Skip to main content

Contemporary Methods for Removal of Nonsteroidal Anti-inflammatory Drugs in Water Reclamations

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 96)

Abstract

Global water quantity and quality are anticipated to decrease in the coming decades, as a result of both increasing global populations and the effects of climate change. Reusing and recycling water is a key part of reducing the pressure on our existing water supplies and the aquatic environment. However, the occurrence of nonsteroidal anti-inflammatory drugs (NSAIDs) in secondary, and in some tertiary, treated effluents- and sewage-impacted water bodies is one of the major obstacles for the implementation of water reuse. For several decades, NSAIDs have been extensively used for therapeutic purposes in both humans and domestic livestock. The negative effects of NSAIDs on aquatic biota are just beginning to be realized. Currently, intensive treatments are required to remove effectively NSAIDs from recycled treated effluent in order to minimize or eliminate risks to human health and aquatic environment. In this chapter, we focus the discussion on contemporary methods for NSAID removal including biological, physical, chemical, and combined process that may provide a more effective and efficient alternative.

Keywords

  • Advanced oxidation process
  • Integrated process
  • Membrane process
  • NSAIDs
  • Water reuse

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/698_2020_550
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-56294-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Day RO, Graham GG (2013) Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ Br Med J 346:f3195

    Google Scholar 

  2. Sutherland DL, Ralph PJ (2019) Microalgal bioremediation of emerging contaminants – opportunities and challenges. Water Res 164:114921

    CAS  Google Scholar 

  3. Tran NH, Reinhard M, Gin KY-H (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions – a review. Water Res 133:182–207

    CAS  Google Scholar 

  4. Nguyen LN, Nghiem LD, Pramanik BK, Oh S (2018) Cometabolic biotransformation and impacts of the anti-inflammatory drug diclofenac on activated sludge microbial communities. Sci Total Environ

    Google Scholar 

  5. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39(19):4797–4807

    CAS  Google Scholar 

  6. Jewell KS, Falås P, Wick A, Joss A, Ternes TA (2016) Transformation of diclofenac in hybrid biofilm-activated sludge processes. Water Res 105:559–567

    CAS  Google Scholar 

  7. Nguyen LN, Nghiem LD, Pramanik BK, Oh S (2019) Cometabolic biotransformation and impacts of the anti-inflammatory drug diclofenac on activated sludge microbial communities. Sci Total Environ 657:739–745

    CAS  Google Scholar 

  8. Kimura K, Amy G, Drewes JE, Heberer T, Kim T-U, Watanabe Y (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Membr Sci 227(1–2):113–121

    CAS  Google Scholar 

  9. Tran NH, Urase T, Kusakabe O (2010) Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. J Water Environ Technol 8(2):125–140

    Google Scholar 

  10. Cui Y-W, Zhang H-Y, Lu P-F, Peng Y-Z (2016) Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process. Nat Rep 3:1–13

    Google Scholar 

  11. Wei Y, Liao S-A, Wang A-l (2016) The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture 465:88–93

    CAS  Google Scholar 

  12. Tran NH, Urase T, Ngo HH, Hu J, Ong SL (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol 146:721–731

    CAS  Google Scholar 

  13. Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387(4):1365–1377

    CAS  Google Scholar 

  14. Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40(8):1686–1696

    CAS  Google Scholar 

  15. Bérubé P, Isabel CE, Andrea IS (2010) Escobar CI, Andrea IS (eds) Sustainability science and engineering. Elsevier, Amsterdam, pp 255–292

    Google Scholar 

  16. González S, Müller J, Petrovic M, Barceló D, Knepper TP (2006) Biodegradation studies of selected priority acidic pesticides and diclofenac in different bioreactors. Environ Pollut 144(3):926–932

    Google Scholar 

  17. Petrovic M, Gonzalez S, Barceló D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends Anal Chem 22(10):685–696

    CAS  Google Scholar 

  18. Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1–3):156–181

    CAS  Google Scholar 

  19. Tadkaew N, Hai FI, McDonald JA, Khan SJ, Nghiem LD (2011) Removal of trace organics by MBR treatment: the role of molecular properties. Water Res 45(8):2439–2451

