Skip to main content

Uptake and Translocation of Pharmaceuticals in Plants: Principles and Data Analysis

  • Chapter
  • First Online:
Interaction and Fate of Pharmaceuticals in Soil-Crop Systems

Abstract

Pharmaceuticals originating from reclaimed wastewater or biosolid-, livestock manure- or sewage sludge-amended soils can enter crops by irrigation and fertilization. Generally, the putative uptake occurs through the plants’ roots and can lead to the bioaccumulation in different plant parts. The uptake and translocation therefore is dependent on multiple parameters, i.e. physicochemical properties of compounds, plant physiology and environmental factors. This book chapter combines a theoretical background on the main principles of uptake and translocation of pharmaceuticals by plants and a critical evaluation of current available literature, by analysing studies for the bioconcentration and translocation factors of different pharmaceutical groups in several plant species. Thereby, interesting results were obtained by looking at the translocation of various pharmaceuticals in radish and at cationic compounds in soil studies. Comparing the different studies, the relevance of testing not only high but also real environmental concentrations became obvious, since for some pharmaceuticals, higher uptake and translocation ratios were achieved with lower applied concentrations. Basic guidelines could provide a possibility to make scientific data more comparable and reliable and to avoid the exclusion of potential reasons for the missing uptake or translocation of pharmaceuticals. This book chapter provides recommendations for future research studies to generate more valid conclusions within the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gago-Ferrero P, Bletsou AA, Damalas DE, Aalizadeh R, Alygizakis NA, Singer HP, Hollender J, Thomaidis NS (2020) Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J Hazard Mater 387:121712. https://doi.org/10.1016/j.jhazmat.2019.121712

    Article  CAS  Google Scholar 

  2. Ibáñez M, Borova V, Boix C, Aalizadeh R, Bade R, Thomaidis NS, Hernández F (2017) UHPLC-QTOF MS screening of pharmaceuticals and their metabolites in treated wastewater samples from Athens. J Hazard Mater 323:26–35. https://doi.org/10.1016/j.jhazmat.2016.03.078

    Article  CAS  Google Scholar 

  3. Grassi M, Rizzo L, Farina A (2013) Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ Sci Pollut Res 20:3616–3628. https://doi.org/10.1007/s11356-013-1636-7

    Article  CAS  Google Scholar 

  4. Madureira TV, Cruzeiro C, Rocha MJ, Rocha E (2011) The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal) – experimental assessment using a zebrafish embryo test. Environ Toxicol Pharmacol 32:212–217. https://doi.org/10.1016/j.etap.2011.05.005

    Article  CAS  Google Scholar 

  5. Watanabe H, Tamura I, Abe R, Takanobu H, Nakamura A, Suzuki T, Hirose A, Nishimura T, Tatarazako N (2016) Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish). Environ Toxicol Chem 35:996–1006. https://doi.org/10.1002/etc.3285

    Article  CAS  Google Scholar 

  6. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275. https://doi.org/10.1007/s00216-010-4300-9

    Article  CAS  Google Scholar 

  7. Christou A, Karaolia P, Hapeshi E, Michael C, Fatta-Kassinos D (2017) Long-term wastewater irrigation of vegetables in real agricultural systems: concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment. Water Res 109:24–34. https://doi.org/10.1016/j.watres.2016.11.033

    Article  CAS  Google Scholar 

  8. Goldstein M, Shenker M, Chefetz B (2014) Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables. Environ Sci Technol 48:5593–5600. https://doi.org/10.1021/es5008615

    Article  CAS  Google Scholar 

  9. Miller EL, Nason SL, Karthikeyan KG, Pedersen JA (2016) Root uptake of pharmaceuticals and personal care product ingredients. Environ Sci Technol 50:525–541. https://doi.org/10.1021/acs.est.5b01546

    Article  CAS  Google Scholar 

  10. Goldstein M, Malchi T, Shenker M, Chefetz B (2018) Pharmacokinetics in plants: carbamazepine and its interactions with lamotrigine. Environ Sci Technol 52:6957–6964. https://doi.org/10.1021/acs.est.8b01682

    Article  CAS  Google Scholar 

  11. Kodešová R, Klement A, Golovko O, Fér M, Nikodem A, Kočárek M, Grabic R (2019) Root uptake of atenolol, sulfamethoxazole and carbamazepine, and their transformation in three soils and four plants. Environ Sci Pollut Res 26:9876–9891. https://doi.org/10.1007/s11356-019-04333-9

    Article  CAS  Google Scholar 

  12. Papaioannou D, Koukoulakis PH, Lambropoulou D, Papageorgiou M, Kalavrouziotis IK (2019) The dynamics of the pharmaceutical and personal care product interactive capacity under the effect of artificial enrichment of soil with heavy metals and of wastewater reuse. Sci Total Environ 662:537–546. https://doi.org/10.1016/j.scitotenv.2019.01.111

    Article  CAS  Google Scholar 

  13. Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 106:25–36. https://doi.org/10.1016/j.jpba.2014.11.040

