Skip to main content

Bioavailability and Bioaccessibility of Hydrophobic Organic Contaminants in Soil and Associated Desorption-Based Measurements

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 100)

Abstract

Many publications on contaminant bioavailability in soils often state that the use of total contaminant concentrations in risk assessment is an overly conservative approach. Such conservatism makes traditional risk assessment approaches and contaminated land decision-making expensive. The risk-based approach to contaminated land management strives to identify and manage the potential risks of significant harm being caused to humans and ecological receptors, following exposure to contaminated land. Risk-based approaches are more cost-effective than the traditional approaches from the perspective of contaminated land management. Contaminant bioavailability or bioaccessibility is one of the critical concepts that underpins risk-based approaches to contaminated land management. Bioavailability describes the fraction of the total contaminant concentration that desorbs from soil and is immediately available to cause harm to a living organism, after passing through the organism’s membrane. Bioaccessibility describes what is available and potentially available under natural environmental conditions and during realistic timeframes. The reliable measurements of either contaminant bioavailability or bioaccessibility is therefore critical; in this regard, a thorough understanding of contaminant sequestration and desorption behaviour is required. This chapter discusses the fate of HOCs in soils, bioavailability and bioaccessibility of organic contaminants and their associated desorption-based measurements.

Keywords

  • Bioaccessibility
  • Bioaccumulate
  • Bioavailability
  • Desorption
  • Hydrophobicity
  • Sequestration

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/698_2020_521
  • Chapter length: 58 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-57919-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Semple K, Morriss A, Paton G (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54(4):809–818. https://doi.org/10.1046/j.1351-0754.2003.0564.x

    CAS  CrossRef  Google Scholar 

  2. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34(20):4259–4265. https://doi.org/10.1021/es001069+

    CAS  CrossRef  Google Scholar 

  3. Luthy R, Aiken G, Brusseau M, Cunningham S, Gschwend P, Pignatello J, Reinhard M, Traina S, Weber W, Westall J (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31(12):3341–3347. https://doi.org/10.1021/es970512m

    CAS  CrossRef  Google Scholar 

  4. Semple KT, Riding MJ, McAllister LE, Sopena-Vazquez F, Bending GD (2013) Impact of black carbon on the bioaccessibility of organic contaminants in soil. J Hazard Mater 261:808–816. https://doi.org/10.1016/j.jhazmat.2013.03.032

    CAS  CrossRef  Google Scholar 

  5. Semple K, Doick K, Wick L, Harms H (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150(1):166–176. https://doi.org/10.1016/j.envpol.2007.07.023

    CAS  CrossRef  Google Scholar 

  6. Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38(12):228A–231A. https://doi.org/10.1021/es040548w

    CAS  CrossRef  Google Scholar 

  7. Ortega-Calvo J-J, Harmsen J, Parsons JR, Semple KT, Aitken MD, Ajao C, Eadsforth C, Galay-Burgos M, Naidu R, Oliver R, Peijnenburg WJGM, Römbke J, Streck G, Versonnen B (2015) From bioavailability science to regulation of organic chemicals. Environ Sci Technol. https://doi.org/10.1021/acs.est.5b02412

  8. Naidu R, Wong MH, Nathanail P (2015) Bioavailability-the underlying basis for risk-based land management. Environ Sci Pollut Res 22(12):8775–8778. https://doi.org/10.1007/s11356-015-4295-z

    CAS  CrossRef  Google Scholar 

  9. Naidu R, Pollard S, Bolan N, Owens G, Pruszinski A (2008) Bioavailability: the underlying basis for risk based land management. In: Rea N (ed) Chemical bioavailability in terrestrial environment. Elsevier, Amsterdam, pp 53–72

    CrossRef  Google Scholar 

  10. Umeh AC, Duan L, Naidu R, Semple KT (2017) Residual hydrophobic organic contaminants in soil: are they a barrier to risk-based approaches for managing contaminated land? Environ Int 98:18–34

    CAS  CrossRef  Google Scholar 

  11. Umeh AC, Duan L, Naidu R, Semple KT (2018) Time-dependent remobilization of nonextractable Benzo[a]pyrene residues in contrasting soils: effects of aging, spiked concentration, and soil properties. Environ Sci Technol 52(21):12295–12305. https://doi.org/10.1021/acs.est.8b03008

