Skip to main content

Toxicity Assessment of Acetylsalicylic Acid to a Freshwater Fish Cyprinus carpio: Haematological, Biochemical, Enzymological and Antioxidant Responses

  • Chapter
  • First Online:
Non-Steroidal Anti-Inflammatory Drugs in Water

Abstract

Pharmaceutical pollution is a global threat to the biosphere causing significant environmental health concern. A wide range of pharmaceuticals (antibiotics, nonsteroidal anti-inflammatory drugs, beta-blockers, etc.) are widely used in human and veterinary medicine, agriculture and aquaculture purposes to protect the life against various diseases and to improve human health. The extensive use of these compounds may enter the environment through discharge of domestic waste waters, excretion via water and sewage treatment systems which may affect the aquatic organisms. Aspirin (acetylsalicylic acid, ASA) is one of the most commonly used nonsteroidal anti-inflammatory drug (NSAIDs) worldwide and has been detected in aquatic bodies. Therefore, it is important to gain knowledge about the toxicity of acetylsalicylic acid in aquatic organisms. Here we have administered 100 and 200 mg L−1 of acetylsalicylic acid, to a freshwater fish Cyprinus carpio fingerlings, and have studied its effects on haematological, enzymological biochemical and antioxidant parameters. When compared to control, acetylsalicylic acid-treated fish showed a significant (P < 0.05) decline in haemoglobin (Hb), haematocrit (Hct) and red blood cell (RBC) levels throughout the study period (12 days). On the other hand, a significant (P < 0.05) increase was observed in white blood cell counts (WBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values. Acetylsalicylic acid induced a hyperglycaemic condition compared to control, whereas the level of proteins was declined. A significant decrease in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity was noted in acetylsalicylic acid-treated groups (except 21st day in ALT activity and 21st day in AST activity). Significant alterations in various antioxidant parameters such as superoxide dismutase (SOD), lipid peroxidase (LPO), catalase (CAT) glutathione (GSH) and glutathione S-transferase (GST) were observed in ASA-treated groups compared to the control group. From the results, it is noteworthy that the drug ASA even at considerable environmental concentrations causes negative impacts on the health of aquatic organisms. The alterations of these parameters can be effectively used to monitor the impact of pharmaceutical drugs in the aquatic environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narra MR (2016) Single and cartel effect of pesticides on biochemical and haematological status of Clarias batrachus: a long-term monitoring. Chemosphere 144:966–974

    CAS  Google Scholar 

  2. Piedade F, Bio S, Nunes B et al (2020) Effects of common pharmaceutical drugs (paracetamol and acetylsalicylic acid) short term exposure on biomarkers of the mussel Mytilus spp. Environ Toxicol Pharmacol 73:103276

    CAS  Google Scholar 

  3. Kaleniecka A, Zarzycki PK et al (2015) Pharmaceuticals in the aquatic environment: sources, effects, treatment methods. Arch Physiother Glob Res 19(3):39–52

    Google Scholar 

  4. Ramesh M, Anitha S, Poopal RK et al (2018a) Evaluation of acute and sublethal effects of chloroquine (C18H26CIN3) on certain enzymological and histopathological biomarker responses of a freshwater fish Cyprinus carpio. Toxicol Rep 5:18–27

    CAS  Google Scholar 

  5. Miller TH, Bury NR, Owen SF et al (2018) A review of the pharmaceutical exposure in some aquatic fauna. Environ Pollut 239:129–146

    CAS  Google Scholar 

  6. Sharma CM, Borgstrøm R, Huitfeldt JS et al (2008) Selective exploitation of large pike Esox lucius-effects on mercury concentrations in fish populations. Sci Total Environ 399(1–3):33–40

    CAS  Google Scholar 

  7. Gilroy EA, Klinck JS, Campbell SD et al (2014) Toxicity and bioconcentration of the pharmaceuticals moxifloxacin, rosuvastatin, and drospirenone to the unionid mussel Lampsilis siliquoidea. Sci Total Environ 487:537–544