    Article  CAS  Google Scholar 

  14. Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078

    Article  CAS  Google Scholar 

  15. Sauvêtre A, Schröder P (2015) Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Front Plant Sci 6:83. https://doi.org/10.3389/fpls.2015.00083

    Article  Google Scholar 

  16. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254. https://doi.org/10.1016/j.copbio.2009.02.012

    Article  CAS  Google Scholar 

  17. Agrawal N, Shahi SK (2015) An environmental cleanup strategy-microbial transformation of xenobiotic compounds. Int J Curr Microbiol App Sci 4:429–461

    CAS  Google Scholar 

  18. Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35:3075–3084. https://doi.org/10.1007/s11738-013-1338-2

    Article  CAS  Google Scholar 

  19. Diekmann F, Nepovim A, Schröder P (2004) Influence of Serratia liquifaciens and a xenobiotic glutathione conjugate on the detoxification enzymes in a hairy root culture of horseradish (Armoracia rusticana). J Appl Bot 78:64–67

    CAS  Google Scholar 

  20. Chuang YH, Liu CH, Sallach JB, Hammerschmidt R, Zhang W, Boyd SA, Li H (2019) Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. Environ Int 131:104976. https://doi.org/10.1016/j.envint.2019.104976

    Article  CAS  Google Scholar 

  21. Kvesitadze G, Khatisashvili G, Sadunishvili T, Kvesitadze E (2016) Plants for remediation: uptake, translocation and transformation of organic pollutants. In: Plants, pollutants and remediation. Springer, Dordrecht, pp 241–308. https://doi.org/10.1007/978-94-017-7194-8_12

    Chapter  Google Scholar 

  22. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, DeLeo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Joakim Larsson DG, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229. https://doi.org/10.1289/ehp.1104477

    Article  Google Scholar 

  23. Kah M, Brown CD (2008) Log D: lipophilicity for ionisable compounds. Chemosphere 72:1401–1408. https://doi.org/10.1016/j.chemosphere.2008.04.074

    Article  CAS  Google Scholar 

  24. Xing L, Glen RC (2002) Novel methods for the prediction of logP, Pka, and logD. J Chem Inf Comput Sci 42:796–805. https://doi.org/10.1021/ci010315d

    Article  CAS  Google Scholar 

  25. Briggs GG, Bromilow RH, Evans AA, Williams M (1983) Relationships between lipophilicity and the distribution of non-ionised chemicals in barley shoots following uptake by the roots. Pestic Sci 14:492–500. https://doi.org/10.1002/ps.2780140506

    Article  CAS  Google Scholar 

  26. Schröder P, Collins C (2002) Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. Int J Phytoremediation 4:247–265. https://doi.org/10.1080/15226510208500086

    Article  Google Scholar 

  27. Wild E, Dent J, Thomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695–3702. https://doi.org/10.1021/es048136a

    Article  CAS  Google Scholar 

  28. Cousins IT, Mackay D (2001) Strategies for including vegetation compartments in multimedia models. Chemosphere 44:643–654. https://doi.org/10.1016/S0045-6535(00)00514-2

    Article  CAS  Google Scholar 

  29. Collins CD, Finnegan E (2010) Modeling the plant uptake of organic chemicals, including the soil – air – plant pathway. Environ Sci Technol 44:998–1003. https://doi.org/10.1021/es901941z

    Article  CAS  Google Scholar 

  30. Schröder P, Collins C (2011) Organic xenobiotics and plants – from mode of action to ecophysiology. Springer, Berlin. https://doi.org/10.1007/978-90-481-9852-8

    Book  Google Scholar 

  31. Crang R, Lyons-Sobaski S, Wise R, Crang R, Lyons-Sobaski S, Wise R (2018) Periderm. In: Plant anatomy. Springer, Cham, pp 553–575. https://doi.org/10.1007/978-3-319-77315-5_16

    Chapter  Google Scholar 

  32. Trapp S, Pussemier L (1991) Model calculations and measurements of uptake and translocation of carbamates by bean plants. Chemosphere 22:327–339. https://doi.org/10.1016/0045-6535(91)90321-4

    Article  CAS  Google Scholar 

  33. Collins CD, Martin I, Doucette W (2011) Plant uptake of xenobiotics. Springer, Dordrecht, pp 3–16. https://doi.org/10.1007/978-90-481-9852-8_1

    Book  Google Scholar 

  34. Zhang C, Feng Y, Wang LY, Qing CH, Jun LZ, Ming XJ (2017) Uptake and translocation of organic pollutants in plants: a review. J Integr Agric 16:1659–1668. https://doi.org/10.1016/S2095-3119(16)61590-3

    Article  CAS  Google Scholar 

  35. Eggen T, Asp TN, Grave K, Hormazabal V (2011) Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 85:26–33. https://doi.org/10.1016/j.chemosphere.2011.06.041

