Skip to main content

Nanotechnologies for Removal of Nonsteroidal Anti-inflammatory Drug from Wastewater

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 96)

Abstract

Nowadays, our world faces one of the greatest challenges in terms of water consumption due to its growing population and demanding economic development. Water pollution is taking place at a rate and grade that make the advancement in water treatment technologies a research priority on several fronts, including those needed from the environmental and health standpoints. Today, one of the major concerns for allowing water reuse and providing safe drinking water supply is related to the presence of natural organic matter (NOM) and micropollutants in raw water. Among the latter, pharmaceutical compounds (PhCs) stand out, as they could partially or totally resist conventional removal treatments. Nonsteroidal anti-inflammatory drugs (NSAIDs) are especially ubiquitous PhCs due to their extensive prescription, and, consequently, they are often detected in hospital effluents, surface water bodies, sewage treatment plants (STP) effluents, and soil matrices. Therefore, NSAIDs wastewater removal is becoming a major concern in environmental protection. New technologies capable of efficiently removing them have been developed in the last few decades, and, within them, nanotechnology has risen as a promising tool to aid these technologies to accomplish their goal. In this chapter, the most common approaches to treat NSAIDs-containing wastewater are addressed, including adsorption, photocatalysis, and electrocatalysis; besides, recent advances on nanotechnological applications to improve their performance are covered.

Keywords

  • Adsorbents
  • Electrocatalyst
  • Nanomaterials
  • NSAIDs
  • Photocatalyst
  • Removal

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mendez-Rojas MA, Cordova-Lozano F, Gojon-Zorrilla G, Gonzalez-Vergara E, Quiroz MA (1999) Direct electrosynthesis of Cu, Cd, Zn complexes of piroxicam (4-hydroxy-2-methyl-N-(pyridyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide) and isoxicam (4-hydroxy-2-methyl-N-(5-methy-3-isoxazolyl)-2H-1,2-benzothiazine-3-carboxamide,1,1-dioxide) in nonaqueous media by in-situ generation of supporting electrolyte. Polyhedron 18:2651–2658

    CAS  Google Scholar 

  2. Garcia F, Mendez-Rojas MA, Gonzalez-Vergara E, Bernes S, Quiroz MA (2003) Di-μ-aspirinato-copper(II): a redetermination. Acta Cryst E 59(12):m1171–m1173

    CAS  Google Scholar 

  3. Palacios-Hernandez T, Höpfl H, Sanchez-Salas JL, Gonzalez-Vergara E, Perez-Benitez A, Quiroz-Alfaro MA, Mendez-Rojas MA (2014) In vitro antibacterial activity of meclofenamate metal complexes with Cd(II), Pb(II), Co(II) and Cu(II). Crystal structures of [Cd(C14H10NO2Cl2)2.(CH3OH)]n and [Cu(C14H10NO2Cl2)2(C5H5N)2]. J Inorg Biochem 139:85–89

    CAS  Google Scholar 

  4. De Voogt P, Janex-Habibi ML, Sacher F, Puijker L, Mons M (2009) Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Sci Technol 59:39–46

    Google Scholar 

  5. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res 71:3–27

    Google Scholar 

  6. Ternes TA, Stüber J, Herrmann N, Mcdowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37:1976–1982

    CAS  Google Scholar 

  7. Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663

    CAS  Google Scholar 

  8. Suarez S, Lema JM, Omil F (2009) Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresour Technol 100:2138–2146

    CAS  Google Scholar 

  9. Khan S, Wintgens T, Sherman P, Zaricky J, Schafer A (2004) Removal of hormones and pharmaceuticals in the advanced water recycling demonstration plant in Queensland, Australia. Water Sci Technol 50:15–22

    CAS  Google Scholar 

  10. Almeida HFD, Marrucho IM, Freire MG (2017) Removal of non-steroidal anti-inflammatory drugs from aqueous environments with reusable ionic-liquid systems. Chem Eng 5(3):2428–2436

    CAS  Google Scholar 

  11. Paxéus N (2004) Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs) gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Sci Technol 50(5):253–260

    Google Scholar 

  12. Mlunguza NY, Ncube S, Mahlambi PN, Chimuka L, Madikizela LM (2019) Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. J Environ Chem Eng 7(3):103142

    CAS  Google Scholar 

  13. Basheer AA (2018) New generation nano-adsorbents for the removal of emerging contaminants in water. J Mol Liq 261:583–559

    CAS  Google Scholar 

  14. Sophia AC, Lima EC, Allaudeen N, Rajan S (2016) Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater – a review. Desalin Water Treat 57(57):27573–27586