  12. Umeh AC, Panneerselvan L, Duan L, Naidu R, Semple KT (2019) Bioaccumulation of benzo[a]pyrene nonextractable residues in soil by Eisenia fetida and associated background-level sublethal genotoxicity (DNA single-strand breaks). Sci Total Environ 691:605–610

    CAS  CrossRef  Google Scholar 

  13. Umeh AC, Duan L, Naidu R, Esposito M, Semple KT (2019) In vitro gastrointestinal mobilization and oral bioaccessibility of PAHs in contrasting soils and associated cancer risks: focus on PAH nonextractable residues. Environ Int 133:105186

    CAS  CrossRef  Google Scholar 

  14. Duan L, Palanisami T, Liu YJ, Dong ZM, Mallavarapu M, Kuchel T, Semple KT, Naidu R (2014) Effects of ageing and soil properties on the oral bioavailability of benzo[a]pyrene using a swine model. Environ Int 70:192–202. https://doi.org/10.1016/j.envint.2014.05.017

    CAS  CrossRef  Google Scholar 

  15. Pignatello JJ, Xing BS (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30(1):1–11. https://doi.org/10.1021/es940683g

    CAS  CrossRef  Google Scholar 

  16. Braida WJ, Pignatello JJ, Lu YF, Ravikovitch PI, Neimark AV, Xing BS (2003) Sorption hysteresis of benzene in charcoal particles. Environ Sci Technol 37(2):409–417. https://doi.org/10.1021/es020660z

    CAS  CrossRef  Google Scholar 

  17. Huang WL, Ping PA, Yu ZQ, Fu HM (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl Geochem 18(7):955–972. https://doi.org/10.1016/S0883-2927(02)00205-6

    CAS  CrossRef  Google Scholar 

  18. Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13(3):241–248. https://doi.org/10.1016/0043-1354(79)90201-X

    CAS  CrossRef  Google Scholar 

  19. Weber WJ, Huang WL, Yu H (1998) Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments – 2. Effects of soil organic matter heterogeneity. J Contam Hydrol 31(1–2):149–165. https://doi.org/10.1016/S0169-7722(97)00059-4

    CAS  CrossRef  Google Scholar 

  20. Ran Y, Sun K, Yang Y, Xing BS, Zeng E (2007) Strong sorption of phenanthrene by condensed organic matter in soils and sediments. Environ Sci Technol 41(11):3952–3958. https://doi.org/10.1021/es062928i

    CAS  CrossRef  Google Scholar 

  21. Cornelissen G, Kukulska Z, Kalaitzidis S, Christanis K, Gustafsson O (2004) Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environ Sci Technol 38(13):3632–3640. https://doi.org/10.1021/es0498742

    CAS  CrossRef  Google Scholar 

  22. Cornelissen G, Gustafsson O, Bucheli T, Jonker M, Koelmans A, Van Noort P (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39(18):6881–6895. https://doi.org/10.1021/es050191b

    CAS  CrossRef  Google Scholar 

  23. Rhodes AH, McAllister LE, Chen RR, Semple KT (2010) Impact of activated charcoal on the mineralisation of C-14-phenanthrene in soils. Chemosphere 79(4):463–469. https://doi.org/10.1016/j.chemosphere.2010.01.032

    CAS  CrossRef  Google Scholar 

  24. Rhodes A, Riding M, McAllister L, Lee K, Semple K (2012) Influence of activated charcoal on desorption kinetics and biodegradation of phenanthrene in soil. Environ Sci Technol 46(22):12445–12451. https://doi.org/10.1021/es3025098

    CAS  CrossRef  Google Scholar 

  25. Rhodes A, Carlin A, Semple K (2008) Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Environ Sci Technol 42(3):740–745. https://doi.org/10.1021/es071451n

    CAS  CrossRef  Google Scholar 

  26. Seth R, Mackay D, Muncke J (1999) Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ Sci Technol 33(14):2390–2394. https://doi.org/10.1021/es980893j

    CAS  CrossRef  Google Scholar 

  27. Luo L, Zhang SZ, Ma YB (2008) Evaluation of impacts of soil fractions on phenanthrene sorption. Chemosphere 72(6):891–896. https://doi.org/10.1016/j.chemosphere.2008.03.051