    CAS  Google Scholar 

  20. Hai FI, Tessmer K, Nguyen LN, Kang J, Price WE, Nghiem LD (2011) Removal of micropollutants by membrane bioreactor under temperature variation. J Membr Sci 383(1):144–151

    CAS  Google Scholar 

  21. Nguyen LN, Hai FI, Kang J, Nghiem LD, Price WE, Guo W, Ngo HH, Tung K-L (2013) Comparison between sequential and simultaneous application of activated carbon with membrane bioreactor for trace organic contaminant removal. Bioresour Technol 130:412–417

    CAS  Google Scholar 

  22. Nguyen LN, Hai FI, Yang S, Kang J, Leusch FDL, Roddick F, Price WE, Nghiem LD (2013) Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Bioresour Technol 148:234–241

    CAS  Google Scholar 

  23. Trinh T, van den Akker B, Stuetz RM, Coleman HM, Le-Clech P, Khan SJ (2012) Removal of trace organic chemical contaminants by a membrane bioreactor. Water Sci Technol 66(9):1856–1863

    CAS  Google Scholar 

  24. Cirja M, Ivashechkin P, Schäffer A, Corvini PFX (2008) Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). J Rev Environ Sci Biotechnol 7(1):61–78

    CAS  Google Scholar 

  25. Hai FI, Tadkaew N, McDonald JA, Khan SJ, Nghiem LD (2011) Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment? Bioresour Technol 102(10):6299–6303

    CAS  Google Scholar 

  26. Hai FI, Nghiem LD, Modin O (2013) In: Basile A (ed) Handbook of membrane reactors volume 2: reactor types and industrial application. Woodhead Publishing, Cambridge, pp 763–807

    Google Scholar 

  27. Kudanga T, Prasetyo EN, Widsten P, Kandelbauer A, Jury S, Heathcote C, Sipilä J, Weber H, Nyanhongo GS, Guebitz GM (2010) Laccase catalyzed covalent coupling of fluorophenols increases lignocellulose surface hydrophobicity. Bioresour Technol 101(8):2793–2799

    CAS  Google Scholar 

  28. Modin O, Hai FI, Nghiem LD, Basile A, Fukushi K (2014) In: Hai FI, Yamamoto K, Lee C-H (eds) Membrane biological reactors. IWA Publishing, London, pp 300–333

    Google Scholar 

  29. Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT, Magram SF (2013) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol 141:97–108

    CAS  Google Scholar 

  30. Unuofin JO, Okoh AI, Nwodo UU (2019) Aptitude of oxidative enzymes for treatment of wastewater pollutants: a Laccase perspective. Molecules 24(11):2064

    CAS  Google Scholar 

  31. Ashe B, Nguyen LN, Hai FI, Lee D-J, van de Merwe JP, Leusch FDL, Price WE, Nghiem LD (2016) Impacts of redox-mediator type on trace organic contaminants degradation by laccase: degradation efficiency, laccase stability and effluent toxicity. Int Biodeterior Biodegradation 113:169–176

    CAS  Google Scholar 

  32. Nguyen LN, Hai FI, Price WE, Leusch FDL, Roddick F, McAdam EJ, Magram SF, Nghiem LD (2014) Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor. Int Biodeterior Biodegradation 95:25–32

    CAS  Google Scholar 

  33. Kim Y-J, Nicell JA (2006) Laccase catalysed oxidation of aqueous triclosan. J Chem Technol Biotechnol 81:1344–1352

    CAS  Google Scholar 

  34. Hai FI, Yamamoto K, Nakajima F, Fukushi K (2012) Application of a GAC-coated hollow fiber module to couple enzymatic degradation of dye on membrane to whole cell biodegradation within a membrane bioreactor. J Membr Sci 389:67–75

    CAS  Google Scholar 

  35. Brugnari T, Pereira MG, Bubna GA, de Freitas EN, Contato AG, Corrêa RCG, Castoldi R, de Souza CGM, Polizeli MdLTdM, Bracht A, Peralta RM (2018) A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci Total Environ 634:1346–1351

    CAS  Google Scholar 

  36. Margot J, Bennati-Granier C, Maillard J, Blánquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3(1):63–63

    Google Scholar 

  37. Lloret L, Eibes G, Feijoo G, Moreira MT, Lema JM (2012) Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. J Hazard Mater 213–214:175–183

