Skip to main content

Assessment of the Oral Bioavailability of Organic Contaminants in Humans

  • Chapter
  • First Online:
Bioavailability of Organic Chemicals in Soil and Sediment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 100))

  • 723 Accesses

Abstract

Bioavailability estimates the actual internal uptake or absorption of contaminants that enter the body (internal dose) and helps in providing a more accurate estimation of the human risks than the usage of total concentration. This is important for exposure assessment for children in relation to their hand-to-mouth activities. For example significant reductions of the bioavailability of long-term contaminated soils have been demonstrated using various animal models. The measurement for bioavailability involves various uncertainties for organic contaminants. It is crucial to determine the parameters that influence the results of bioavailability. This chapter provides a summary of the current state of knowledge for the determination of bioavailability for a range of organic contaminants. The information provided will be useful in facilitating further research efforts for the investigation of bioavailability of contaminants in conducting exposure assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jedrychowski WA, Perera FP, Maugeri U, Majewska R, Mroz E, Flak E, Camann D, Sowa A, Jacek R (2015) Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow. Sci Total Environ 502:502–509

    CAS  Google Scholar 

  2. Naidu R, Rogers S, Gupta V, Kookana RS, Bolan NS, Adriano D (2003) Bioavailability of metals in the soil plant environment and its potential role in risk assessment. Bioavailability, toxicity and risk relationships in ecosystems. In: 4th International symposium on the biogeochemistry of trace elements, Berkeley, California, USA, 23–26 June 1997, Science Publishers, Inc, pp 21–57

    Google Scholar 

  3. Duan L, Naidu R, Liu Y, Dong Z, Mallavarapu M, Herde P, Kuchel T, Semple KT (2016) Comparison of oral bioavailability of benzo[a]pyrene in soils using rat and swine and the implications for human health risk assessment. Environ Int 94:95–102

    CAS  Google Scholar 

  4. Riding MJ, Doick KJ, Martin FL, Jones KC, Semple KT (2013) Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application. J Hazard Mater 261:687–700

    CAS  Google Scholar 

  5. NEPC (2013) National environment protection (assessment of site contamination) measure

    Google Scholar 

  6. Ng JC, Juhasz A, Smith E, Naidu R (2015) Assessing the bioavailability and bioaccessibility of metals and metalloids. Environ Sci Pollut Res 22:8802–8825

    Google Scholar 

  7. Walters EM, Prather RS (2013) Advancing swine models for human health and diseases. Mo Med 110:212

    Google Scholar 

  8. Duan L, Palanisami T, Liu Y, Dong Z, Mallavarapu M, Kuchel T, Semple KT, Naidu R (2014) Effects of ageing and soil properties on the oral bioavailability of benzo[a]pyrene using a swine model. Environ Int 70:192–202

    CAS  Google Scholar 

  9. James K, Peters RE, Cave MR, Wickstrom M, Lamb EG, Siciliano SD (2016) Predicting polycyclic aromatic hydrocarbon bioavailability to mammals from incidentally ingested soils using partitioning and fugacity. Environ Sci Technol 50:1338–1346

    CAS  Google Scholar 

  10. James K, Peters RE, Laird BD, Ma WK, Wickstrom M, Stephenson GL, Siciliano SD (2011) Human exposure assessment: a case study of 8 PAH contaminated soils using in vitro digestors and the juvenile swine model. Environ Sci Technol 45:4586–4593

    CAS  Google Scholar 

  11. Peters RE, Wickstrom M, Siciliano SD (2015) The bioavailability of polycyclic aromatic hydrocarbons from different dose media after single and sub-chronic exposure in juvenile swine. Sci Total Environ 506:308–314

    Google Scholar 

  12. Li C, Zhang R, Li Y, Zhang S, Gao P, Cui X, Ma LQ (2017) Relative bioavailability and bioaccessibility of PCBs in soils based on a mouse model and Tenax-improved physiologically-based extraction test. Chemosphere 186:709–715

    CAS  Google Scholar 

  13. Smith E, Weber J, Rofe A, Gancarz D, Naidu R, Juhasz AL (2012) Assessment of DDT relative bioavailability and bioaccessibility in historically contaminated soils using an in vivo mouse model and fed and unfed batch in vitro assays. Environ Sci Technol 46:2928–2934

    CAS  Google Scholar 

  14. Li K, Li C, Yu N-Y, Juhasz AL, Cui X-Y, Ma LQ (2014) In vivo bioavailability and in vitro bioaccessibility of perfluorooctanoic acid (PFOA) in food matrices: correlation analysis and method development. Environ Sci Technol 49:150–158