    CAS  CrossRef  Google Scholar 

  28. Reid B, Jones K, Semple K (2000) Bioavailability of persistent organic pollutants in soils and sediments – a perspective on mechanisms, consequences and assessment. Environ Pollut 108(1):103–112. https://doi.org/10.1016/S0269-7491(99)00206-7

    CAS  CrossRef  Google Scholar 

  29. Duan L, Naidu R, Liu YJ, Palanisami T, Dong ZM, Mallavarapu M, Semple KT (2015) Effect of ageing on benzo[a]pyrene extractability in contrasting soils. J Hazard Mater 296:175–184. https://doi.org/10.1016/j.jhazmat.2015.04.050

    CAS  CrossRef  Google Scholar 

  30. Krauss M, Wilcke W, Zech W (2000) Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environ Sci Technol 34(20):4335–4340. https://doi.org/10.1021/es001137s

    CAS  CrossRef  Google Scholar 

  31. Hack A, Selenka F (1996) Mobilization of PAH and PCB from contaminated soil using a digestive tract model. Toxicol Lett 88(1–3):199–210. https://doi.org/10.1016/0378-4274(96)03738-1

    CAS  CrossRef  Google Scholar 

  32. Doick KJ, Burauel P, Jones KC, Semple KT (2005) Distribution of aged C-14-PCB and C-14-PAH residues in particle-size and humic fractions of an agricultural soil. Environ Sci Technol 39(17):6575–6583. https://doi.org/10.1021/es050523c

    CAS  CrossRef  Google Scholar 

  33. Doick KJ, Klingelmann E, Burauel P, Jones KC, Semple KT (2005) Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil. Environ Sci Technol 39(10):3663–3670. https://doi.org/10.1021/es048181i

    CAS  CrossRef  Google Scholar 

  34. Kordel W, Bernhardt C, Derz K, Hund-Rinke K, Harmsen J, Peijnenburg W, Comans R, Terytze K (2013) Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. J Hazard Mater 261:854–862. https://doi.org/10.1016/j.jhazmat.2013.05.017

    CAS  CrossRef  Google Scholar 

  35. Gomez-Eyles JL, Jonker MTO, Hodson ME, Collins CD (2012) Passive samplers provide a better prediction of PAH bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions. Environ Sci Technol 46(2):962–969. https://doi.org/10.1021/es203499m

    CAS  CrossRef  Google Scholar 

  36. Jonker MTO, van der Heijden SA, Kreitinger JP, Hawthorne SB (2007) Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Environ Sci Technol 41(21):7472–7478. https://doi.org/10.1021/es070404s

    CAS  CrossRef  Google Scholar 

  37. You J, Harwood AD, Li HZ, Lydy MJ (2011) Chemical techniques for assessing bioavailability of sediment-associated contaminants: SPME versus Tenax extraction. J Environ Monit 13(4):792–800. https://doi.org/10.1039/c0em00587h

    CAS  CrossRef  Google Scholar 

  38. ECETOC (2013) Understanding the relationship between extraction technique and bioavailability. Workshop report no. 117 Brussels, Belgium. 90 p. https://www.ecetoc.org/publication/tr-117-understanding-the-relationship-between-extraction-technique-and-bioavailability/

  39. Kastner M, Nowak KM, Miltner A, Trapp S, Schaffer A (2014) Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil – a synthesis. Crit Rev Environ Sci Technol 44(19):2107–2171. https://doi.org/10.1080/10643389.2013.828270

    CAS  CrossRef  Google Scholar 

  40. Eschenbach A (2013) Characterization of non-extractable residues for their risk assessment in soil with special regard to pharmaceuticals. In: Paper presented at the International Workshop – Pharmaceuticals in Soil, Sludge and Slurry, Dessau

    Google Scholar 

  41. Wang ZJ, Chen S, Xu YP, Tang JF (2012) Aging effects on sorption-desorption behaviors of PAHs in different natural organic matters. J Colloid Interf Sci 382:117–122. https://doi.org/10.1016/j.jcis.2012.06.003

    CAS  CrossRef  Google Scholar 

  42. Zhao DY, Pignatello JJ, White JC, Braida W, Ferrandino F (2001) Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils. Water Resour Res 37(8):2205–2212. https://doi.org/10.1029/2001wr000287

