Skip to main content

Valorization of Waste Algal Boom for Value-Added Products

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 104)

Abstract

Undesirable algal boom causes serious disposal problems which can be cost inductive and can cause secondary pollution problems. There is a need for valorization of such waste algal biomass which is otherwise disposed of as solid waste in land filling or incinerated. The algal blooms which are problematic can be processed technically to value-added products, and this in turn will also provide a sustainable solution to eutrophication hassles. Valorization techniques involve industrial processing of algal waste which can be converted or recycled into useful products or serve as a source of energy thereby increasing the value of the original material. This technology is the most promising solution to achieve low carbon economy. This review outlines the valorization techniques which can be adopted to convert the waste algal biomass which can be used in industries like energy, agriculture, and wastewater treatment plants.

Keywords

  • Algal biomass
  • Application
  • Biofuel
  • Valorization
  • Value products

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/698_2020_579
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-57911-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)

References

  1. Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Google Scholar 

  2. Allen E, Browne J, Hynes S, Murphy JD (2013) The potential of algae blooms to produce renewable gaseous fuel. Waste Manag 33:2425–2433

    CAS  PubMed  Google Scholar 

  3. Chen Y, Sun L, Liu Z, Martin G, Sun Z (2017) Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation. Top Curr Chem 375:89

    Google Scholar 

  4. Mossbauer M, Haller I, Dahlke S, Schernewski G (2012) Management of stranded eelgrass and macroalgae along the German Baltic coastline. Ocean Coast Manag 57:1–9

    Google Scholar 

  5. Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    CAS  PubMed  Google Scholar 

  6. Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504:84–88

    CAS  PubMed  Google Scholar 

  7. Zhou CL, Song LR (2009) Phytoplankton community in a large shallow eutrophic lake (Lake Dianchi, Southwest China). In: 3rd international conference on bioinformatics and biomedical engineering (ICBBE), Beijing, pp 1–4

    Google Scholar 

  8. Rigoni-Stern S, Rismondo R (1990) Anaerobic digestion of nitrophilic algal biomass from the Venice lagoon. Biomass 23:179–199

    CAS  Google Scholar 

  9. Cecchi F, Pavan P, Mata-Alvarez J (1996) Anaerobic co-digestion of sewage sludge – application to the macroalgae from the Venice lagoon. Resour Conserv Recycl 17:57–66

    Google Scholar 

  10. Barbot YN, Falk HM, Benz R (2015) Thermo-acidic pretreatment of marine Brown algae Fucus Vesiculosus to increase methane production – a disposal principle for macroalgae waste from beaches. J Appl Phycol 27(1):601–609

    CAS  Google Scholar 

  11. Matsui T, Koike Y (2010) Methane fermentation of a mixture of seaweed and milk at a pilot-scale plant. J Biosci Bioeng 110:558–563

    CAS  PubMed  Google Scholar 

  12. Liu D, Keesing JK, Xing Q, Shi P (2009) World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 58:888–895

    CAS  PubMed  Google Scholar 

  13. Briand X, Morand P (1997) Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and Methanisation. J Appl Phycol 9:511–524

    CAS  Google Scholar 

  14. Charlier RH, Morand P, Finkl CW, Thys A (2007) Green tides on the Brittany coasts. Environ Res Eng Manag 3:52–59

    Google Scholar 

  15. Zhang J, Huo Y, Yu K, Chen Q, He Q, Han W, Chen L, Cao J, Shi D, He P (2013) Growth characteristics and reproductive capability of green tide algae in Rudong coast. China J Appl Phycol 25:795–803

    Google Scholar 

  16. Lauder S (2009) Potentially toxic algae bloom threatens Murray-Darling. ABC News online. http://www.abc.net.au/news/2009-03-28/potentially-toxic-algae-bloom-threatens-murray/1633630. Accessed 05 Dec 2019

  17. Eyras MC, Rostagno CM, Defosse GE (1998) Biological evaluation of seaweed composting. Compost Sci Utiliz 6:74–81

    Google Scholar 

  18. Smayda TJ, White AW (1990) Has there been a global expansion of algal blooms? If so is there a connection with human activities? In: Granelli E (ed.) Toxic marine phytoplankton. pp 516–157

    Google Scholar 

  19. Viviani R (1992) Eutrophication, marine biotoxins, human health. Sci Total Environ (Suppl):631–662

    Google Scholar 

  20. Tester P, Steidinger KA (1997) Gymnodinium breve red tide blooms: initiation, transport and consequences of surface circulation. Limnol Oceanogr 45:1039–1051