    Google Scholar 

  15. Semple KT, Morriss A, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    CAS  Google Scholar 

  16. Wijayawardena M, Megharaj M, Naidu R (2016) Exposure, toxicity, health impacts, and bioavailability of heavy metal mixtures. Advances in agronomy. Elsevier, Amsterdam

    Google Scholar 

  17. Wijayawardena MAA, Naidu R, Megharaj M, Lamb D, Thavamani P, Kuchel T (2015) Using soil properties to predict in vivo bioavailability of lead in soils. Chemosphere 138:422–428

    CAS  Google Scholar 

  18. Goon D, Hatoum N, Jernigan J, Schmitt S, Garvin P (1990) Pharmacokinetics and oral bioavailability of soil-adsorbed benzo [a] pyrene (BaP) in rats. Toxicologist 10

    Google Scholar 

  19. Ounnas F, Jurjanz S, Dziurla MA, Guiavarc’h Y, Feidt C, Rychen G (2009) Relative bioavailability of soil-bound polycyclic aromatic hydrocarbons in goats. Chemosphere 77:115–122

    CAS  Google Scholar 

  20. Ruby M, Schoof R, Brattin W, Goldade M, Post G, Harnois M, Mosby D, Casteel S, Berti W, Carpenter M (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705

    CAS  Google Scholar 

  21. Semple KT, Doick KJ, Jones KC, Craven A, Burauel P, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231A

    CAS  Google Scholar 

  22. Li X (2011) Oral bioavailability: basic principles, advanced concepts, and applications. Wiley, Hoboken

    Google Scholar 

  23. Wijayawardena MAA, Naidu R, Megharaj M, Lamb D, Thavamani P, Kuchel T (2014) Influence of ageing on lead bioavailability in soils: a swine study. Environ Sci Pollut Res:1–10

    Google Scholar 

  24. Brinchi L, Germani R, Mancini MV, Savelli G, Spreti N (2004) Carrier-mediated transport of toxic heavy metal ions in bulk liquid membranes. Eur J Org Chem 2004:1330–1335

    Google Scholar 

  25. Desesso JM, Williams AL (2008) Contrasting the gastrointestinal tracts of mammals: factors that influence absorption. Annu Rep Med Chem 43:353–371

    CAS  Google Scholar 

  26. Cornelis C, Berghmans P, van Sprundel M, van der Auwera J-C (2006) Use of the IEUBK model for determination of exposure routes in view of site remediation. Hum Ecol Risk Assess 12:963–982

    CAS  Google Scholar 

  27. Mickle MH (1998) Structure, use, and validation of the IEUBK model. Environ Health Perspect 106:1531–1534

    CAS  Google Scholar 

  28. Curfs DM, Lutgens E, Gijbels MJ, Kockx MM, Daemen MJ, van Schooten FJ (2004) Chronic exposure to the carcinogenic compound benzo [a] pyrene induces larger and phenotypically different atherosclerotic plaques in ApoE-knockout mice. Am J Pathol 164:101–108

    CAS  Google Scholar 

  29. Yan K, Dong Z, Naidu R, Liu Y, Li Y, Wijayawardena A, Sanderson P, Li H, Ma LQ (2019) Comparison of in vitro models in a mice model and investigation of the changes in Pb speciation during Pb bioavailability assessments. J Hazard Mater 121744

    Google Scholar 

  30. Siriwardhana N, Wang HCR (2008) Precancerous carcinogenesis of human breast epithelial cells by chronic exposure to benzo [a] pyrene. Mol Carcinog 47:338–348

    CAS  Google Scholar 

  31. Mumtaz MM, Ray M, Crowell SR, Keys D, Fisher J, Ruiz P (2012) Translational research to develop a human PBPK models tool kit—volatile organic compounds (VOCs). J Toxic Environ Health A 75:6–24

    CAS  Google Scholar 

  32. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, Jamei M, Lloyd R, Pepin X, Rostami-Hodjegan A (2014) PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci 57:300–321

    CAS  Google Scholar 

  33. Loccisano AE, Campbell Jr JL, Andersen ME, Clewell 3rd HJ (2011) Evaluation and prediction of pharmacokinetics of PFOA and PFOS in the monkey and human using a PBPK model. Regul Toxicol Pharmacol 59:157–175

    CAS  Google Scholar 

  34. Campbell J, Franzen A, Van Landingham C, Lumpkin M, Crowell S, Meredith C, Loccisano A, Gentry R, Clewell H (2016) Predicting lung dosimetry of inhaled particleborne benzo [a] pyrene using physiologically based pharmacokinetic modeling. Inhal Toxicol 28:520–535