    CAS  Google Scholar 

  8. Liu P, Temrikar Z, Lee H et al (2018) Purification of biosynthesized drug metabolites by supercritical fluid chromatography. Drug Metab Pharmacokinet 33(1):S78

    Google Scholar 

  9. Zhang Y, Zhu L, Zhou Y et al (2015) Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J Environ Sci 30:223–230

    CAS  Google Scholar 

  10. Ji K, Choi K, Lee S et al (2010) Effects of sulfathiazole, oxytetracycline and chlortetracycline on steroidogenesis in the human adrenocarcinoma (H295R) cell line and freshwater fish Oryzias latipes. J Hazard Mater 182(1–3):494–502

    CAS  Google Scholar 

  11. Monneret C (2017) What is an endocrine disruptor? C R Biol 340(9–10):403–405

    Google Scholar 

  12. Tran VS, Ngoa HH, Guo W et al (2017) Removal of antibiotics (sulfamethazine, tetracycline and chloramphenicol) from aqueous solution by raw and nitrogen plasma modified steel shavings. Sci Total Environ 601-602:845–856

    CAS  Google Scholar 

  13. Zhao S, Wang X, Li Y et al (2016) Bioconcentration, metabolism, and biomarker responses in marine medaka (Oryzias melastigma) exposed to sulfamethazine. Aquat Toxicol 181:29–36

    CAS  Google Scholar 

  14. Kurunthachalam SK (2012) Pharmaceutical substances in India are a point of great concern. Hydrol Curr Res 3:3–5

    Google Scholar 

  15. Santos LH, Araujo AN, Fachini A et al (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    CAS  Google Scholar 

  16. Nakatsu Y, Nakagawa F, Higashi S et al (2018) Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells. Pharmacol Rep 70:29–36

    CAS  Google Scholar 

  17. Desborough MJR, Keeling DM (2017) The aspirin story - from willow to wonder drug. Br J Haematol 177:674–683

    Google Scholar 

  18. Yeomans ND (2011) Aspirin: old drug, new uses and challenges. J Gastroenterol Hepatol 264:26–431

    Google Scholar 

  19. Manrique-Moreno M, Heinbockel L, Suwalsky M et al (2016) Biophysical study of the non-steroidal anti-inflammatory drugs (NSAID) ibuprofen, naproxen and diclofenac with phosphatidylserine bilayer membranes. Biochim Biophys Acta 1858:2123–2131

    CAS  Google Scholar 

  20. Tasdemir A, Taskiran M, Ayyildiz N et al (2018) Effects of low and high doses of acetylsalicylic acid on penicillin-induced epileptiform activity. Pharmacol Rep 70(5):885–889

    CAS  Google Scholar 

  21. Kerola M, Vuolteenaho K, Kosonen O et al (2009) Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo. Basic Clin Pharmacol Toxicol 104:17–21

    CAS  Google Scholar 

  22. Dorsch M, Pokorney S, Birmingham M et al (2019) Oral anticoagulation underused and aspirin overused for atrial fibrillation with advanced chronic kidney disease status. J Am Coll Cardiol 73(9):408

    Google Scholar 

  23. Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437

    CAS  Google Scholar 

  24. Beaumont C, Young GC, Cavalier T et al (2014) Human absorption, distribution, metabolism and excretion properties of drug molecules: a plethora of approaches. Br J Clin Pharmacol 78(6):1185–1200

    CAS  Google Scholar 

  25. Lienert J, Güdel K, Escher BI (2007) Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 41:4471–4478

    CAS  Google Scholar 

  26. Baselt RC, Cravey RH (1995) Disposition of toxic drugs and chemicals in man, 4th edn. Year Book Medical Publishers, Chicago, pp 105–107

    Google Scholar 

  27. Vijaya BD, Kishore KH, Pandu R et al (2013) Low dose aspirin estimation: an application to a human pharmacokinetic study. Biomed Chromatogr 27:589–598

    Google Scholar 

  28. Goodman Gilman A, Rall TW, Nies AS, Tylor P (eds) (1990) The pharmaceutical basis of therapeutics, 8th edn. Pergamon Press, New York

