Skip to main content

Passive Sampling for Determination of the Dissolved Concentrations and Chemical Activities of Organic Contaminants in Soil and Sediment Pore Waters

  • Chapter
  • First Online:
Bioavailability of Organic Chemicals in Soil and Sediment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 100))

Abstract

The freely dissolved concentrations of organic contaminants in soil and sediment pore waters are relevant for the wide range of fate processes where compound bioavailability plays a role but also for several abiotic processes. However, determining these is challenging due to their low levels and sorption to dissolved organic matter. Here, passive sampling can play a role and involves bringing an inert polymer into direct contact with the soil or sediment matrix such that the dissolved contaminant molecules partition into the polymer until a partitioning equilibrium is reached. Passive sampling has been applied to determine the freely dissolved concentrations of a range of mainly neutral organic contaminants in soils and sediments. For this, a range of formats using different polymers and architectures have been developed, some targeted towards equilibrium and others towards kinetic passive sampling. The most common polymers for neutral hydrophobic organics include various silicones, polyethylene and polyoxymethylene. However, for the passive sampling of polar and ionic compounds, different polymers with a higher affinity for these compounds are required. For kinetic sampling, in situ calibration methods are needed to account for variations in the uptake kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31(12):3341–3347

    CAS  Google Scholar 

  2. Nguyen TH, Goss KU, Ball WP (2005) Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol 39(4):913–924

    CAS  Google Scholar 

  3. Niederer C, Schwarzenbach RP, Goss KU (2007) Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals. Environ Sci Technol 41(19):6711–6717

    CAS  Google Scholar 

  4. Boivin A, Cherrier R, Schiavon M (2005) A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61(5):668–676

    CAS  Google Scholar 

  5. Hippelein M, McLachlan MS (2000) Soil/air partitioning of semivolatile organic compounds. 2. Influence of temperature and relative humidity. Environ Sci Technol 34(16):3521–3526

    CAS  Google Scholar 

  6. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34(20):4259–4265

    CAS  Google Scholar 

  7. Totsche KU, Kogel-Knabner I (2004) Mobile organic sorbent affected contaminant transport in soil: numerical case studies for enhanced and reduced mobility. Vadose Zone J 3(2):352–367

    CAS  Google Scholar 

  8. Franco A, Fu WJ, Trapp S (2009) Influence of soil pH on the sorption of ionizable chemicals: modeling advances. Environ Toxicol Chem 28(3):458–464

    CAS  Google Scholar 

  9. Droge STJ, Goss KU (2013) Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals. Environ Sci Technol 47(24):14233–14241

    CAS  Google Scholar 

  10. Goss KU, Buschmann J, Schwarzenbach RP (2004) Adsorption of organic vapors to air-dry soils: model predictions and experimental validation. Environ Sci Technol 38(13):3667–3673

    CAS  Google Scholar 

  11. Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341(6147):752–758

    CAS  Google Scholar 

  12. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31(1):248–252

    CAS  Google Scholar 

  13. Kraaij R, Mayer P, Busser FJM, Bolscher MV, Seinen W, Tolls J (2003) Measured pore-water concentrations make equilibrium partitioning work - a data analysis. Environ Sci Technol 37(2):268–274

    CAS  Google Scholar 

  14. Jonker MTO, van der Heijden SA, Kreitinger JP, Hawthorne SB (2007) Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Environ Sci Technol 41(21):7472–7478

    CAS  Google Scholar 

  15. Muijs B, Jonker MTO (2012) Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic Worms? Environ Sci Technol 46(2):937–944

    CAS  Google Scholar 

  16. Apell JN, Shull DH, Hoyt AM, Gschwend PM (2018) Investigating the effect of bioirrigation on in situ Pore water concentrations and fluxes of polychlorinated biphenyls using passive samplers. Environ Sci Technol 52(8):4565–4573