    Google Scholar 

  15. Al-Khateeb LA, Hakami W, Salam MA (2017) Removal of non-steroidal anti-inflammatory drugs from water using high surface area nanographene: kinetic and thermodynamic studies. J Mol Liq 241:733–741

    CAS  Google Scholar 

  16. Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manage 190:274–282

    CAS  Google Scholar 

  17. Kepekci-Tekkeli SE (2019) Magnetic solid phase extraction applications combined with analytical methods for determination of drugs in different matrices review. J Chil Chem Soc 64(2):4448–4458

    Google Scholar 

  18. Amiri M, Yamini Y, Safari M, Asiabi H (2016) Magnetite nanoparticles coated with covalently immobilized ionic liquids as sorbents for extraction of non-steroidal anti-inflammatory drugs from biological fluids. Microchim Acta 183:2297–2305

    CAS  Google Scholar 

  19. Kollarahithlu SC, Balakrishnan RM (2018) Adsorption of ibuprofen using cysteine-modified silane-coated magnetic nanomaterial. Environ Sci Pollut Res 26(33):34117–34126

    Google Scholar 

  20. Nodeh MKM, Radfard M, Zardari LA, Nodeh HR (2018) Enhanced removal of naproxen from wastewater using silica magnetic nanoparticles decorated onto graphene oxide; parametric and equilibrium study. Sep Sci Technol 53(15):1–10

    Google Scholar 

  21. Singh KP, Singh AK, Singh UV, Verma P (2012) Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box-Behnken design. Environ Sci Pollut Res 19:724–738

    CAS  Google Scholar 

  22. Husein DZ, Hassanien R, Al-Hakkani MF (2019) Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon 5(8):e02339

    Google Scholar 

  23. Georgaki I, Vasilaki E, Katsarakis N (2014) A study on the degradation of Carbamazepine and Ibuprofen by TiO2 & ZnO photocatalysis upon UV/visible-light irradiation. Am J Analyt Chem 5:518–534

    Google Scholar 

  24. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–114

    CAS  Google Scholar 

  25. Mendez-Arriaga F, Espuglas S, Giménez J (2008) Photocatalytic degradation of non-steroidal anti-inflamatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594

    CAS  Google Scholar 

  26. Zhang H, Zhang P, Ji Y, Tian J, Du Z (2015) Photocatalytic degradation of four non-steroidal anti-inflammatory drugs in water under visible light by P25-TiO2/tetraethyl orthosilicate film and determination via ultra performance liquid chromatography electrospray tandem mass spectrometry. Chem Eng J 262:1108–1115

    CAS  Google Scholar 

  27. Pan X, Xu YJ (2013) Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. J Phys Chem C 117:17996–18005

    CAS  Google Scholar 

  28. Ribao P, Rivero MJ, Ortiz I (2017) TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid. Environ Sci Pollut Res Int 24(14):12628–12637

    CAS  Google Scholar 

  29. Minella M, Sordello F, Minero C (2017) photocatalytic process in TiO2/Graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2. Catal. Today 281:29–37

    CAS  Google Scholar 

  30. Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung JS, Kim EJ, Hur SH (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170(1):226–232

    CAS  Google Scholar 

  31. Di Valentin C, Pacchioni G, Selloni A (2005) Theory of carbon doping of titanium dioxide. Chem Mater 17:6656–6665

    Google Scholar 

  32. Wenjie R, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B-Environ 69:138–144

    Google Scholar 

  33. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051

    CAS  Google Scholar 

  34. Bakar SA, Ribeiro C (2016) Nitrogen-doped titanium dioxide: An overview of material design and dimensionality effect over modern applications. J Photoch Photobio C 27:1–29

    Google Scholar 

  35. Huang F, Yan A, Zhao H (2016) Influences of doping on photocatalytic properties of TiO2 photocatalyst. https://www.intechopen.com/books/semiconductor-photocatalysis-materials-mechanisms-and-applications/influences-of-doping-on-photocatalytic-properties-of-tio2-photocatalyst. Accessed 20 Nov 2019

  36. Eslami A, Amini MM, Yazdanbakhsh AR, Mohseni-Bandei A, Safari AA, Asadi A (2015) N, S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflamatory drugs in water: a comparative study. J Chem Technol Biotecnol 91:2693–2704

    Google Scholar 

  37. Lin JC, De Luna MD, Gotostos MJ, Lu MC (2016) Effects of doping amounts of potassium ferricyanide with titanium dioxide and calcination durations on visible-light degradation of pharmaceuticals. Environ Sci Pollut Res Int 23(22):22721–22733