    Google Scholar 

  29. Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37:1–12

    CAS  Google Scholar 

  30. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 323:245–3260

    Google Scholar 

  31. Schulman LJ, Sargent EV, Naumann BD et al (2002) A human health risk assessment of pharmaceuticals in the aquatic environment. Human Ecol Risk Assess 8:657–680

    CAS  Google Scholar 

  32. Philip MJ, Aravind UK, Aravindakumar CT (2018) Emerging contaminants in Indian environmental matrices – a review. Chemosphere 190:307–326

    CAS  Google Scholar 

  33. Gravel A, Wilson JM, Pedro DFN (2009) Non-steroidal anti-inflammatory drugs disturb the osmoregulatory, metabolic and cortisol responses associated with seawater exposure in rainbow trout. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 149:481–490

    Google Scholar 

  34. van Anholt R, Spanings T, Koven W et al (2003) Effects of acetylsalicylic acid treatment on thyroid hormones, prolactins, and the stress response of tilapia (Oreochromis mossambicus). Am J Physiol Regul Integr Comp Physiol 285:1098–1106

    Google Scholar 

  35. Davis DP, Daston GP, Odio MR et al (1996) Maternal reproductive effects of oral salicylic acid in Sprague-Dawley rats. Toxicol Lett 84(3):135–141

    CAS  Google Scholar 

  36. Cappon GD, Gupta U, Cook JC et al (2003) Comparison of the developmental toxicity of aspirin in rabbits when administered throughout organogenesis or during sensitive windows of development. Birth Defects Res B 68:38–46

    CAS  Google Scholar 

  37. Zivna D, Blahova J, Siroka Z et al (2016) The effects of salicylic acid on juvenile zebrafish Danio rerio under flow-through conditions. Bull Environ Contam Toxicol 97:323–330

    CAS  Google Scholar 

  38. Zivna D, Sehonova P, Plhalova L et al (2015) Effect of salicylic acid on early life stages of common carp (Cyprinus carpio). Environ Toxicol Pharmacol 40:319–325

    Google Scholar 

  39. Hernando MD, Mezcua M, Fernández-Alba AR (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2):334–342

    CAS  Google Scholar 

  40. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59(4):309–315

    CAS  Google Scholar 

  41. Kumar N, Krishnani KK, Meena KK et al (2017) Oxidative and cellular metabolic stress of Oreochromis mossambicus as biomarkers indicators of trace element contaminants. Chemosphere 171:265–274

    CAS  Google Scholar 

  42. Ramesh M, Sankaran M, Veera-Gowtham V (2014) Hematological, biochemical and enzymological responses in an Indian major carp Labeo rohita induced by sublethal concentration of waterborne selenite exposure. Chem Biol Interact 207:67–73

    CAS  Google Scholar 

  43. Renuka S, Poopal RK, Ramesh M et al (2018) Responses of Labeo rohita fingerlings to N-acetyl-p-aminophenol toxicity. Ecotox Environ Safe 157:73–80

    CAS  Google Scholar 

  44. van Vuren JHJ (1986) The effects of toxicants on the haematology of Labeo umbratus (Teleostei: Cyprinidae). Comp Biochem Physiol C Toxicol Pharmacol 83(1):155–159

    Google Scholar 

  45. Jia Y, Jing Q, Huang HNB (2017) Ameliorative effect of vitamin E on hepatic oxidative stress and hypoimmunity induced by high-fat diet in turbot (Scophthalmus maximus). Fish Shellfish Immunol 67:634–642

    CAS  Google Scholar 

  46. Chen Q, Daqiang Y, Jia Y et al (2017) Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Sci Total Environ 609:1312–1321

    CAS  Google Scholar 

  47. Shi Q, Wang M, Fengqiong S (2018) Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. Aquat Toxicol 203

    Google Scholar 

  48. Lu Y, Zhang Y, Deng Y et al (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060

    CAS  Google Scholar 

  49. LeMoine C, Kelleher B, Lagarde R (2018) Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio). Environ Pollut 243

    Google Scholar 

  50. Granby K, Rainieri S, Rasmussen R et al (2018) The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax). Environ Res 164:430–443