    Google Scholar 

  21. Van Dolah FM (2000) Marine algal toxins: origins, health effects and their increased occurrence. Environ Health Perspect 108(1):133–141

    PubMed  PubMed Central  Google Scholar 

  22. Kirkpatrick B, Fleming LE, Squicciarini D, Backer LC, Clark R, Abraham W, Benson J, Cheng YS, Johnson D, Pierce R, Zaias J, Bossart GD, Baden GD (2004) Literature review of Florida red tide: implications for human health effects. Harmful Algae 3(2):99–115

    PubMed  PubMed Central  Google Scholar 

  23. Biswas G, Pokkatt P, Ghosh A, Kamila B, Adhikari K, Dutta S (2018) Valorization of waste micro-algal biomass – collected from coke oven effluent treatment plant and evaluation of sorption potential for fluoride removal. Water Sci Technol 78(1):132–146

    CAS  PubMed  Google Scholar 

  24. Guo L (2007) Doing battle with the green monster of Taihu Lake. Science 317(5842):1166

    CAS  PubMed  Google Scholar 

  25. McHugh DJ (2003) A guide to the seaweed industry. http://www.fao.org/docrep/006/y4765e/y4765e00.htm#Contents

    Google Scholar 

  26. Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Google Scholar 

  27. Jung KA, Lim S, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    CAS  PubMed  Google Scholar 

  28. Renita AA, Sreedhar N, Peter DM (2014) Optimization of algal methyl esters using RSM and evaluation of biodiesel storage characteristics. Bioresour Bioprocess 1:19

    Google Scholar 

  29. Kumar PS, Pavithra J, Suriya S, Ramesh M, Kumar KA (2015) Sargassum wightii, a marine alga is the source for the production of algal oil, bio-oil, and application in the dye wastewater treatment. Desalin Water Treat 55(5):1342–1358

    CAS  Google Scholar 

  30. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis (PNNL-19944). http://www.pnl.gov/main/publications/external/technical_reports/PNNL-19944.pdf

    Google Scholar 

  31. Lammens TM, Franssen MCR, Scott EL, Sanders JPM (2012) Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass Bioenergy 44:168–181

    CAS  Google Scholar 

  32. Jard G, Marfaing H, Carrère H, Delgenes JP, Steyer JP, Dumas C (2013) French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products. Bioresour Technol 144:492–498

    CAS  PubMed  Google Scholar 

  33. Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    PubMed  Google Scholar 

  34. Frigon J, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Biorefin 4:447–458

    CAS  Google Scholar 

  35. Yuan XZ, Shi XS, Zhang DL, Qiu YL, Guo RB, Wang LS (2011) Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy Environ Sci 4(4):1511–1515

    CAS  Google Scholar 

  36. Zhong WZ, Zhang ZZ, Luo YJ, Qiao W, Xiao M, Zhang M (2012) Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresour Technol 114:281–286

    CAS  PubMed  Google Scholar 

  37. Adams JMM, Toop TA, Donnison IS, Gallagher JA (2011) Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour Technol 102:9976–9984

    CAS  PubMed  Google Scholar 

  38. Vivekanand V, Eijsink VH, Horn SJ (2013) Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J Appl Phycol 24:1295–1301

    Google Scholar 

  39. Bucholc K, Szymczak-Żyła M, Lubecki L, Zamojska A, Hapter P, Tjernström E, Kowalewska G (2014) Nutrient content in macrophyta collected from Southern Baltic Sea beaches in relation to eutrophication and biogas production. Sci Total Environ 473:298–307

    PubMed  Google Scholar 

  40. Langlois J, Sassi JF, Jard G, Steyer JP, Delgenes JP, Hélias A (2012) Life cycle assessment of biomethane from offshore-cultivated seaweed. Biofuels Bioprod Biorefin 6:387–404

    CAS  Google Scholar 

  41. Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102:11018–11026

    CAS  PubMed  Google Scholar 

  42. Lehmann J, Joseph S (2009) Biochar for environmental management science and technology. Earthscan, London

    Google Scholar 

  43. Chaudhari TS, Dalai KA, Bakhshi NN (2003) Production of hydrogen and/or syngas via steam gasification of biomass-derived chars. Energy Fuels 17:1062–1067