    CAS  Google Scholar 

  38. Lin JC, De Luna MDG, Aranzamendez GL, Lu MC (2016) Degradations of acetaminophen via a K2S2O8-doped TiO2 photocatalyst under visible light irradiation. Chemosphere 155:388–394

    CAS  Google Scholar 

  39. Torki F, Faghihian H (2018) Visible light degradation of naproxen by enhanced photocatalytic activity of NiO and NiS, scavenger study and focus on catalyst support and magnetization. Photochem Photobiol 94(3):491–502

    CAS  Google Scholar 

  40. Choina J, Bagabas A, Fischer CH, Flechsig GU, Kosslick H, Alshammari A, Schulz A (2015) The influence of the textural properties of ZnO nanoparticles on adsorption and photocatalytic remediation of water from pharmaceuticals. Catal Today 241(A):47–54

    Google Scholar 

  41. Rastkari N, Eslami A, Nasseri S, Piroti E, Asadi A (2017) Optimizing parameters on nanophotocatalytic degradation of ibuprofen using UVC/ZnO processes by response surface methodology. Pol J Environ Stud 26(2):785–794

    CAS  Google Scholar 

  42. Tanveer M, Guyer GT, Abbas G (2019) Photocatalytic degradation of ibuprofen in water using TiO2 and ZnO under artificial UV and solar irradiation. Water Environ Res 91:822–829

    CAS  Google Scholar 

  43. Akkari M, Aranda P, Belver C, Bedia J, Ben Haj Amara A, Ruiz-Hitzky E (2018) ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Appl Clay Sci 156:104–109

    CAS  Google Scholar 

  44. Wang F, Wang Y, Feng Y, Zeng Y, Xie Z, Zhang Q, Su Y, Chen P, Liu Y, Yao K, Lv W, Liu G (2018) Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl Catal B Environ 221:510–520

    CAS  Google Scholar 

  45. Hernández-Uresti DB, Vázquez A, Sanchez-Martinez D, Obregón S (2016) Performance of the polymeric g-C3N4 photocatalyst through the degradation of pharmaceutical pollutants under UV–vis irradiation. J Photochem Photobiol A Chem 324:47–52

    Google Scholar 

  46. Smýkalova A, Sokolová B, Foniok K, Matejka V, Praus P (2019) Photocatalytic degradation of selected pharmaceuticals using g-C3N4 and TiO2 nanomaterials. Nanomaterials 9:1194–2009

    Google Scholar 

  47. Xu Y, Liu J, Xie M, Jing L, Yan J, Deng J, Xu H, Li H, Xie J (2013) Graphene oxide modified LaVO4 nanocomposites with enhanced catalytic degradation efficiency of antibiotics. Inorg Chem Front 5(11):2818–2828

    Google Scholar 

  48. Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B Environ 107:110–118

    Google Scholar 

  49. Chen X, Yu C, Zhu R, Li N, Chen J, Li S, Xia W, Xu S, Wang H, Chen X (2019) Ag3PO4 deposited on CuBi2O4 to construct Z-scheme photocatalyst with excellent visible-light catalytic performance toward the degradation of diclofenac sodium. Nanomaterials 9(7):959

    CAS  Google Scholar 

  50. Giahi M (2015) Photocatalytic degradation of diclofenac sodium in aqueous solution using N, S, and C-doped ZnO. Russ J Appl Chem 88(12):2044–2049

    CAS  Google Scholar 

  51. Lei ZD, Wang JJ, Wang L, Yang XY, Pan DY, Xu G, Tang L (2016) Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. J Hazard Mater 312:298–306

    CAS  Google Scholar 

  52. Mohamed A, Salama A, Nasser WS, Uheida A (2018) Photodegradation of ibuprofen, cetirizine, and naproxen by PAN-MWCNT/TiO2-NH2 nanofiber membrane under UV light irradiation. Environ Sci Eur 30:47

    Google Scholar 

  53. Zia J, Rashad PM, Ríaz U (2019) Photocatalytic degradation of anti-inflammatory drug using POPD/Sb2O3 organic-inorganic nanohybrid under solar light. JMRT 8(5):4079–4093

    CAS  Google Scholar 

  54. Jain S, Sharma K, Chandrawat U (2016) Photocatalytic degradation of anti-inflammatory drug on Ti doped BaBiO3 nanocatalyst under visible light irradiation. Iran J Energy Environ 7(1):64–71

    CAS  Google Scholar 

  55. Kumar A, Sharma G, Naushad M, Al-Muhtaseb AH, Kumar A, Hira I, Ahamad T, Ghfar AA, Stadler FJ (2019) Visible photodegradation of ibuprofen and 2, 4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar. J Environ Manage 231:1164–1175