    CAS  Google Scholar 

  35. Dong Z, Yan K, Liu Y, Naidu R, Duan L, Wijayawardena A, Semple KT, Rahman MM (2016) A meta-analysis to correlate lead bioavailability and bioaccessibility and predict lead bioavailability. Environ Int 92:139–145

    Google Scholar 

  36. Ramesh A, Inyang F, Hood DB, Archibong AE, Knuckles ME, Nyanda AM (2001) Metabolism, bioavailability, and toxicokinetics of Benzo (α) pyrenein F-344 rats following oral administration. Exp Toxicol Pathol 53:275–290

    CAS  Google Scholar 

  37. Wittsiepe J, Erlenkämper B, Welge P, Hack A, Wilhelm M (2007) Bioavailability of PCDD/F from contaminated soil in young Goettingen minipigs. Chemosphere 67:S355–S364

    CAS  Google Scholar 

  38. Casteel SW, Weis CP, Henningsen GM, Brattin WJ (2006) Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ Health Perspect 114:1162–1171

    CAS  Google Scholar 

  39. U.S. Environmental Protection Agency (2007) Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. In: U. S. E. P. A. (ed) Office of solid waste and emergency response. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  40. Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M, Jondreville C, Feidt C (2012) In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ Sci Technol 46:6252–6260

    CAS  Google Scholar 

  41. Juhasz AL, Weber J, Stevenson G, Slee D, Gancarz D, Rofe A, Smith E (2014) In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. Sci Total Environ 473:147–154

    Google Scholar 

  42. Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1:87

    CAS  Google Scholar 

  43. Li H-B, Cui X-Y, Li K, Li J, Juhasz AL, Ma LQ (2014) Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability. Environ Sci Technol 48:8548–8555

    CAS  Google Scholar 

  44. Li W, Zhang J, Francis L (2013) Handbook of LC-MS bioanalysis: best practices, experimental protocols, and regulations. Wiley, Hoboken

    Google Scholar 

  45. Peters RE, Wickstrom M, Siciliano SD (2015) The bioavailability of polycyclic aromatic hydrocarbons from different dose media after single and sub-chronic exposure in juvenile swine. Sci Total Environ 506-507:308–314

    CAS  Google Scholar 

  46. Canada E (2007) Biological test method: test for measuring emergence and growth of terrestrial plants exposed to contaminated soil (EPS 1/RM/45)

    Google Scholar 

  47. Reid BJ, Northcott GL, Jones KC, Semple KT (1998) Evaluation of spiking procedures for the introduction of poorly water soluble contaminants into soil. Environ Sci Technol 32:3224–3227

    CAS  Google Scholar 

  48. Li K, Li C, Yu N-Y, Juhasz AL, Cui X-Y, Ma LQ (2015) In vivo bioavailability and in vitro bioaccessibility of Perfluorooctanoic acid (PFOA) in food matrices: correlation analysis and method development. Environ Sci Technol 49:150–158

    CAS  Google Scholar 

  49. Joudan S, Yeung LW, Mabury SA (2017) Biological cleavage of the C–P bond in Perfluoroalkyl Phosphinic acids in male Sprague-Dawley rats and the formation of persistent and reactive metabolites. Environ Health Perspect 125:117001

    Google Scholar 

  50. ECHA (2014) The use of alternatives to testing on animals for the REACH regulation: second report under article 117(3) of the reach regulation. ECHA-14-A-07-EN. In: Agency EC (ed). Helsinki, Finland

    Google Scholar 

  51. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. In: N. R. C. N. (ed) Committee on toxicity testing and assessment of environmental agents. National Academies Press, USA

    Google Scholar 

  52. James K, Peters RE, Cave MR, Wickstrom M, Siciliano SD (2018) In vitro prediction of polycyclic aromatic hydrocarbon bioavailability of 14 different incidentally ingested soils in juvenile swine. Sci Total Environ 618:682–689

    CAS  Google Scholar 

  53. Ruby MV, Lowney YW, Bunge AL, Roberts SM, Gomez-Eyles JL, Ghosh U, Kissel JC, Tomlinson P, Menzie C (2016) Oral bioavailability, bioaccessibility, and dermal absorption of PAHs from soil-state of the science. Environ Sci Technol 50:2151–2164

    CAS  Google Scholar 

  54. Juhasz AL, Tang W, Smith E (2016) Using in vitro bioaccessibility to refine estimates of human exposure to PAHs via incidental soil ingestion. Environ Res 145:145–153