    Google Scholar 

  38. Cabana H, Jones JP, Agathos SN (2009) Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals. Biotechnol Bioeng 102(6):1582–1592

    CAS  Google Scholar 

  39. Rios GM, Belleville MP, Paolucci D, Sanchez J (2004) Progress in enzymatic membrane reactors – a review. J Membr Sci 242(1–2):189–196

    CAS  Google Scholar 

  40. Andersson MM, Breccia JD, Hatti-Kaul R (2000) Stabilizing effect of chemical additives against oxidation of lactate dehydrogenase. Biotechnol Appl Biochem 32(3):145–153

    CAS  Google Scholar 

  41. Mendoza L, Jonstrup M, Hatti-Kaul R, Mattiasson B (2011) Azo dye decolorization by a laccase/mediator system in a membrane reactor: enzyme and mediator reusability. Enzym Microb Technol 49(5):478–484

    CAS  Google Scholar 

  42. Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36(1):30–44

    CAS  Google Scholar 

  43. Coimbra RN, Escapa C, Vázquez NC, Noriega-Hevia G, Otero M (2018) Utilization of non-living microalgae biomass from two different strains for the adsorptive removal of diclofenac from water. Water 10:1401

    CAS  Google Scholar 

  44. Zhang H, Yamada H, Tsuno H (2008) Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control. Environ Sci Technol 42(9):3375–3380

    CAS  Google Scholar 

  45. Escapa A, Mateos R, Martínez E, Blanes J (2016) Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sustain Energy Rev 55:942–956

    CAS  Google Scholar 

  46. Ding T, Lin K, Yang B et al (2017) Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour Technol 238:164–173

    CAS  Google Scholar 

  47. Marco-Urrea E, Perez-Trujillo M, Blanquez P, Vicent T, Caminal G (2010) Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR. Bioresour Technol 101(7):2159–2166

    CAS  Google Scholar 

  48. Olicón-Hernández DR, González-López J, Aranda E (2017) Overview on the biochemical potential of filamentous Fungi to degrade pharmaceutical compounds. Front Microbiol 8:1792

    Google Scholar 

  49. Domaradzka D, Guzik U, Wojcieszyńska D (2015) Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs. Rev Environ Sci Biotechnol 14(2):229–239

    CAS  Google Scholar 

  50. Otto B, Beuchel C, Liers C, Reisser W, Harms H, Schlosser D (2015) Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. FEMS Microbiol Lett 362(11)

    Google Scholar 

  51. Zhang J, Ma F, Zhang X, Geng A (2018) Directed evolution of a homodimeric laccase from Cerrena unicolor BBP6 by random mutagenesis and in vivo assembly. Int J Mol Sci 19(10)

    Google Scholar 

  52. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123(3):227–239

    CAS  Google Scholar 

  53. Chiaiese P, Palomba F, Tatino F, Lanzillo C, Pinto G, Pollio A, Filippone E (2011) Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater. Enzym Microb Technol 49(6–7):540–546

    CAS  Google Scholar 

  54. Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42

    CAS  Google Scholar 

  55. Norvill ZN, Shilton A, Guieysse B (2016) Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps. J Hazard Mater 313:291–309

    CAS  Google Scholar 

  56. Villar-Navarro E, Baena-Nogueras RM, Paniw M, Perales JA, Lara-Martín PA (2018) Removal of pharmaceuticals in urban wastewater: high rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes. Water Res 139:19–29

    CAS  Google Scholar 

  57. Cajthaml T, Křesinová Z, Svobodová K, Möder M (2009) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750

    CAS  Google Scholar 

  58. Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55(1):35–43

    CAS  Google Scholar 

  59. Andreozzi R, Campanella L, Fraysse B, Garric J, Gonnella A, Giudice RL, Marotta R, Pinto G, Pollio A (2004) Effects of advanced oxidation processes (AOPs) on the toxicity of a mixture of pharmaceuticals. Water Sci Technol 50(5):23–28

    CAS  Google Scholar 

  60. Contreras S, Rodríguez M, Momani FA, Sans C, Esplugas S (2003) Contribution of the ozonation pre-treatment to the biodegradation of aqueous solutions of 2,4-dichlorophenol. Water Res 37(13):3164–3171