    Article  CAS  Google Scholar 

  36. González García M, Fernández-López C, Polesel F, Trapp S (2019) Predicting the uptake of emerging organic contaminants in vegetables irrigated with treated wastewater – implications for food safety assessment. Environ Res 172:175–181. https://doi.org/10.1016/j.envres.2019.02.011

    Article  CAS  Google Scholar 

  37. Trapp S (2009) Bioaccumulation of polar and ionizable compounds in plants. Springer, Boston, pp 299–353. https://doi.org/10.1007/978-1-4419-0197-2_11

    Book  Google Scholar 

  38. Kumar K, Gupta SC (2016) A framework to predict uptake of trace organic compounds by plants. J Environ Qual 45:555–564. https://doi.org/10.2134/jeq2015.06.0261

    Article  CAS  Google Scholar 

  39. Su YH, Zhu YG (2007) Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. Environ Pollut 148:94–100. https://doi.org/10.1016/j.envpol.2006.11.004

    Article  CAS  Google Scholar 

  40. Volk C (2014) OCTs, OATs, and OCTNs: structure and function of the polyspecific organic ion transporters of the SLC22 family. Wiley Interdiscip Rev Membr Transp Signal 3:1–13. https://doi.org/10.1002/wmts.100

    Article  CAS  Google Scholar 

  41. Lalonde S, Wipf D, Frommer WB (2004) Transport mechanism for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372. https://doi.org/10.1146/annurev.arplant.55.031903.141758

    Article  CAS  Google Scholar 

  42. Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552. https://doi.org/10.1038/372549a0

    Article  Google Scholar 

  43. Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch Eur J Physiol 447:666–676. https://doi.org/10.1007/s00424-003-1089-9

    Article  CAS  Google Scholar 

  44. Takanashi K, Shitan N, Yazaki K (2014) The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol 31:417–430

    Article  CAS  Google Scholar 

  45. Diener AC, Gaxiola RA, Fink GR (2001) Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. Plant Cell 13:1625–1638. https://doi.org/10.1105/tpc.010035

    Article  CAS  Google Scholar 

  46. Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368. https://doi.org/10.1074/jbc.M108777200

    Article  CAS  Google Scholar 

  47. Torres GAM, Lelandais-Brière C, Besin E, Jubier MF, Roche O, Mazubert C, Corre-Menguy F, Hartmann C (2003) Characterization of the expression of Phaseolus vulgaris OCT1, a dehydration-regulated gene that encodes a new type of phloem transporter. Plant Mol Biol 51:341–349. https://doi.org/10.1023/A:1022014229899

    Article  CAS  Google Scholar 

  48. Lelandais-Brière C, Jovanovic M, Torres GAM, Perrin Y, Lemoine R, Corre-Menguy F, Hartmann C (2007) Disruption of AtOCT1, an organic cation transporter gene, affects root development and carnitine-related responses in Arabidopsis. Plant J 51:154–164. https://doi.org/10.1111/j.1365-313X.2007.03131.x

    Article  CAS  Google Scholar 

  49. Küfner I, Koch W (2008) Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane. BMC Res Notes 1:43. https://doi.org/10.1186/1756-0500-1-43

    Article  CAS  Google Scholar 

  50. Cui H, Hense BA, Müller J, Schröder P (2015) Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia. Chemosphere 134:307–312. https://doi.org/10.1016/j.chemosphere.2015.04.072

    Article  CAS  Google Scholar 

  51. Dodgen LK, Ueda A, Wu X, Parker DR, Gan J (2015) Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ Pollut 198:144–153. https://doi.org/10.1016/j.envpol.2015.01.002

    Article  CAS  Google Scholar 

  52. Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B (2014) Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ Sci Technol 48:9325. https://doi.org/10.1021/es5017894

    Article  CAS  Google Scholar 

  53. Shenker M, Harush D, Ben-Ari J, Chefetz B (2011) Uptake of carbamazepine by cucumber plants – a case study related to irrigation with reclaimed wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2010.10.052

  54. Tanoue R, Sato Y, Motoyama M, Nakagawa S, Shinohara R, Nomiyama K (2012) Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J Agric Food Chem. https://doi.org/10.1021/jf303142t

  55. Bromilow RH, Chamberlain K (2000) The herbicide glyphosate and related molecules: physicochemical and structural factors determining their mobility in phloem. Pest Manag Sci 56:368–373. https://doi.org/10.1002/(SICI)1526-4998(200004)56:4<368::AID-PS153>3.0.CO;2-V

    Article  CAS  Google Scholar 

  56. Grangeot M, Chauvel B, Gauvrit C (2006) Spray retention, foliar uptake and translocation of glufosinate and glyphosate in Ambrosia artemisiifolia. Weed Res 46:152–162. https://doi.org/10.1111/j.1365-3180.2006.00495.x

    Article  CAS  Google Scholar 

  57. Hsu FC, Kleier DA (1996) Phloem mobility of xenobiotics VIII. A short review. J Exp Bot 47:1265–1271. https://doi.org/10.1093/jxb/47.special_issue.1265