    CAS  Google Scholar 

  56. Martínez C, Vilariño S, Fernández MI, Faria J, Canle LM, Santaballa JA (2013) Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution. Appl Catal B Environ 142–143:633–646

    Google Scholar 

  57. Díaz E, Stozek S, Patiño Y, Ordóñez S (2019) Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode. Water Sci Technol 79(3):490–488

    Google Scholar 

  58. Ching-Ju MC, Tsan-Yao C, Menshan L, Chiung-Fen C, Yu-Ting L, Yu-Tsun K (2014) Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass. J Hazard Mater 277:110–119

    Google Scholar 

  59. Cheshmeh Soltani RD, Mashayekhi M (2018) Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen permeable cathode integrated with ultrasound. Chemosphere 194:471–480

    Google Scholar 

  60. Pourzamani H, Mengelizadeh N, Hajizadeh Y, Mohammadi H (2019) Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes. Environ Sci Pollut Res Int 25(25):24746–24763

    Google Scholar 

  61. Chang CF, Chen TY, Chin CJM, Kuo YT (2017) Enhanced electrochemical degradation of ibuprofen in aqueous solution by PtRu alloy catalyst. Chemosphere 175:76–84

    CAS  Google Scholar 

  62. Motoc S, Remes A, Pop A, Manea F, Schoonman J (2012) Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode. J Environ Sci 25(4):838–847

    Google Scholar 

  63. Kirkham MB (2014) Principles of soil and plant water relations. Academic Press, Cambridge

    Google Scholar 

  64. Chemistry Libretexts (2019) Standard electrodes. https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Electrochemistry/Electrodes/Standard_Hydrogen_Electrode. Accessed 6 Nov 2019

  65. Motoc S, Manea F, Pop A, Pode R, Teodosiu C (2012) Electrochemical degradation of pharmaceutical effluents on carbon-based electrodes. Environ Eng Manag J 11(3):627–634

    CAS  Google Scholar 

  66. Feng L, Van Hullesbusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 228(15):944–964

    CAS  Google Scholar 

  67. Ciríaco L, Anjo C, Correia J, Pacheco MJ, Lopes A (2009) Electrochemical degradation of ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes. EletrochimActa 54:1464–1472

    Google Scholar 

  68. Sifuna FW, Orata F, Okello V, Jemutai-Kimosop S (2016) Comparative studies in electrochemical degradation of sulfamethoxazole and diclofenac in water by using various electrodes and phosphate and sulfate supporting electrolytes. J Environ Sci Health A Tox Hazard Subst Environ Eng 51(11):1–8

    Google Scholar 

  69. Coria G, Sirés I, Barillas E, Nava JL (2016) Influence of the anode material on the degradation of naproxen by Fenton-based electrochemical process. Chem Eng J 304:817–825

    CAS  Google Scholar 

  70. Wang JL, Wu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Env Sci Tec 42(3):251–325

    Google Scholar 

  71. Lower S (2019) Electrolytes and electrolytic solutions. https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_Chem1_(Lower)/08%3A_Solution_Chemistry/8.9%3A_Ions_and_Electrolytes/8.9A%3A_Electrolytes_and_Electrolytic_Solutions. Accessed 6 Nov 2019

  72. Murugananthan M, Latha SS, Bhaskar Raju G, Yoshihara S (2010) Anodic oxidation of ketoprofen-an anti-inflammatory drug using boron doped diamond and platinum electrodes. J Hazard Mater 180:753–758

    CAS  Google Scholar 

  73. JHT L, Male KB, Glennon JD (2009) Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134(10):1965–1979

    Google Scholar 

  74. Ji Z, Liu T, Tian H (2017) Electrochemical degradation of diclofenac for pharmaceutical wastewater treatment. Int J Electrochem Sci 12:7807–7816

    CAS  Google Scholar 

  75. Wang Y, Shen C, Li L, Li H, Zhang M (2016) Electrolytic degradation of ibuprofen in aqueous solution by a cobalt-doped modified lead dioxide electrode: influencing factor and energy demand. RSC Adv 6(36):30598–30610

    CAS  Google Scholar 

  76. Tabeshnia M, Heli H, Jabbari A, Moosavi-Movahedi A (2010) Electro-oxidation of non-steroidal anty-inflammatory drugs on an alumina nanoparticle-modified glassy carbon electrode. Turk J Chem 34(1):34–35