    CAS  Google Scholar 

  61. Esplugas S, Giménez J, Contreras S, Pascual E, Rodríguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36(4):1034–1042

    CAS  Google Scholar 

  62. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35(2):402–417

    CAS  Google Scholar 

  63. Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37(8):1976–1982

    CAS  Google Scholar 

  64. Rizzo L, Malato S, Antakyali D, Beretsou VG, Đolić MB, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado Ribeiro AR, Mascolo G, McArdell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008

    CAS  Google Scholar 

  65. Lee Y, Gerrity D, Lee M, Bogeat AE, Salhi E, Gamage S, Trenholm RA, Wert EC, Snyder SA, von Gunten U (2013) Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. Environ Sci Technol 47(11):5872–5881

    CAS  Google Scholar 

  66. Fujioka T, Khan SJ, McDonald JA, Nghiem LD (2014) Ozonation of N-nitrosamines in the reverse osmosis concentrate from water recycling applications. Ozone Sci Eng 36(2):174–180

    CAS  Google Scholar 

  67. Wert EC, Rosario-Ortiz FL, Snyder SA (2009) Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Res 43(4):1005–1014

    CAS  Google Scholar 

  68. Maldonado MI, Malato S, Pérez-Estrada LA, Gernjak W, Oller I, Doménech X, Peral J (2006) Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. J Hazard Mater 138(2):363–369

    CAS  Google Scholar 

  69. Yuan F, Hu C, Hu X, Qu J, Yang M (2009) Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Res 43(6):1766–1774

    CAS  Google Scholar 

  70. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83(6):769–776

    CAS  Google Scholar 

  71. Agenson KO, Oh J-I, Urase T (2003) Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: controlling parameters of process. J Membr Sci 225(1–2):91–103

    CAS  Google Scholar 

  72. Hofman JAMH, Gijsbertsen AJ, Cornelissen E (2007) Nanofiltration retention models for organic contaminants. Water Research Foundation, Denver, p 167

    Google Scholar 

  73. Nghiem LD, Schäfer AI (2002) Adsorption and transport of trace contaminant Estrone in NF/RO membranes. Environ Eng Sci 19(6):441–451

    CAS  Google Scholar 

  74. Vogel D, Simon A, Alturki AA, Bilitewski B, Price WE, Nghiem LD (2010) Effects of fouling and scaling on the retention of trace organic contaminants by a nanofiltration membrane: the role of cake-enhanced concentration polarisation. Sep Purif Technol 73(2):256–263

    CAS  Google Scholar 

  75. Xu P, Drewes JE, Kim T-U, Bellona C, Amy G (2006) Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J Membr Sci 279(1–2):165–175

    CAS  Google Scholar 

  76. Nghiem LD, Manis A, Soldenhoff K, Schäfer AI (2004) Estrogenic hormone removal from wastewater using NF/RO membranes. J Membr Sci 242(1):37–45

    CAS  Google Scholar 

  77. Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD (2013) Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeterior Biodegradation 85:474–482

    CAS  Google Scholar 

  78. Verliefde ARD, Heijman SGJ, Cornelissen ER, Amy GL, Van der Bruggen B, van Dijk JC (2008) Rejection of trace organic pollutants with high pressure membranes (NF/RO). Environ Prog 27(2):180–188

    CAS  Google Scholar 

  79. Nghiem LD (2005) Removal of emerging trace organic contaminants by nanofiltration and reverse osmosis. University of Wollongong, Wollongong

    Google Scholar 

  80. Agus E, Sedlak DL (2010) Formation and fate of chlorination by-products in reverse osmosis desalination systems. Water Res 44(5):1616–1626

    CAS  Google Scholar 

  81. Bellona C, Drewes JE, Xu P, Amy G (2004) Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review. Water Res 38(12):2795–2809

    CAS  Google Scholar 

  82. Nghiem LD, Schäfer AI, Elimelech M (2004) Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. Environ Sci Technol 38(6):1888–1896

    CAS  Google Scholar 

  83. Steinle-Darling E, Litwiller E, Reinhard M (2010) Effects of sorption on the rejection of trace organic contaminants during nanofiltration. Environ Sci Technol 44:2592–2598