    CAS  CrossRef  Google Scholar 

  43. Carmichael LM, Christman RF, Pfaender FK (1997) Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils. Environ Sci Technol 31(1):126–132. https://doi.org/10.1021/es9602105

    CAS  CrossRef  Google Scholar 

  44. Barnier C, Ouvrard S, Robin C, Morel JL (2014) Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci Total Environ 470:639–645. https://doi.org/10.1016/j.scitotenv.2013.10.032

    CAS  CrossRef  Google Scholar 

  45. Harmsen J, Rietra RPJJ (2018) 25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil. Chemosphere 207:229–238. https://doi.org/10.1016/j.chemosphere.2018.05.043

    CAS  CrossRef  Google Scholar 

  46. Semple K, Dew N, Doick K, Rhodes A (2006) Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? Environ Pollut 140(1):164–172. https://doi.org/10.1016/j.envpol.2005.06.009

    CAS  CrossRef  Google Scholar 

  47. Umeh AC, Duan L, Naidu R, Semple KT (2019) Extremely small amounts of B[a]P residues remobilised in long-term contaminated soils: a strong case for greater focus on readily available and not total-extractable fractions in risk assessment. J Hazard Mater 368:72–80

    CAS  CrossRef  Google Scholar 

  48. Birdwell JE, Thibodeaux LJ (2009) PAH repartitioning in field-contaminated sediment following removal of the labile chemical fraction. Environ Sci Technol 43(21):8092–8097. https://doi.org/10.1021/es9016798

    CAS  CrossRef  Google Scholar 

  49. Cornelissen G, vanNoort PCM, Govers HAJ (1997) Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: sediment extraction with Tenax(R) and effects of contact time and solute hydrophobicity. Environ Toxicol Chem 16(7):1351–1357. https://doi.org/10.1897/1551-5028(1997)016<1351:Dkocpa>2.3.Co;2

    CAS  CrossRef  Google Scholar 

  50. Rhodes AH, McAllister LE, Semple KT (2010) Linking desorption kinetics to phenanthrene biodegradation in soil. Environ Pollut 158(5):1348–1353. https://doi.org/10.1016/j.envpol.2010.01.008

    CAS  CrossRef  Google Scholar 

  51. Riding MJ, Doick KJ, Martin FL, Jones KC, Semple KT (2013) Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application. J Hazard Mater 261:687–700. https://doi.org/10.1016/j.jhazmat.2013.03.033

    CAS  CrossRef  Google Scholar 

  52. Cornelissen G, van Noort P, Govers H (1998) Mechanism of slow desorption of organic compounds from sediments: a study using model sorbents. Environ Sci Technol 32(20):3124–3131. https://doi.org/10.1021/es970976k

    CAS  CrossRef  Google Scholar 

  53. Jonker MTO, Koelmans AA (2002) Extraction of polycyclic aromatic hydrocarbons from soot and sediment: solvent evaluation and implications for sorption mechanism. Environ Sci Technol 36(19):4107–4113. https://doi.org/10.1021/es0103290

    CAS  CrossRef  Google Scholar 

  54. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25(5):1239–1245. https://doi.org/10.1897/05-458R.1

    CAS  CrossRef  Google Scholar 

  55. Ruby MV, Lowney YW, Bunge AL, Roberts SM, Gomez-Eyles JL, Ghosh U, Kissel JC, Tomlinson P, Menzie C (2016) Oral bioavailability, bioaccessibility, and dermal absorption of PAHs from soil-state of the science. Environ Sci Technol 50(5):2151–2164. https://doi.org/10.1021/acs.est.5b04110

    CAS  CrossRef  Google Scholar 

  56. Juhasz AL, Weber J, Stevenson G, Slee D, Gancarz D, Rofe A, Smith E (2014) In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. Sci Total Environ 473:147–154. https://doi.org/10.1016/j.scitotenv.2013.12.031

    CAS  CrossRef  Google Scholar 

  57. James K, Peters RE, Laird BD, Ma WK, Wickstrom M, Stephenson GL, Siciliano SD (2011) Human exposure assessment: a case study of 8 PAH contaminated soils using in vitro digestors and the juvenile swine model. Environ Sci Technol 45(10):4586–4593. https://doi.org/10.1021/es1039979

