.1002/wea.231

    Article  Google Scholar 

  32. Tous M, Romero R, Ramis C (2013) Surface heat fluxes influence on medicane trajectories and intensification. Atmos Res 123:400–411. https://doi.org/10.1016/j.atmosres.2012.05.022

    Article  Google Scholar 

  33. Pytharoulis I (2018) Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos Res 208:167–179. https://doi.org/10.1016/j.atmosres.2017.08.009

    Article  Google Scholar 

  34. Miglietta MM, Rotunno R (2019) Development mechanisms for Mediterranean tropical-like cyclones (medicanes). Q J Roy Meteorol Soc 145:1444–1460. https://doi.org/10.1002/qj.3503

    Article  Google Scholar 

  35. Romero R, Emanuel K (2013) Medicane risk in a changing climate. J Geophys Res Atmos 118:5992–6001. https://doi.org/10.1002/jgrd.50475

    Article  Google Scholar 

  36. Cavicchia L, von Storch H, Gualdi S (2014) A long-term climatology of medicanes. Climate Dynam 43:1183–1195. https://doi.org/10.1007/s00382-013-1893-7

    Article  Google Scholar 

  37. Tous M, Romero R (2013) Meteorological environments associated with medicane development. Int J Climatol 33:1–14. https://doi.org/10.1002/joc.3428

    Article  Google Scholar 

  38. Portmann R, Jesús González-Alemán J, Sprenger M, Wernli H. Medicane Zorbas: origin and impact of an uncertain potential vorticity streamer. Weather Clim Dyn Discuss. In review https://doi.org/10.5194/wcd-2019-1

  39. Kostopoulou E, Giannakopoulos C, Hatzaki M et al (2014) Spatio-temporal patterns of recent and future climate extremes in the eastern Mediterranean and Middle East region. Hazards Earth Syst Sci 14:1565–1577. https://doi.org/10.5194/nhess-14-1565-2014

    Article  Google Scholar 

Download references

Acknowledgments

The European Centre for Medium-Range Weather Forecasts (ECMWF) and the Copernicus Programme are gratefully acknowledged for the provision of ERA-5 reanalysis data. The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and the Cooperative Institute for Meteorological Satellite Studies (CIMSS) are acknowledged for the provision of satellite images. The National Aeronautics and Space Administration (NASA) is acknowledged for the provision of a Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) satellite image. Google Earth is acknowledged for the provision of maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Papadopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadopoulos, A., Varlas, G. (2020). Weather Systems Affecting the Meteorological Conditions over the Aegean Sea. In: Anagnostou, C.L., Kostianoy, A.G., Mariolakos, I.D., Panayotidis, P., Soilemezidou, M., Tsaltas, G. (eds) The Aegean Sea Environment. The Handbook of Environmental Chemistry, vol 127. Springer, Cham. https://doi.org/10.1007/698_2020_657

Download citation

Publish with us

Policies and ethics