    Google Scholar 

  77. Tashkhourian J, Hemmateenejad B, Beigizadeh H, Hosseini-Sarvari M, Razmi Z (2014) ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques. J Electroanal Chem 714-715:103–108

    CAS  Google Scholar 

  78. Bakr AR, Rahaman MS (2016) Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions. Chemosphere 153:508–520

    CAS  Google Scholar 

  79. Montes RHO, Lima AP, Cunha RR, Guedes TJ, Dos Santos WTP, Nossol E, Richter EM, Munoz RAA (2016) Size effects of multi-walled carbon nanotubes on the electrochemical oxidation of propionic acid derivative drugs: ibuprofen and naproxen. J Electroanal Chem 775:342–349

    CAS  Google Scholar 

  80. Morozova M, Kluson P, Krysa J, Vesely M, Dzik P, Solcova O (2012) Electrochemical properties of TiO2 electrode prepared by various methods. Procedia Eng 42:573–580

    Google Scholar 

  81. Carlson K, Tamallos J, Timmerman A, Misra M, Mohanty S (2016) Development of titanium dioxide nanotube-based arrays for the electrocatalytic degradation and electrochemical detection of emerging pharmaceuticals in water. WIT Trans Ecol Envir 209:53–63

    CAS  Google Scholar 

  82. Quiroz MA, Martínez-Huitle CA, Meas-Vong Y, Bustos B, Cerro-Lopez M (2017) Effect of lead dioxide high dispersion of titania nanotubes on the enhanced electrooxidation of aqueous p-nitrophenol and methyl red: An electrode comparative study. J Electroanal Chem 807:261–267

    CAS  Google Scholar 

  83. Cui Y, Deng X, Ma Q, Zhang H, Cheng X, Li X, Xie M, Cheng Q, Li B (2018) Kinetics of photoelectrocatalytic degradation of diclofenac using N, S co-doped TiO2 nano-crystallite decorated TiO2 nanotube arrays photoelectrode. Environ Prot Eng 44:117–130

    Google Scholar 

  84. Peleyeju MG, Arotiba OA (2018) Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater. Environ Sci Wat Res Technol 4(10):1389–1411

    CAS  Google Scholar 

  85. Orimolade BO, Koiki BA, Zwane BN, Peleyeju BM, Mabubaab N, Arotiba OA (2019) Interrogating solar photoelectrocatalysis on an exfoliated graphite–BiVO4/ZnO composite electrode towards water treatment. RSC 9(29):16586–16595

    CAS  Google Scholar 

  86. Gomes A, Frade T, Lobato K, Melo Jorge NE, Da Silva Pereira MI, Ciriaco L, Lopes A (2011) Annealed Ti/Zn-TiO2 nanocomposites tested as photoanodes for the degradation of ibuprofen. J Solid State Elect 16(6):2061–2069

    Google Scholar 

  87. Li OL, Shi HL, Ishizaki T (2019) Enhanced electrocatalytic stability of platinum nanoparticles supported on sulfur-doped carbon using in-situ solution plasma. Sci Rep 9:12704

    Google Scholar 

  88. Yeh MH, Chang SH, Lin LY, Chou HL, Vittal R, Hwang BJ, Ho KC (2015) Size effects of platinum nanoparticles on the electrocatalytic ability of the counter electrode in dye-sensitized solar cells. Nano Energy 17:241–253

    CAS  Google Scholar 

  89. Banerjee S, Dubey S, Gautam RK, Chattopadhyaya MC, Sharma YC (2017) Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab J Chem 12:5339–5354

    Google Scholar 

  90. Ferreira M, Güney S, Kuzniarska Biernacka I, Soares OSGP, Pereira MFR, Figueiredo JL, Neves IC, Fonseca AM, Parpot P (2018) Electrochemical degradation of diclofenac on catalysts based on CNT and M/CNT modified electrodes. CHEMPOR 2018 – 13th international chemical and biological engineering conference (Book of Extended Abstracts). No. P-EE11, Aveiro, Portugal, Oct 2–4, pp 499–500. http://hdl.handle.net/1822/56865

Download references

Acknowledgments

Authors wish to express their gratitude to the Mexican National Science Council (Consejo Nacional de Ciencia y Tecnología, CONACyT) for funding our experimental research related to the topics discussed in this chapter under the Project No. PN 2016 – 3620.

Also, authors are very grateful to Dr. Hector Ruiz-Espinosa for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Cerro-Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cerro-Lopez, M., Cisneros, J.J., Méndez-Rojas, M.A., Castro-Pastrana, L.I. (2020). Nanotechnologies for Removal of Nonsteroidal Anti-inflammatory Drug from Wastewater. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_553

Download citation