    CAS  Google Scholar 

  51. Marques CR, Abrantes N, Gonçalves F et al (2004) Life-history traits of standard and autochthonous cladocerans: II. Acute and chronic effects of acetylsalicylic acid metabolites. Environ Toxicol 19:527–540

    CAS  Google Scholar 

  52. ICMAI (2016) The management accountant. J CMAS 51(3):1–124. https://icmai.in/upload/Institute/Journal/March-2016.pdf

    Google Scholar 

  53. Shanmugam G, Sampath S, Selvaraj KK et al (2014) Nonsteroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res Int 21(2):921–931

    CAS  Google Scholar 

  54. Rusia V, Sood SK (1992) Routine hematological tests. In: Kanai L, Mukerjee I (eds) Medical laboratory technology I. Tata McGraw Hill, New Delhi, pp 252–258

    Google Scholar 

  55. Nelson DA, Morris MW (1989) Basic methodology: hematology and coagulation. Chap 27 part IV. In: Nelson DA, Henry JB (eds) Clinical diagnosis, management by laboratory methods, 17th edn. W.B. Saunders Company, Philadelphia, pp 578–625

    Google Scholar 

  56. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  57. Cooper GR, McDaniel V (1970) Standard methods of clinical chemistry. Academic, New York, p 159

    Google Scholar 

  58. Marklund S, Marklund G (1974) Involvement of superoxide anion radical in autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    CAS  Google Scholar 

  59. Adeyemi JA, da Cunha M-JA, Barbosa F (2015) Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine. Comp Biochem Physiol C Pharmacol Toxicol 172:7–12

    Google Scholar 

  60. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394

    CAS  Google Scholar 

  61. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferase. Meth Enzymol 77:398–405

    CAS  Google Scholar 

  62. Ganie SA, Haq E, Hamid A et al (2011) Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum. BMC Complement Altern Med 11(1):17

    Google Scholar 

  63. Mutiyar P, Mittal A et al (2014) Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environ Monit Assess 186:541–557

    CAS  Google Scholar 

  64. Vestel J, Caldwell D, Constantine L et al (2015) Use of acute and chronic ecotoxicity data in environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35(5):1201–1212. https://doi.org/10.1002/etc.3260

    Article  CAS  Google Scholar 

  65. Pino-Otín MR, Muñiz S, Val J et al (2017) Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms. Sci Total Environ 595:441–450

    Google Scholar 

  66. Temes TA, Andersen H, Gilberg D et al (2002) Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Anal Chem 74(14):3498–3504

    Google Scholar 

  67. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189

    CAS  Google Scholar 

  68. Metcalfe CD, Koenig BG, Bennie DT (2003) Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environ Toxicol Chem 22(12):2872–2880

    CAS  Google Scholar 

  69. Martindale W (1993) The extra pharmacopoeia. Pharmaceutical Press, London

    Google Scholar 

  70. Greenberg PD, Cello JP, Rockey DC (1996) Asymptomatic chronic gastrointestinal blood loss in patients taking aspirin or warfarin for cardiovascular disease. Am J Med 100:598–604

    CAS  Google Scholar 

  71. Gravel A, Vijayan MM (2007) Salicylate impacts the physiological responses to an acute handling disturbance in rainbow trout. Aquat Toxicol 85:87–95

    CAS  Google Scholar 

  72. Praskova E, Zivna D, Stepanova S et al (2012) Acute toxicity of acetylsalicylic acid to juvenile and embryonic stages of Danio rerio. Neuroendocrinol Lett 33:72–76

    CAS  Google Scholar 

  73. Bantu N, Zenebehagos Z, Chaitanya K et al (2017) Toxic effect of Profenofos on blood parameters in the freshwater fish, Labeo rohita (Hamilton). Innov Int J Med Pharm Sci 2(2):14–18

    Google Scholar 

  74. Sampaio FG, Carra ML, Jonsson CM et al (2016) Effects of dietary exposure to sulfamethazine on the hematological parameters and hepatic oxidative stress biomarkers in Nile Tilapia (Oreochromis niloticus). Bull Environ Contam Toxicol 97:528–535