    CAS  Google Scholar 

  17. Witt G, Liehr GA, Borck D, Mayer P (2009) Matrix solid-phase microextraction for measuring freely dissolved concentrations and chemical activities of PAHs in sediment cores from the western Baltic Sea. Chemosphere 74(4):522–529

    CAS  Google Scholar 

  18. Cabrerizo A, Dachs J, Barcelo D (2009) Development of a soil fugacity sampler for determination of air-soil partitioning of persistent organic pollutants under field controlled conditions. Environ Sci Technol 43(21):8257–8263

    CAS  Google Scholar 

  19. Jonker MTO, van der Heijden SA (2007) Bioconcentration factor hydrophobicity cutoff: an artificial phenomenon reconstructed. Environ Sci Technol 41(21):7363–7369

    CAS  Google Scholar 

  20. Kim PG, Roh JY, Hong Y, Kwon JH (2017) Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons. Chemosphere 184:86–92

    CAS  Google Scholar 

  21. Mayer P, Parkerton TF, Adams RG, Cargill JG, Gan J, Gouin T, Gschwend PM, Hawthorne SB, Helm P, Witt G, You J, Escher BI (2014) Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr Environ Assess Manag 10(2):197–209

    CAS  Google Scholar 

  22. Ghosh U, Driscoll S, Burgess RM, Jonker MTO, Reible D, Gobas F, Choi YJ, Apitz SE, Maruya KA, Gala WR, Mortimer M, Beegan C (2014) Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr Environ Assess Manag 10(2):210–223

    CAS  Google Scholar 

  23. Lydy MJ, Landrum PF, Oen AMP, Allinson M, Smedes F, Harwood AD, Li HZ, Maruya KA, Liu JF (2014) Passive sampling methods for contaminated sediments: state of the science for organic contaminants. Integr Environ Assess Manag 10(2):167–178

    CAS  Google Scholar 

  24. Mayer P, Tolls J, Hermens L, Mackay D (2003) Equilibrium sampling devices. Environ Sci Technol 37(9):184A–191A

    Google Scholar 

  25. Leslie HA, Oosthoek AJP, Busser FJM, Kraak MHS, Hermens JLM (2002) Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis. Environ Toxicol Chem 21(2):229–234

    CAS  Google Scholar 

  26. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25(5):1239–1245

    CAS  Google Scholar 

  27. Vitale CM, Sjoholm KK, Di Guardo A, Mayer P (2019) Accelerated equilibrium sampling of hydrophobic organic chemicals in solid matrices: a proof of concept on how to reach equilibrium for PCBs within 1 day. Chemosphere 237:10

    Google Scholar 

  28. van der Heijden SA, Jonker MTO (2009) PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation. Environ Sci Technol 43(10):3757–3763

    Google Scholar 

  29. Reichenberg F, Smedes F, Jonsson JA, Mayer P (2008) Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chem Cent J 2:10

    Google Scholar 

  30. Jahnke A, Mayer P, McLachlan MS (2012) Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in Baltic Sea sediment. Environ Sci Technol 46(18):10114–10122

    CAS  Google Scholar 

  31. Lohmann R (2012) Critical review of low-density Polyethylene’s partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ Sci Technol 46(2):606–618

    CAS  Google Scholar 

  32. Difilippo EL, Eganhouse RP (2010) Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds. Environ Sci Technol 44(18):6917–6925

    CAS  Google Scholar 

  33. Choi Y, Cho YM, Luthy RG (2013) Polyethylene-water partitioning coefficients for parent- and alkylated-polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ Sci Technol 47(13):6943–6950

    CAS  Google Scholar 

  34. Endo S, Hale SE, Goss KU, Arp HPH (2011) Equilibrium partition coefficients of diverse polar and nonpolar organic compounds to polyoxymethylene (POM) passive sampling devices. Environ Sci Technol 45(23):10124–10132

    CAS  Google Scholar 

  35. Jahnke A, Mayer P (2010) Do complex matrices modify the sorptive properties of polydimethylsiloxane (PDMS) for non-polar organic chemicals? J Chromatogr A 1217(29):4765–4770