    Article  CAS  Google Scholar 

  58. McGinnis M, Sun C, Dudley S, Gan J (2019) Effect of low-dose, repeated exposure of contaminants of emerging concern on plant development and hormone homeostasis. Environ Pollut 252:706–714. https://doi.org/10.1016/j.envpol.2019.05.159

    Article  CAS  Google Scholar 

  59. Sur R, Stork A (2003) Uptake, translocation and metabolism of imidacloprid in plants. Bull Insectol 56:35–40

    Google Scholar 

  60. Bromilow RH, Chamberlain K, Evans AA (1990) Physicochemical aspects of phloem translocation of herbicides. Weed Sci 38:305–314. https://doi.org/10.1017/S0043174500056575

    Article  CAS  Google Scholar 

  61. Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324–329. https://doi.org/10.1021/es801751x

    Article  CAS  Google Scholar 

  62. Garvin N, Doucette WJ, White JC (2015) Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method. Chemosphere 130:98–102. https://doi.org/10.1016/j.chemosphere.2014.11.075

    Article  CAS  Google Scholar 

  63. Weigel HJ, Weis E (1984) Determination of the proton concentration difference across the tonoplast membrane of isolated vacuoles by means of (-amino fluorescence. Plant Sci Lett 33:163–175. https://doi.org/10.1016/0304-4211(84)90006-3

  64. Nason SL, Miller EL, Karthikeyan KG, Pedersen JA (2018) Plant-induced changes to rhizosphere pH impact leaf accumulation of lamotrigine but not carbamazepine. Environ Sci Technol Lett 5:377–381. https://doi.org/10.1021/acs.estlett.8b00246

    Article  CAS  Google Scholar 

  65. Cui H, Schröder P (2016) Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia. J Hazard Mater 308:355–361. https://doi.org/10.1016/j.jhazmat.2016.01.054

    Article  CAS  Google Scholar 

  66. Mercado-Borrayo BM, Cram Heydrich S, Rosas Pérez I, Hernández Quiroz M, Ponce De León Hill C (2015) Organophosphorus and organochlorine pesticides bioaccumulation by Eichhornia crassipes in irrigation canals in an urban agricultural system. Int J Phytoremediation 17:701–708. https://doi.org/10.1080/15226514.2014.964841

    Article  CAS  Google Scholar 

  67. Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci 13:495–504. https://doi.org/10.1002/ps.2780130506

    Article  CAS  Google Scholar 

  68. Felizeter S, McLachlan MS, De Voogt P (2012) Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environ Sci Technol 46:11735–11743. https://doi.org/10.1021/es302398u

    Article  CAS  Google Scholar 

  69. Huelster A, Marschner H (1994) The influence of root exudates on the uptake of PCDD/PCDF by plants. Organohalogen Compd 20:31–34

    Google Scholar 

  70. Campanella B, Paul R (2000) Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L.) and melon (Cucumis melo L.), of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int J Phytoremediation 2:145–158. https://doi.org/10.1080/15226510008500036

    Article  CAS  Google Scholar 

  71. Inui H, Sawada M, Goto J, Yamazaki K, Kodama N, Tsuruta H, Eun H (2013) A major latex-like protein is a key factor in crop contamination by persistent organic pollutants. Plant Physiol 161:2128–2135. https://doi.org/10.1104/pp.112.213645

    Article  CAS  Google Scholar 

  72. Lin H, Tao S, Zuo Q, Coveney RM (2007) Uptake of polycyclic aromatic hydrocarbons by maize plants. Environ Pollut 148:614–619. https://doi.org/10.1016/J.ENVPOL.2006.11.026

    Article  CAS  Google Scholar 

  73. Schreiber L, Schönherr J (1992) Analysis of foliar uptake of pesticides in barley leaves: role of epicuticular waxes and compartmentation. Pestic Sci 36:213–221. https://doi.org/10.1002/ps.2780360307

    Article  CAS  Google Scholar 

  74. Thomas W, Riihlingt A, Simon H (1984) Accumulation of airborne pollutants (PAH, chlorinated hydrocarbons, heavy metals) in various plant species and humus. Environ Pollut 36:295–310. https://doi.org/10.1016/0143-1471(84)90099-0

    Article  CAS  Google Scholar 

  75. Wang CJ, Liu ZQ (2007) Foliar uptake of pesticides – present status and future challenge. Pestic Biochem Physiol 87:1–8. https://doi.org/10.1016/J.PESTBP.2006.04.004

    Article  Google Scholar 

  76. Topp E, Scheunert I, Attar A, Korte F (1986) Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil. Ecotoxicol Environ Saf 2:219–228. https://doi.org/10.1016/0147-6513(86)90066-7

    Article  Google Scholar 

  77. Pi N, Ng JZ, Kelly BC (2017) Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes. Sci Total Environ 601–602:812–820. https://doi.org/10.1016/j.scitotenv.2017.05.137

    Article  CAS  Google Scholar 

  78. Kim I, Yamashita N, Tanaka H (2009) Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere 77:518–525. https://doi.org/10.1016/j.chemosphere.2009.07.041