    CAS  Google Scholar 

  84. Xu P, Drewes JE, Bellona C, Amy G, Kim T-U, Adam M, Heberer T (2005) Rejection of emerging organic micropollutants in Nanofiltration-reverse osmosis membrane applications. Water Environ Res 77(1):40–48

    CAS  Google Scholar 

  85. Ben-David A, Bernstein R, Oren Y, Belfer S, Dosoretz C, Freger V (2010) Facile surface modification of nanofiltration membranes to target the removal of endocrine-disrupting compounds. J Membr Sci 357(1–2):152–159

    CAS  Google Scholar 

  86. Bellona C, Drewes JE (2005) The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J Membr Sci 249(1–2):227–234

    CAS  Google Scholar 

  87. Nghiem LD, Hawkes S (2007) Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): mechanisms and role of membrane pore size. Sep Purif Technol 57(1):176–184

    CAS  Google Scholar 

  88. Sharma RR, Agrawal R, Chellam S (2003) Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters. J Membr Sci 223(1–2):69–87

    CAS  Google Scholar 

  89. Wei C-H, Zhang X-X, Ren Y, Yu X-B (2011) George A (ed) Biomimetic based applications. InTech, Croatia, pp 285–310

    Google Scholar 

  90. Binyam S, Mukhtar H, Leong LK (2009) Flux and rejection on monoethanolamine (MEA) in wastewater using membrane technology. IWTC, Hurghada, pp 139–151

    Google Scholar 

  91. Steinle-Darling E, Reinhard M (2008) Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of Perfluorochemicals. Environ Sci Technol 42(14):5292–5297

    CAS  Google Scholar 

  92. Ng HY, Elimelech M (2004) Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis. J Membr Sci 244(1–2):215–226

    CAS  Google Scholar 

  93. Alturki AA, Tadkaew N, McDonald JA, Khan SJ, Price WE, Nghiem LD (2010) Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J Membr Sci 365(1):206–215

    CAS  Google Scholar 

  94. Hai FI, Alturki A, Nguyen LN, Price WE, Nghiem LD (2016) Green technologies for sustainable water management. ASCE, Reston, pp 533–578

    Google Scholar 

  95. Comerton AM, Andrews RC, Bagley DM (2005) Evaluation of an MBR-RO system to produce high quality reuse water: microbial control, DBP formation and nitrate. Water Res 39(16):3982–3990

    CAS  Google Scholar 

  96. Dialynas E, Diamadopoulos E (2009) Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 238(1–3):302–311

    CAS  Google Scholar 

  97. Jacob M, Guigui C, Cabassud C, Darras H, Lavison G, Moulin L (2010) Performances of RO and NF processes for wastewater reuse: tertiary treatment after a conventional activated sludge or a membrane bioreactor. Desalination 250(2):833–839

    CAS  Google Scholar 

  98. Qin J-J, Kekre KA, Tao G, Oo MH, Wai MN, Lee TC, Viswanath B, Seah H (2006) New option of MBR-RO process for production of NEWater from domestic sewage. J Membr Sci 272(1–2):70–77

    CAS  Google Scholar 

  99. Tam LS, Tang TW, Lau GN, Sharma KR, Chen GH (2007) A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination 202(1–3):106–113

    CAS  Google Scholar 

  100. Halim AA, Aziz HA, Johari MAM, Ariffin KS (2010) Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 262(1–3):31–35

    Google Scholar 

  101. Cook D, Newcombe G, Sztajnbok P (2001) The application of powdered activated carbon for mib and geosmin removal: predicting pac doses in four raw waters. Water Res 35(5):1325–1333

    CAS  Google Scholar 

  102. Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61(4):492–501

    CAS  Google Scholar 

  103. Singh KP, Mohan D, Sinha S, Tondon GS, Gosh D (2003) Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind Eng Chem Res 42(9):1965–1976

    CAS  Google Scholar 

  104. Yeh RY-L, Thomas A (1995) Color removal from dye wastewaters by adsorption using powdered activated carbon: mass transfer studies. J Chem Technol Biotechnol 63(1):48–54

    Google Scholar 

  105. Gamez V, Larrechi MS, Callao MP (2007) Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69(7):1151–1158

    Google Scholar 

  106. Hai FI, Yamamoto K, Nakajima F, Fukushi K (2008) Removal of structurally different dyes in submerged membrane fungi reactor – biosorption/PAC-adsorption, membrane retention and biodegradation. J Membr Sci 325(1):395–403