    CAS  Google Scholar 

  36. Hawthorne SB, Jonker MTO, van der Heijden SA, Grabanski CB, Azzolina NA, Miller DJ (2011) Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with Polyoxymethylene. Anal Chem 83(17):6754–6761

    CAS  Google Scholar 

  37. Rusina TP, Smedes F, Klanova J, Booij K, Holoubek I (2007) Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68(7):1344–1351

    CAS  Google Scholar 

  38. Rusina TP, Smedes F, Klanova J (2010) Diffusion coefficients of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in polydimethylsiloxane and low-density polyethylene polymers. J Appl Polym Sci 116(3):1803–1810

    CAS  Google Scholar 

  39. Jonker MTO, Koelmans AA (2001) Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ Sci Technol 35(18):3742–3748

    CAS  Google Scholar 

  40. Apell JN, Gschwend PM (2014) Validating the use of performance reference compounds in passive samplers to assess pore water concentrations in sediment beds. Environ Sci Technol 48(17):10301–10307

    CAS  Google Scholar 

  41. Fernandez LA, Lao WJ, Maruya KA, White C, Burgess RM (2012) Passive sampling to measure baseline dissolved persistent organic pollutant concentrations in the water column of the Palos Verdes shelf superfund site. Environ Sci Technol 46(21):11937–11947

    CAS  Google Scholar 

  42. Gschwend PM, MacFarlane JK, Reible DD, Lu X, Hawthorne SB, Nakles DV, Thompson T (2011) Comparison of polymeric samplers for accurately assessing PCBs in pore waters. Environ Toxicol Chem 30(6):1288–1296

    CAS  Google Scholar 

  43. Bartolome N, Hilber I, Schulin R, Mayer P, Witt G, Reininghaus M, Bucheli TD (2018) Comparison of freely dissolved concentrations of PAHs in contaminated pot soils under saturated and unsaturated water conditions. Sci Total Environ 644:835–843

    CAS  Google Scholar 

  44. Jonker MTO, van der Heijden SA, Adelman D, Apell JN, Burgess RM, Choi Y, Fernandez LA, Flavetta GM, Ghosh U, Gschwend PM, Hale SE, Jalalizadeh M, Khairy M, Lampi MA, Lao WJ, Lohmann R, Lydy MJ, Maruya KA, Nutile SA, Oen AMP, Rakowska MI, Reible D, Rusina TP, Smedes F, Wu YW (2018) Advancing the use of passive sampling in risk assessment and management of sediments contaminated with hydrophobic organic chemicals: results of an international ex situ passive sampling interlaboratory comparison. Environ Sci Technol 52(6):3574–3582

    CAS  Google Scholar 

  45. Liu HH, Bao LJ, Zhang K, Xu SP, Wu FC, Zeng EY (2013) Novel passive sampling device for measuring sediment-water diffusion fluxes of hydrophobic organic chemicals. Environ Sci Technol 47(17):9866–9873

    CAS  Google Scholar 

  46. Enell A, Lundstedt S, Arp HPH, Josefsson S, Cornelissen G, Wik O, Kleja DB (2016) Combining leaching and passive sampling to measure the mobility and distribution between pore water, DOC, and colloids of native oxy-PAHs, N-PACs, and PAHs in historically contaminated soil. Environ Sci Technol 50(21):11797–11805

    CAS  Google Scholar 

  47. Bao LJ, Wu XQ, Jia F, Zeng EY, Gan J (2016) Isotopic exchange on solid-phase micro extraction fiber in sediment under stagnant conditions: implications for field application of performance reference compound calibration. Environ Toxicol Chem 35(8):1978–1985

    CAS  Google Scholar 

  48. Schmidt SN, Wang AP, Gidley PT, Wooley AH, Lotufo GR, Burgess RM, Ghosh U, Fernandez LA, Mayer P (2017) Cross validation of two partitioning-based sampling approaches in mesocosms containing PCB contaminated field sediment, biota, and activated carbon amendment. Environ Sci Technol 51(17):9996–10004