    Article  CAS  Google Scholar 

  79. Wols BA, Hofman-Caris CHM, Harmsen DJH, Beerendonk EF (2013) Degradation of 40 selected pharmaceuticals by UV/H2O2. Water Res 47:5876–5888. https://doi.org/10.1016/J.WATRES.2013.07.008

    Article  CAS  Google Scholar 

  80. Sandermann H (1994) Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics 4:225–241. https://doi.org/10.1097/00008571-199410000-00001

    Article  CAS  Google Scholar 

  81. Schröder P (1997) Fate of glutathione S-conjugates in plants: cleavage of the glutathione moiety. In: Regulation of enzymatic systems detoxifying xenobiotics in plants, NATO ASI series. Kluwer Academic Publishers, The Hague, pp 233–244

    Chapter  Google Scholar 

  82. Shimabukuro RH, Frear DS, Swanson HR, Walsh WC (1971) Glutathione conjugation. An enzymatic basis for atrazine resistance in corn. Plant Physiol 47:10–14. https://doi.org/10.1104/pp.47.1.10

    Article  CAS  Google Scholar 

  83. Coleman JOD, Frova C, Schröder P, Tissut M (2002) Exploiting plant metabolism for the phytoremediation of persistent herbicides. Environ Sci Pollut Res 9:18–28

    Article  CAS  Google Scholar 

  84. Bartha B, Huber C, Schröder P (2014) Uptake and metabolism of diclofenac in Typha latifolia – how plants cope with human pharmaceutical pollution. Plant Sci 227:12–20. https://doi.org/10.1016/j.plantsci.2014.06.001

    Article  CAS  Google Scholar 

  85. Chen F, Huber C, Schröder P (2017) Fate of the sunscreen compound oxybenzone in Cyperus alternifolius based hydroponic culture: uptake, biotransformation and phytotoxicity. Chemosphere 182:638–646. https://doi.org/10.1016/j.chemosphere.2017.05.072

    Article  CAS  Google Scholar 

  86. Huber C, Bartha B, Schröder P (2012) Metabolism of diclofenac in plants – hydroxylation is followed by glucose conjugation. J Hazard Mater 243:250–256. https://doi.org/10.1016/j.jhazmat.2012.10.023

    Article  CAS  Google Scholar 

  87. Lamoureux GL, Rusness DG (1995) Quinclorac absorption, translocation, metabolism, and toxicity in leafy spurge (Euphorbia esula). Pestic Biochem Physiol 53:210–226. https://doi.org/10.1006/pest.1995.1069

    Article  CAS  Google Scholar 

  88. Schröder P, Matucha M, Forczek ST, Uhlířová H, Fuksová K, Albrechtová J (2003) Uptake, translocation and fate of trichloroacetic acid in a Norway spruce/soil system. Chemosphere 52:437–442. https://doi.org/10.1016/S0045-6535(03)00208-X

    Article  CAS  Google Scholar 

  89. Macherius A, Seiwert B, Schröder P, Huber C, Lorenz W, Reemtsma T (2014) Identification of plant metabolites of environmental contaminants by UPLC-QToF-MS: the in vitro metabolism of triclosan in horseradish. J Agric Food Chem 62:1001–1009. https://doi.org/10.1021/jf404784q

    Article  CAS  Google Scholar 

  90. Coleman M (2007) Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant and Soil 299:195–213. https://doi.org/10.1007/s11104-007-9375-5

    Article  CAS  Google Scholar 

  91. Ishikawa T, Wright CD, Ishizuka H (1994) GS-X pump is functionally overexpressed in cis-diamminedichloroplatinum (II)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J Biol Environ Sci 269:29085–29093

    CAS  Google Scholar 

  92. Lamoureux GL, Rusness DG, Schröder P, Rennenberg H (1991) Diphenyl ether herbicide metabolism in a spruce cell suspension culture: the identification of two novel metabolites derived from a glutathione conjugate. Pestic Biochem Physiol 39:291–301. https://doi.org/10.1016/0048-3575(91)90124-5

    Article  CAS  Google Scholar 

  93. Schröder P, Navarro-Aviñó J, Azaizeh H, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res 14:490–497

    Article  Google Scholar 

  94. Brazier-Hicks M, Evans KM, Cunningham OD, Hodgson DRW, Steel PG, Edwards R (2008) Catabolism of glutathione conjugates in Arabidopsis thaliana: role in metabolic reactivation of the herbicide safener fenclorim. J Biol Chem 283:21102–21112. https://doi.org/10.1074/jbc.M801998200

    Article  CAS  Google Scholar 

  95. Wolf AE, Dietz KJ, Schröder P (1996) A carboxypeptidase degrades glutathione conjugates in the vacuoles of higher plants. FEBS Lett 384:31–34

    Article  CAS  Google Scholar 

  96. Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213. https://doi.org/10.1146/annurev-arplant-042811-105608