    CAS  Google Scholar 

  44. Hu Z, Zheng Y, Yan F, Xiao B, Liu S (2013) Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization. Energy 52:119–125

    CAS  Google Scholar 

  45. Li R, Zhong ZP, Jin BS, Zheng AJ (2012) Selection of temperature for bio-oil production from pyrolysis of algae from lake blooms. Energy Fuel 26:2996–3002

    CAS  Google Scholar 

  46. Horn SJ, Aasen IM, Ostgaard K (2000) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57

    CAS  Google Scholar 

  47. Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36:84–89

    CAS  Google Scholar 

  48. Gunasundari E, Kumar PS (2016) Higher adsorption capacity of Spirulina platensis alga for Cr (VI) ions removal: parameter optimisation, equilibrium, kinetic and thermodynamic predictions. IET Nanobiotechnol 11(3):317–328

    Google Scholar 

  49. Suganya S, Saravanan A, Kumar PS, Yashwanthraj M, Rajan PS, Kayalvizhi K (2017) Sequestration of Pb(II) and Ni(II) ions from aqueous solution using microalga Rhizoclonium hookeri: adsorption thermodynamics, kinetics, and equilibrium studies. J Water Reuse Desalination 7(2):214–227

    Google Scholar 

  50. Gunasundari E, Kumar PS (2017) Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). J Ind Eng Chem 56:129–144

    CAS  Google Scholar 

  51. Young GE, Langille WM (1958) The occurrence of inorganic elements in marine algae of the Atlantic provinces of Canada. Can J Bot 36:301–310

    CAS  Google Scholar 

  52. Rao CKV, Indusekhar VK (1984) Fluoride content of certain marine algae and seawater from Saurashtra coast (Caulerpa scalpelliformis, Ulva lactuca, Codium dwarkense). Ind J Mater Sci 13:47–58

    CAS  Google Scholar 

  53. Bhatnagar M, Bhatnagar A (2000) Algal and cyanobacterial responses to fluoride. Fluoride 33(2):55–65

    CAS  Google Scholar 

  54. Sen S, Dutta S, Guhathakurata S, Chakrabarty J, Nandi S, Dutta A (2017) Removal of Cr (VI) using a cyanobacterial consortium and assessment of biofuel production. Int Biodet Biodeg 119:211–224

    CAS  Google Scholar 

  55. Mohan SV, Ramanaiah SV, Rajkumar B, Sarma PN (2007) Biosorption of fluoride from aqueous phase onto algal spirogyra IO1 and evaluation of adsorption kinetics. Bioresour Technol 98:1006–1011

    CAS  Google Scholar 

  56. Han W, Clarke W, Pratt S (2014) Composting of waste algae: a review. Waste Manag 34:1148–1155

    CAS  PubMed  Google Scholar 

  57. Mat-Atko J (1992) Experiments with the preparation bio-Algeen S-90 in hops. Chemelarstvi 65:53

    Google Scholar 

  58. Filipkowska A, Lubecki L, Szymczak-Żyła M, Kowalewska G, Żbikowski R, Szefer P (2008) Utilisation of macroalgae from the Sopot Beach (Baltic Sea). Oceanologia 50:255–273

    Google Scholar 

  59. Tang JC, Wang M, Zhou QX, Nagata S (2011) Improved composting of Undaria pinnatifida seaweed by inoculation with Halomonas and Gracilibacillus sp. isolated from marine environments. Bioresour Technol 102:2925–2930

    CAS  PubMed  Google Scholar 

  60. Haslam SFI, Hopkins DW (1996) Physical and biological effects of kelp (seaweed)added to soil. Appl Soil Ecol 3:257–261

    Google Scholar 

  61. Cocozza C, Parente A, Zaccone C, Mininni C, Santamaria P, Miano T (2011) Comparative management of offshore Posidonia residues: composting vs. energy recovery. Waste Manag 31:78–84

    CAS  PubMed  Google Scholar 

  62. Sultana V, Baloch GN, Ara J, Ehteshamul-Haque S, Tariq RM, Athar M (2011) Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J Appl Bot Food Qual 84:162–168

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Annam Renita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Annam Renita, A., Senthil Kumar, P. (2020). Valorization of Waste Algal Boom for Value-Added Products. In: Jerold, M., Arockiasamy, S., Sivasubramanian, V. (eds) Bioprocess Engineering for Bioremediation. The Handbook of Environmental Chemistry, vol 104. Springer, Cham. https://doi.org/10.1007/698_2020_579

Download citation