    CAS  Google Scholar 

  49. Arthur CL, Pawliszyn J (1990) Solid-phase microextraction with thermal desorption using fused-silica optical fibes. Anal Chem 62(19):2145–2148

    CAS  Google Scholar 

  50. Lord H, Pawliszyn J (2000) Evolution of solid-phase microextraction technology. J Chromatogr A 885(1–2):153–193

    CAS  Google Scholar 

  51. Vuckovic D (2013) High-throughput solid-phase microextraction in multi-well-plate format. Trac-Trends Anal Chem 45:136–153

    CAS  Google Scholar 

  52. Haftka JJH, Scherpenisse P, Jonker MTO, Hermens JLM (2013) Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon. Environ Sci Technol 47(9):4455–4462

    CAS  Google Scholar 

  53. Marchal G, Smith KEC, Mayer P, de Jonge LW, Karlson UG (2014) Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil. Environ Pollut 188:124–131

    CAS  Google Scholar 

  54. Hawthorne SB, Grabanski CB, Miller DJ, Kreitinger JP (2005) Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K-DOC values. Environ Sci Technol 39(8):2795–2803

    CAS  Google Scholar 

  55. Smith KEC, Thullner M, Wick LY, Harms H (2011) Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase. Environ Sci Technol 45(20):8741–8747

    CAS  Google Scholar 

  56. Maenpaa K, Leppanen MT, Reichenberg F, Figueiredo K, Mayer P (2011) Equilibrium sampling of persistent and bioaccumulative compounds in soil and sediment: comparison of two approaches to determine equilibrium partitioning concentrations in lipids. Environ Sci Technol 45(3):1041–1047

    CAS  Google Scholar 

  57. Droge STJ, Hermens JLM (2007) Nonlinear sorption of three alcohol ethoxylates to marine sediment: a combined Langmuir and linear sorption process? Environ Sci Technol 41(9):3192–3198

    CAS  Google Scholar 

  58. Rico-Rico A, Droge STJ, Hermens JLM (2010) Predicting sediment sorption coefficients for linear alkylbenzene sulfonate congeners from polyacrylate-water partition coefficients at different salinities. Environ Sci Technol 44(3):941–947

    CAS  Google Scholar 

  59. Smedes F, van Vliet LA, Booij K (2013) Multi-ratio equilibrium passive sampling method to estimate accessible and pore water concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment. Environ Sci Technol 47(1):510–517

    CAS  Google Scholar 

  60. Chen Y, Pawliszyn J (2003) Time-weighted average passive sampling with a solid-phase microextraction device. Anal Chem 75(9):2004–2010

    CAS  Google Scholar 

  61. Booij K, Smedes F (2010) An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environ Sci Technol 44(17):6789–6794

    CAS  Google Scholar 

  62. Tcaciuc AP, Borrelli R, Zaninetta LM, Gschwend PM (2018) Passive sampling of DDT, DDE and DDD in sediments: accounting for degradation processes with reaction-diffusion modeling. Environ Sci Process Impacts 20(1):220–231

    CAS  Google Scholar 

  63. Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, Clark RC, Mogensen BB (2002) Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol 36(1):85–91

    CAS  Google Scholar 

  64. Booij K, Hofmans HE, Fischer CV, Van Weerlee EM (2003) Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ Sci Technol 37(2):361–366

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian E. C. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, K.E.C. (2020). Passive Sampling for Determination of the Dissolved Concentrations and Chemical Activities of Organic Contaminants in Soil and Sediment Pore Waters. In: Ortega-Calvo, J.J., Parsons, J.R. (eds) Bioavailability of Organic Chemicals in Soil and Sediment. The Handbook of Environmental Chemistry, vol 100. Springer, Cham. https://doi.org/10.1007/698_2020_572

Download citation

Publish with us

Policies and ethics