    CAS  Google Scholar 

  75. Hemalatha D, Nataraj B, Rangasamy B et al (2019) DNA damage and physiological responses in an Indian major carp Labeo rohita exposed to an antimicrobial agent triclosan. Fish Physiol Biochem 45:1463–1484

    CAS  Google Scholar 

  76. Gupta A, Gupta P, Asha D (2014) Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry. Fish Shellfish Immunol 4:10

    Google Scholar 

  77. Ramesh M, Thilagavathi T, Rathika R et al (2018b) Antioxidant status, biochemical and hematological responses in a cultivable fish Cirrhinus mrigala exposed to an aquaculture antibiotic Sulfamethazine. Aquaculture 491:10–19

    CAS  Google Scholar 

  78. Patole SS, Patil MU, Bhoi SS (2016) Effect of fenvalerate synthetic pyrethroid on a certain haematological parameters of freshwater fish Channa marulius (Ham-Bach). Int J Life Sci Sci Res 2(3):269–272

    Google Scholar 

  79. Talas ZS, Gulhan MF (2009) Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 72:1994–1998

    CAS  Google Scholar 

  80. Erber WN (2011) Investigation and classification of anemia. In: Porwit A, McCullough J, Erber WN (eds) Blood and bone marrow pathology, 2nd edn. Churchill Livingstone, London pp 105–113

    Google Scholar 

  81. Sahu V, Karmakar S, Kumar S et al (2018) Triclosan toxicity alters behavioral and hematological parameters and vital antioxidant and neurological enzymes in Pangasianodon hypophthalmus (Sauvage, 1878). Aquat Toxicol 202:145–152

    CAS  Google Scholar 

  82. Neelima P, Rao K, Rao G et al (2016) Biomarkers of Cypermethrin (synthetic pyrethroid) toxicity - biochemical alterations in Cyprinus carpio, a freshwater edible fish. IJBMR 7:5574–5581

    Google Scholar 

  83. Saravanan M, Usha Devi K, Malarvizhi A et al (2012) Effects of ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environ Toxicol Pharmacol 34:14–22

    CAS  Google Scholar 

  84. Vuorinen JP, Keinänen M, Peuranen S et al (2003) Reproduction, blood and plasma parameters and gill histology of vendace (Coregonus albula L.) in long-term exposure to acidity and aluminium. Ecotoxicol Environ Saf 54(3):255–276

    CAS  Google Scholar 

  85. Ambili TR, Saravanan M, Ramesh M et al (2013) Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Arch Environ Contam Toxicol 64:494–503

    CAS  Google Scholar 

  86. Umamaheswari S, Renuka S, Ramesh M et al (2019) Chronic amoxicillin exposure affects Labeo rohita: assessment of hematological, ionic compounds, biochemical, and enzymological activities. Heliyon 5:e01434. https://doi.org/10.1016/j.heliyon.2019.e01434

    Article  Google Scholar 

  87. Qureshi IZ, Bibi A, Shahid S et al (2016) Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquat Toxicol 179:103–114

    CAS  Google Scholar 

  88. Elia AC, Prearo M, Pacini N et al (2011) Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol Environ Saf 74(2):166–173

    CAS  Google Scholar 

  89. Saglam N, Yonar ME (2009) Effects of sulfamerazine on selected haematological and immunological parameters in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). Aquac Res 40:395–404

    CAS  Google Scholar 

  90. Ghouri N, Preiss D, Sattar N (2010) Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: a narrative review and clinical perspective of prospective data. Hepatology 52:1156–1161

    Google Scholar 

  91. Wang F, Yang J (2012) A comparative study of caffeic acid and a novel caffeic acid conjugate SMND-309 on antioxidant properties in vitro. Food Sci Technol 46:239–244

    CAS  Google Scholar 

  92. Tencalla FG, Dietrich DR, Schlatter C (1994) Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 30:215–224

    Google Scholar 

  93. Malarvizhi A, Kavitha C, Saravanan M et al (2012) Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J King Saud Univ 24:179–186

    Google Scholar 

  94. Hinton EH, Segner H, Au DWT (2008) Liver toxicity. In: Di Giulio RT, Hinton DE (eds) The toxicology of fish. Taylor & Francis, Boca Raton, pp 327–400