    Article  CAS  Google Scholar 

  97. Chen F, Schnick S, Schröder P (2018) Concentration effects of the UV filter oxybenzone in Cyperus alternifolius: assessment of tolerance by stress-related response. Environ Sci Pollut Res 25:16080–16090. https://doi.org/10.1007/s11356-018-1839-z

    Article  CAS  Google Scholar 

  98. Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375. https://doi.org/10.1146/annurev.arplant.57.032905.105406

    Article  CAS  Google Scholar 

  99. Sandermann H, Schmitt R, Eckey H, Bauknecht T (1991) Plant biochemistry of xenobiotics: isolation and properties of soybean O- and N-glucosyl and O- and N-malonyltransferases for chlorinated phenols and anilines. Arch Biochem Biophys 287:341–350. https://doi.org/10.1016/0003-9861(91)90488-5

    Article  CAS  Google Scholar 

  100. Taguchi G, Ubukata T, Nozue H, Kobayashi Y, Takahi M, Yamamoto H, Hayashida N (2010) Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J 63:1031–1041. https://doi.org/10.1111/j.1365-313X.2010.04298.x

    Article  CAS  Google Scholar 

  101. Li G, Zhai J, He Q, Zhi Y, Xiao H, Rong J (2014) Phytoremediation of levonorgestrel in aquatic environment by hydrophytes. J Environ Sci (China) 26:1869–1873. https://doi.org/10.1016/j.jes.2014.06.030

    Article  Google Scholar 

  102. Li Y, Sallach JB, Zhang W, Boyd SA, Li H (2019) Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water Res 152:38–46. https://doi.org/10.1016/j.watres.2018.12.039

    Article  CAS  Google Scholar 

  103. Chen J, Deng WJ, Liu YS, Hu LX, He LY, Zhao JL, Wang TT, Ying GG (2019) Fate and removal of antibiotics and antibiotic resistance genes in hybrid constructed wetlands. Environ Pollut 249:894–903. https://doi.org/10.1016/j.envpol.2019.03.111

    Article  CAS  Google Scholar 

  104. Datta R, Das P, Smith S, Punamiya P, Ramanathan DM, Reddy R, Sarkar D (2013) Phytoremediation potential of vetiver grass (Chrysopogon zizanioides (L.)) for tetracycline. Int J Phytoremediation 15:343–351. https://doi.org/10.1080/15226514.2012.702803

    Article  CAS  Google Scholar 

  105. Tai Y, Fung-Yee Tam N, Ruan W, Yang Y, Yang Y, Tao R, Zhang J (2019) Specific metabolism related to sulfonamide tolerance and uptake in wetland plants. Chemosphere 227:496–504. https://doi.org/10.1016/j.chemosphere.2019.04.069

    Article  CAS  Google Scholar 

  106. Adeel M, Yang YS, Wang YY, Song XM, Ahmad MA, Rogers HJ (2018) Uptake and transformation of steroid estrogens as emerging contaminants influence plant development. Environ Pollut 243:1487–1497. https://doi.org/10.1016/j.envpol.2018.09.016

    Article  CAS  Google Scholar 

  107. Kummerová M, Zezulka Š, Babula P, Tříska J (2016) Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor. J Hazard Mater 302:351–361. https://doi.org/10.1016/j.jhazmat.2015.09.057

    Article  CAS  Google Scholar 

  108. Phong VHN, Koottatep T, Chapagain SK, Panuvatvanich A, Polprasert C, Ahn K-H (2016) Removal of acetaminophen from wastewater by constructed wetlands with Scirpus validus. Environ Eng Res 21:164–170. https://doi.org/10.4491/eer.2015.132

    Article  Google Scholar 

  109. Sun C, Dudley S, Trumble J, Gan J (2018) Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environ Pollut 234:39–47. https://doi.org/10.1016/j.envpol.2017.11.041

    Article  CAS  Google Scholar 

  110. Wu X, Ernst F, Conkle JL, Gan J (2013) Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ Int 60:15–22. https://doi.org/10.1016/j.envint.2013.07.015

    Article  CAS  Google Scholar 

  111. Zezulka Š, Kummerová M, Babula P, Hájková M, Oravec M (2019) Sensitivity of physiological and biochemical endpoints in early ontogenetic stages of crops under diclofenac and paracetamol treatments. Environ Sci Pollut Res 26:3965–3979. https://doi.org/10.1007/s11356-018-3930-x

    Article  CAS  Google Scholar 

  112. Christou A, Antoniou C, Christodoulou C, Hapeshi E, Stavrou I, Michael C, Fatta-Kassinos D, Fotopoulos V (2016) Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants. Sci Total Environ 557–558:652–664. https://doi.org/10.1016/j.scitotenv.2016.03.054

    Article  CAS  Google Scholar 

  113. Zhang H, Li X, Yang Q, Sun L, Yang X, Zhou M, Deng R, Bi L (2017) Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of Pakchoi under antibiotic exposure. Int J Environ Res Public Health 14:1336. https://doi.org/10.3390/ijerph14111336