    CAS  CrossRef  Google Scholar 

  58. Ng JC, Juhasz AL, Smith E, Naidu R (2010) Contaminant bioavailability and bioaccessibility. Part 1: a scientific and technical review, CRC CARE technical report. 14. CRC for contamination assessment and remediation of the environment, Adelaide, Australia

    Google Scholar 

  59. Ehlers L, Luthy R (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37(15):295A–302A. https://doi.org/10.1021/es032524f

    CAS  CrossRef  Google Scholar 

  60. Juhasz AL, Tang W, Smith E (2016) Using in vitro bioaccessibility to refine estimates of human exposure to PAHs via incidental soil ingestion. Environ Res 145:145–153. https://doi.org/10.1016/j.envres.2015.12.001

    CAS  CrossRef  Google Scholar 

  61. James K, Peters RE, Cave MR, Wickstrom M, Siciliano SD (2018) In vitro prediction of polycyclic aromatic hydrocarbon bioavailability of 14 different incidentally ingested soils in juvenile swine. Sci Total Environ 618:682–689. https://doi.org/10.1016/j.scitotenv.2017.07.244

    CAS  CrossRef  Google Scholar 

  62. Jager T, Baerselman R, Dijkman E, De Groot AC, Hogendoorn EA, de Jong A, Kruitbosch JAW, Peijnenburg WJGM (2003) Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures. Environ Toxicol Chem 22(4):767–775. https://doi.org/10.1897/1551-5028(2003)022<0767:Aopaht>2.0.Co;2

    CAS  CrossRef  Google Scholar 

  63. Bonnard M, Eom IC, Morel JL, Vasseur P (2009) Genotoxic and reproductive effects of an industrially contaminated soil on the earthworm Eisenia fetida. Environ Mol Mutagen 50(1):60–67

    CAS  CrossRef  Google Scholar 

  64. Zhang YY, Pignatello JJ, Tao S, Xing BS (2015) Bioacessibility of PAHs in fuel soot assessed by an in vitro digestive model: effect of including an absorptive sink. Environ Sci Technol 49(6):3905–3912. https://doi.org/10.1021/es505898v

    CAS  CrossRef  Google Scholar 

  65. Yu LB, Duan L, Naidu R, Semple KT (2018) Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: putting together a bigger picture. Sci Total Environ 613:1140–1153. https://doi.org/10.1016/j.scitotenv.2017.09.025

    CAS  CrossRef  Google Scholar 

  66. Cui X, Mayer P, Gan J (2013) Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations. Environ Pollut 172:223–234. https://doi.org/10.1016/j.envpol.2012.09.013

    CAS  CrossRef  Google Scholar 

  67. ISO/TS16751 (2018) Soil quality – environmental availability of non-polar organic compounds-determination of the potential bioavailable fraction using a strong adsorbent or complexing agent. International Organization for Standardization, Geneva

    Google Scholar 

  68. Cachada A, Pereira R, da Silva EF, Duarte AC (2014) The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Sci Total Environ 472:463–480. https://doi.org/10.1016/j.scitotenv.2013.11.038

    CAS  CrossRef  Google Scholar 

  69. Bernhardt C, Derz K, Kordel W, Terytze K (2013) Applicability of non-exhaustive extraction procedures with Tenax and HPCD. J Hazard Mater 261:711–717. https://doi.org/10.1016/j.jhazmat.2012.12.021

    CAS  CrossRef  Google Scholar 

  70. Cui X-Y, Xiang P, He R-W, Juhasz A, Ma LQ (2016) Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices. Chemosphere 150:378–389. https://doi.org/10.1016/j.chemosphere.2016.02.041

    CAS  CrossRef  Google Scholar 

  71. Umeh AC, Duan L, Naidu R, Semple KT (2018) Comparison of single- and sequential-solvent extractions of total extractable Benzo[a]pyrene fractions in contrasting soils. Anal Chem. https://doi.org/10.1021/acs.analchem.8b03387

  72. Hwang S, Cutright TJ (2004) Preliminary evaluation of PAH sorptive changes in soil by soxhlet extraction. Environ Int 30(2):151–158. https://doi.org/10.1016/S0160-4120(03)00158-2

    CAS  CrossRef  Google Scholar 

  73. Reid B, Stokes J, Jones K, Semple K (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34(15):3174–3179. https://doi.org/10.1021/es990946c