    Google Scholar 

  95. Pereira L, Fernandes M, Martinez C (2013) Hematological and biochemical alterations in the fish Prochilodus lineatus caused by the herbicide clomazone. Environ Toxicol Pharmacol 36:1–8

    CAS  Google Scholar 

  96. Dorval J, Hontela A (2003) Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 192(2):191–200

    CAS  Google Scholar 

  97. Guerrero CH, Hernández-Chávez P, Romo-Palafox I et al (2016) Genetic polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) enzymes are associated with increased body fat percentage and visceral fat in an obese population from Central Mexico. Arch Med Res 47(5):331–339

    Google Scholar 

  98. Matozzo V, Formenti A, Donadello G et al (2012) A multi-biomarker approach to assess effects of Triclosan in the clam Ruditapes philippinarum. Mar Environ Res 74:40–46

    CAS  Google Scholar 

  99. Kono Y, Fridovich I (1982) Superoxide radicals inhibit catalase. J Biol Chem 257:5751–5754

    CAS  Google Scholar 

  100. Ku P, Xiaoyan W, Xiangping N et al (2014) Effects of Triclosan on detoxification system in the yellow catfish (Pelteobagrus fulvidraco): expressions of CYP and GST gene and corresponding enzymes activity in phase I, II and antioxidant system. Comp Biochem Physiol C Toxicol Pharmacol 166

    Google Scholar 

  101. Alak G, Yeltekin AC, Tas IH et al (2017) Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defense system in liver tissues of rainbow trout exposed to eprinomectin. Fish Shellfish Immunol 65:136–144

    CAS  Google Scholar 

  102. Rangasamy B, Hemalatha D, Shobana C et al (2018) Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere 213:423–433

    CAS  Google Scholar 

  103. Modesto MA, Martinez CBR (2010) Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78:294–299

    CAS  Google Scholar 

  104. Monteiro DA, Almeida JAD, Rantin FT et al (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C Toxicol Pharmacol 143:141–149

    Google Scholar 

  105. Liu H, Yu H, Giesy JP et al (2009) Response of antioxidant parameters to 3,3′-dimethyl-benzidine in goldfish (Carassius auratus) liver. Fresenius Environ Bull 18:737–743

    CAS  Google Scholar 

  106. Sun Y, Yu H, Zhang J (2006) Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure. Chemosphere 63(8):1319–1327

    CAS  Google Scholar 

  107. Liao PH, Yang WK, Yang CH et al (2017) Illicit drug ketamine induces adverse effects from behavioral alterations and oxidative stress to p53-regulated apoptosis in medaka fish under environmentally relevant exposures. Environ Pollut 237

    Google Scholar 

  108. Ajima MN, Pandey PK, Kumar K et al (2017) Neurotoxic effects, molecular responses and oxidative stress biomarkers in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) exposed to verapamil. Comp Biochem Physiol C Toxicol Pharmacol 196:44–52

    CAS  Google Scholar 

  109. Pompella A, Visvikis A, Paolicchi A (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66(8):1499–1503

    CAS  Google Scholar 

  110. Zhang J, Shen H, Wang X et al (2004) Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55:167–174

    CAS  Google Scholar 

  111. Feng M, Li Y, Qu R et al (2013) Oxidative stress biomarkers in freshwater fish Carassius auratus exposed to decabromodiphenyl ether and ethane, or their mixture. Ecotoxicology (London, England) 22:1101–1110

    CAS  Google Scholar 

  112. Javed M, Ahmad I, Usmani N et al (2016) Bioaccumulation, oxidative stress and genotoxicity in fish (Channa punctatus) exposed to a thermal power plant effluent. Ecotoxicol Environ Saf 127:163–169

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathan Ramesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddeswaran, S., Umamaheswari, S., Ramesh, M. (2020). Toxicity Assessment of Acetylsalicylic Acid to a Freshwater Fish Cyprinus carpio: Haematological, Biochemical, Enzymological and Antioxidant Responses. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_549

Download citation

Publish with us

Policies and ethics