    Article  CAS  Google Scholar 

  114. Zheng W, Wiles K, Dodge L (2016) Uptake and accumulation of pharmaceuticals and hormones in vegetables after irrigation with reuse water. Illinois Sustainable Technology Center, Champaign

    Google Scholar 

  115. González García M, Fernández-López C, Pedrero-Salcedo F, Alarcón JJ (2018) Absorption of carbamazepine and diclofenac in hydroponically cultivated lettuces and human health risk assessment. Agric Water Manag 206:42–47. https://doi.org/10.1016/j.agwat.2018.04.018

    Article  Google Scholar 

  116. Hurtado C, Domínguez C, Pérez-Babace L, Cañameras N, Comas J, Bayona JM (2016) Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions. J Hazard Mater 305:139–148. https://doi.org/10.1016/j.jhazmat.2015.11.039

    Article  CAS  Google Scholar 

  117. Nason SL, Miller EL, Karthikeyan KG, Pedersen JA (2019) Effects of binary mixtures and transpiration on accumulation of pharmaceuticals by spinach. Environ Sci Technol 53:4850–4859. https://doi.org/10.1021/acs.est.8b05515

    Article  CAS  Google Scholar 

  118. Sun C, Dudley S, McGinnis M, Trumble J, Gan J (2019) Acetaminophen detoxification in cucumber plants via induction of glutathione S-transferases. Sci Total Environ 649:431–439. https://doi.org/10.1016/j.scitotenv.2018.08.346

    Article  CAS  Google Scholar 

  119. Zhang DQ, Gersberg RM, Hua T, Zhu J, Goyal MK, Ng WJ, Tan SK (2013) Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Environ Pollut 181:98–106. https://doi.org/10.1016/j.envpol.2013.06.016

    Article  CAS  Google Scholar 

  120. Chuang YH, Liu CH, Hammerschmidt R, Zhang W, Boyd SA, Li H (2018) Metabolic demethylation and oxidation of caffeine during uptake by lettuce. J Agric Food Chem 66:7907–7915. https://doi.org/10.1021/acs.jafc.8b02235

    Article  CAS  Google Scholar 

  121. Fu Q, Wu X, Ye Q, Ernst F, Gan J (2016) Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban. Water Res 102:117–124. https://doi.org/10.1016/j.watres.2016.06.026

    Article  CAS  Google Scholar 

  122. Al-Rimawi F, Hijaz F, Nehela Y, Batuman O, Killiny N (2019) Uptake, translocation, and stability of oxytetracycline and streptomycin in citrus plants. Antibiotics 8:196. https://doi.org/10.3390/antibiotics8040196

    Article  CAS  Google Scholar 

  123. Klement A, Kodešová R, Golovko O, Fér M, Nikodem A, Kočárek M, Grabic R (2020) Uptake, translocation and transformation of three pharmaceuticals in green pea plants. J Hydrol Hydromech 68(1):1–11. https://doi.org/10.2478/johh-2020-0001

    Article  CAS  Google Scholar 

  124. Beltrán EM, Pablos MV, Fernández Torija C, Porcel MÁ, González-Doncel M (2020) Uptake of atenolol, carbamazepine and triclosan by crops irrigated with reclaimed water in a Mediterranean scenario. Ecotoxicol Environ Saf 191:110171. https://doi.org/10.1016/j.ecoenv.2020.110171

    Article  CAS  Google Scholar 

  125. Carter LJ, Harris E, Williams M, Ryan JJ, Kookana RS, Boxall ABA (2014) Fate and uptake of pharmaceuticals in soil-plant systems. J Agric Food Chem 62:816–825. https://doi.org/10.1021/jf404282y

    Article  CAS  Google Scholar 

  126. He Y, Sutton NB, Lei Y, Rijnaarts HHM, Langenhoff AAM (2018) Fate and distribution of pharmaceutically active compounds in mesocosm constructed wetlands. J Hazard Mater 357:198–206. https://doi.org/10.1016/j.jhazmat.2018.05.035

    Article  CAS  Google Scholar 

  127. Hurtado C, Cañameras N, Domínguez C, Price GW, Comas J, Bayona JM (2017) Effect of soil biochar concentration on the mitigation of emerging organic contaminant uptake in lettuce. J Hazard Mater 323:386–393. https://doi.org/10.1016/j.jhazmat.2016.04.046

    Article  CAS  Google Scholar 

  128. Knight ER, Carter LJ, McLaughlin MJ (2018) Bioaccumulation, uptake, and toxicity of carbamazepine in soil-plant systems. Environ Toxicol Chem 37:1122–1130. https://doi.org/10.1002/etc.4053

    Article  CAS  Google Scholar 

  129. Cantarero R, Richter P, Brown S, Ascar L, Ahumada I (2017) Effects of applying biosolids to soils on the adsorption and bioavailability of 17α-ethinylestradiol and triclosan in wheat plants. Environ Sci Pollut Res 24:12847–12859. https://doi.org/10.1007/s11356-017-8836-5