    CAS  Google Scholar 

  55. Drexler JW, Brattin WJ (2007) An in vitro procedure for estimation of lead relative bioavailability: with validation. Hum Ecol Risk Assess 13:383–401

    CAS  Google Scholar 

  56. Li J, Li K, Cave M, Li HB, Ma LQ (2015) Lead bioaccessibility in 12 contaminated soils from China: correlation to lead relative bioavailability and lead in different fractions. J Hazard Mater 295:55–62

    CAS  Google Scholar 

  57. USEPA (2012) In: U. S. E. P. A. (ed) Standard operating procedure for an In Vitro bioaccessibility assay for Lead in soil

    Google Scholar 

  58. Oomen AG, Tolls J, Kruidenier M, Bosgra S, Sips A, Groten JP (2001) Availability of polychlorinated biphenyls (PCBs) and lindane for uptake by intestinal Caco-2 cells. Environ Health Perspect 109:731–737

    CAS  Google Scholar 

  59. Pu X, Lee LS, Galinsky RE, Carlson GP (2004) Evaluation of a rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils. Toxicol Sci 79:10–17

    CAS  Google Scholar 

  60. Oomen AG, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44:281–287

    CAS  Google Scholar 

  61. Gron C, Oomen A, Weyand E, Wittsiepe J (2007) Bioaccessibility of PAH from Danish soils. J Environ Sci Health Part A Toxic Hazard Substances Environ Eng 42:1233–1239

    CAS  Google Scholar 

  62. Pu X, Lee LS, Galinsky RE, Carlson GP (2006) Bioavailability of 2, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB118) and 2, 2′, 5, 5′-tetrachlorobiphenyl (PCB52) from soils using a rat model and a physiologically based extraction test. Toxicology 217:14–21

    CAS  Google Scholar 

  63. Rostami I, Juhasz AL (2011) Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: A critical review. Crit Rev Environ Sci Technol 41:623–656

    Google Scholar 

  64. Sweet G, Lowney YW, Ruby MV, Bunge A, Gomez-Eyles J, Ghosh U, Kissel J, Peckham T, Roberts S, Shirai J (2017) PAH interactions with soil and effects on bioaccessibility and bioavailability to humans. Exponent INC Boulder United States

    Google Scholar 

  65. Umeh AC, Duan L, Naidu R, Esposito M, Semple KT (2019) In vitro gastrointestinal mobilization and oral bioaccessibility of PAHs in contrasting soils and associated cancer risks: focus on PAH nonextractable residues. Environ Int 133:105186

    CAS  Google Scholar 

  66. Collins CD, Mosquera-Vazquez M, Gomez-Eyles JL, Mayer P, Gouliarmou V, Blum E (2013) Is there sufficient ‘sink’ in current bioaccessibility determinations of organic pollutants in soils? Environ Pollut 181:128–132

    CAS  Google Scholar 

  67. Gouliarmou V, Collins CD, Christiansen E, Mayer P (2013) Sorptive physiologically based extraction of contaminated solid matrices: incorporating silicone rod as absorption sink for hydrophobic organic contaminants. Environ Sci Technol 47:941–948

    CAS  Google Scholar 

  68. Li C, Cui XY, Fan YY, Teng Y, Nan ZR, Ma LQ (2015) Tenax as sorption sink for in vitro bioaccessibility measurement of polycyclic aromatic hydrocarbons in soils. Environ Pollut 196:47–52

    CAS  Google Scholar 

  69. Zhang YY, Pignatello JJ, Tao S, Xing BS (2015) Bioacessibility of PAHs in fuel soot assessed by an in vitro digestive model: effect of including an absorptive sink. Environ Sci Technol 49:3905–3912

    CAS  Google Scholar 

  70. Cui X-Y, Xiang P, He R-W, Juhasz A, Ma LQ (2016) Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices. Chemosphere 150:378–389

    CAS  Google Scholar 

  71. Lorenzi D, Entwistle J, Cave M, Wragg J, Dean JR (2012) The application of an in vitro gastrointestinal extraction to assess the oral bioaccessibility of polycyclic aromatic hydrocarbons in soils from a former industrial site. Anal Chim Acta 735:54–61

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Naidu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wijayawardena, M.A.A. et al. (2020). Assessment of the Oral Bioavailability of Organic Contaminants in Humans. In: Ortega-Calvo, J.J., Parsons, J.R. (eds) Bioavailability of Organic Chemicals in Soil and Sediment. The Handbook of Environmental Chemistry, vol 100. Springer, Cham. https://doi.org/10.1007/698_2020_596

Download citation

Publish with us

Policies and ethics