    CAS  Google Scholar 

  107. Matsui Y, Knappe DRU, Iwaki K, Ohira H (2002) Pesticide adsorption by granular activated carbon Adsorbers. 2. Effects of pesticide and natural organic matter characteristics on pesticide breakthrough curves. Environ Sci Technol 36(15):3432–3438

    CAS  Google Scholar 

  108. Kim SH, Shon HK, Ngo HH (2010) Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon. J Ind Eng Chem 16(3):344–349

    CAS  Google Scholar 

  109. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch H, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):3855–3863

    CAS  Google Scholar 

  110. Hernández-Leal L, Temmink H, Zeeman G, Buisman CJN (2011) Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Res 45(9):2887–2896

    Google Scholar 

  111. Grover DP, Zhou JL, Frickers PE, Readman JW (2010) Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water. J Hazard Mater 185(2–3):1005–1011

    Google Scholar 

  112. Tanghe T, Verstraete W (2001) Adsorption of Nonylphenol onto granular activated carbon. Water Air Soil Pollut 131(1):61–72

    CAS  Google Scholar 

  113. Dickenson ERV, Drewes JE (2010) Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon. Water Sci Technol 62(10):2270–2276

    CAS  Google Scholar 

  114. Li X, Hai FI, Nghiem LD (2011) Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresour Technol 102(9):5319–5324

    CAS  Google Scholar 

  115. Nguyen LN, Hai FI, Nghiem LD, Kang J, Price WE, Park C, Yamamoto K (2013) Enhancement of removal of trace organic contaminants by powdered activated carbon dosing into membrane bioreactors. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2013.1005.1021

  116. Serrano D, Suárez S, Lema JM, Omil F (2011) Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor. Water Res 45(16):5323–5333

    CAS  Google Scholar 

  117. Yang W, Paetkau M, Cicek N (2010) Improving the performance of membrane bioreactors by powdered activated carbon dosing with cost considerations. Water Sci Technol 62(1):172–179

    CAS  Google Scholar 

  118. Navaratna D, Shu L, Baskaran K, Jegatheesan V (2012) Treatment of ametryn in wastewater by a hybrid MBR system: a lab-scale study. Water Sci Technol 66(6):1317–1324

    CAS  Google Scholar 

  119. Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD (2012) Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system. Bioresour Technol 113:169–173

    CAS  Google Scholar 

  120. Lipp P, Groay H-J, Tiehm A (2012) Improved elimination of organic micropollutants by a process combination of membrane bioreactor (MBR) and powdered activated carbon (PAC). Desalin Water Treat 42(1–3):65–72

    CAS  Google Scholar 

  121. Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA (2003) Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat Sci 65(4):342–351

    CAS  Google Scholar 

  122. de Wilt A, van Gijn K, Verhoek T, Vergnes A, Hoek M, Rijnaarts H, Langenhoff A (2018) Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process. Water Res 138:97–105

    Google Scholar 

  123. Ikehata K, Gamal El-Din M, Snyder SA (2008) Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Sci Eng 30(1):21–26

    CAS  Google Scholar 

  124. Pollice A, Laera G, Cassano D, Diomede S, Pinto A, Lopez A, Mascolo G (2012) Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system. J Hazard Mater 203–204:46–52

    Google Scholar 

  125. Laera G, Cassano D, Lopez A, Pinto A, Pollice A, Ricco G, Mascolo G (2012) Removal of organics and degradation products from industrial wastewater by a membrane bioreactor integrated with ozone or UV/H2O2 treatment. Environ Sci Technol 46(2):1010–1018

    CAS  Google Scholar 

  126. Mascolo G, Laera G, Pollice A, Cassano D, Pinto A, Salerno C, Lopez A (2010) Effective organics degradation from pharmaceutical wastewater by an integrated process including membrane bioreactor and ozonation. Chemosphere 78(9):1100–1109

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luong N. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, L.N., Commault, A.S., Sutherland, D., Semblante, G.U., Oh, S., Nghiem, L.D. (2020). Contemporary Methods for Removal of Nonsteroidal Anti-inflammatory Drugs in Water Reclamations. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_550

Download citation