    Article  CAS  Google Scholar 

  130. Carter LJ, Williams M, Martin S, Kamaludeen SPB, Kookana RS (2018) Sorption, plant uptake and metabolism of benzodiazepines. Sci Total Environ 628–629:18–25. https://doi.org/10.1016/j.scitotenv.2018.01.337

    Article  CAS  Google Scholar 

  131. Santiago S, Roll DM, Ray C, Williams C, Moravcik P, Knopf A (2016) Effects of soil moisture depletion on vegetable crop uptake of pharmaceuticals and personal care products (PPCPs). Environ Sci Pollut Res 23:20257–20268. https://doi.org/10.1007/s11356-016-7194-z

    Article  CAS  Google Scholar 

  132. Azanu D, Mortey C, Darko G, Weisser JJ, Styrishave B, Abaidoo RC (2016) Uptake of antibiotics from irrigation water by plants. Chemosphere 157:107–114. https://doi.org/10.1016/j.chemosphere.2016.05.035

    Article  CAS  Google Scholar 

  133. Di Baccio D, Pietrini F, Bertolotto P, Pérez S, Barcelò D, Zacchini M, Donati E (2017) Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants. Sci Total Environ 584–585:363–373. https://doi.org/10.1016/j.scitotenv.2016.12.191

    Article  CAS  Google Scholar 

  134. He Y, Langenhoff AAM, Sutton NB, Rijnaarts HHM, Blokland MH, Chen F, Huber C, Schröder P (2017) Metabolism of ibuprofen by Phragmites australis: uptake and Phytodegradation. Environ Sci Technol 51:4576–4584. https://doi.org/10.1021/acs.est.7b00458

    Article  CAS  Google Scholar 

  135. Zhang Y, Lv T, Carvalho PN, Arias CA, Chen Z, Brix H (2016) Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environ Sci Pollut Res 23:2890–2898. https://doi.org/10.1007/s11356-015-5552-x

    Article  CAS  Google Scholar 

  136. Michelini L, Meggio F, Reichel R, Thiele-Bruhn S, Pitacco A, Scattolin L, Montecchio L, Alberghini S, Squartini A, Ghisi R (2015) Sulfadiazine uptake and effects in common hazel (Corylus avellana L.). Environ Sci Pollut Res 22:13362–13371. https://doi.org/10.1007/s11356-015-4560-1

    Article  CAS  Google Scholar 

  137. Tian R, Zhang R, Uddin M, Qiao X, Chen J, Gu G (2019) Uptake and metabolism of clarithromycin and sulfadiazine in lettuce. Environ Pollut 247:1134–1142. https://doi.org/10.1016/j.envpol.2019.02.009

    Article  CAS  Google Scholar 

  138. Bigott Y, Chowdhury S, Pérez S, Montemurro N, Manasfi R, Schröder P. Elucidating stress responses in lettuce exposed to the pharmaceuticals diclofenac and lamotrigine using a multidisciplinary approach. Submitted

    Google Scholar 

  139. Reichl B, Himmelsbach M, Emhofer L, Klampfl CW, Buchberger W (2018) Uptake and metabolism of the antidepressants sertraline, clomipramine, and trazodone in a garden cress (Lepidium sativum) model. Electrophoresis 39:1301–1308. https://doi.org/10.1002/elps.201700482

    Article  CAS  Google Scholar 

  140. Hsu FC, Marxmiller RL, Yang AYS (1990) Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiol 93:1573–1578. https://doi.org/10.1104/pp.93.4.1573

    Article  CAS  Google Scholar 

  141. Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385. https://doi.org/10.1021/es9706817

    Article  CAS  Google Scholar 

  142. Wang J, Yang Y, Zhu H, Braam J, Schnoor JL, Alvarez PJJ (2014) Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings. Environ Sci Technol 48:6754–6762. https://doi.org/10.1021/es501425r

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was developed by the Water Joint Programming Initiative (WATER-JPI) of the European Research Area (ERA-NET). We would like to thank the responsible persons for raising the AWARE project and the Federal Office for Agriculture and Food (Projektträger Bundesanstalt für Landwirtschaft und Ernährung) (2816ERA04W), which also supported the author Y Bigott. DM Khalaf was granted by the Katholischer Akademischer Ausländer-Dienst (KAAD). C Cruzeiro was funded by the European project IDOUM (Water challenges for a changing world – IC4Water) as part of the WATER21015 JPI.

We thank Andreia Canito for providing us the coloured lettuce representation and Philip Schmode for helping us with data organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Cruzeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bigott, Y., Khalaf, D.M., Schröder, P., Schröder, P.M., Cruzeiro, C. (2020). Uptake and Translocation of Pharmaceuticals in Plants: Principles and Data Analysis. In: Pérez Solsona, S., Montemurro, N., Chiron, S., Barceló, D. (eds) Interaction and Fate of Pharmaceuticals in Soil-Crop Systems. The Handbook of Environmental Chemistry, vol 103. Springer, Cham. https://doi.org/10.1007/698_2020_622

Download citation

Publish with us

Policies and ethics