    CAS  CrossRef  Google Scholar 

  74. Kelsey J, Kottler B, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31(1):214–217. https://doi.org/10.1021/es960354j

    CAS  CrossRef  Google Scholar 

  75. Macleod CJA, Semple KT (2003) Sequential extraction of low concentrations of pyrene and formation of non-extractable residues in sterile and non-sterile soils. Soil Biol Biochem 35(11):1443–1450. https://doi.org/10.1016/S0038-0717(03)00238-4

    CAS  CrossRef  Google Scholar 

  76. Liste H, Alexander M (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46(7):1011–1017. https://doi.org/10.1016/S0045-6535(01)00165-5

    CAS  CrossRef  Google Scholar 

  77. Gomez-Eyles JL, Collins CD, Hodson ME (2010) Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability. Environ Pollut 158(1):278–284. https://doi.org/10.1016/j.envpol.2009.07.012

    CAS  CrossRef  Google Scholar 

  78. Chung N, Alexander M (1999) Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbons. Environ Sci Technol 33(20):3605–3608. https://doi.org/10.1021/es9902874

    CAS  CrossRef  Google Scholar 

  79. Errett DH, Chin YP, Xu YP, Yan YJ (1996) The sorption and desorption kinetics of polycyclic aromatic hydrocarbons in methanol/water mixtures. Hazard Waste Hazard 13(2):177–195. https://doi.org/10.1089/hwm.1996.13.177

    CAS  CrossRef  Google Scholar 

  80. Hatzinger P, Alexander M (1995) Effect of ageing of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29(2):537–545. https://doi.org/10.1021/es00002a033

    CAS  CrossRef  Google Scholar 

  81. Johnson D, Jones K, Langdon C, Piearce T, Semple K (2002) Temporal changes in earthworm availability and extractability of polycyclic aromatic hydrocarbons in soil. Soil Biol Biochem 34(9):1363–1370. https://doi.org/10.1016/S0038-0717(02)00081-0

    CAS  CrossRef  Google Scholar 

  82. Johnson MD, Weber WJ (2001) Rapid prediction of long-term rates of contaminant desorption from soils and sediments. Environ Sci Technol 35(2):427–433. https://doi.org/10.1021/es001392c

    CAS  CrossRef  Google Scholar 

  83. White J, Hunter M, Pignatello J, Alexander M (1999) Increase in bioavailability of aged phenanthrene in soils by competitive displacement with pyrene. Environ Toxicol Chem 18(8):1728–1732. https://doi.org/10.1897/1551-5028(1999)018<1728:IIBOAP>2.3.CO;2

    CAS  CrossRef  Google Scholar 

  84. Hawthorne SB, Grabanski CB, Martin E, Miller DJ (2000) Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. J Chromatogr A 892(1–2):421–433. https://doi.org/10.1016/S0021-9673(00)00091-1

    CAS  CrossRef  Google Scholar 

  85. Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2001) PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation. Environ Sci Technol 35(22):4577–4583. https://doi.org/10.1021/es010771i

    CAS  CrossRef  Google Scholar 

  86. Johnson MD, Keinath TM, Weber WJ (2001) A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates. Environ Sci Technol 35(8):1688–1695. https://doi.org/10.1021/es001391k

    CAS  CrossRef  Google Scholar 

  87. Weber WJ, Young TM (1997) A distributed reactivity model for sorption by soils and sediments.6. Mechanistic implications of desorption under supercritical fluid conditions. Environ Sci Technol 31(6):1686–1691. https://doi.org/10.1021/es9605681

    CAS  CrossRef  Google Scholar 

  88. Cuypers C, Grotenhuis T, Joziasse J, Rulkens W (2000) Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ Sci Technol 34(10):2057–2063. https://doi.org/10.1021/es991132z

    CAS  CrossRef  Google Scholar 

  89. Mayer P, Olsen JL, Gouliarmou V, Hasinger M, Kendler R, Loibner AP (2011) A contaminant trap as a tool for isolating and measuring the desorption resistant fraction of soil pollutants. Environ Sci Technol 45(7):2932–2937. https://doi.org/10.1021/es1033124

    CAS  CrossRef  Google Scholar 

  90. Gouliarmou V, Mayer P (2012) Sorptive bioaccessibility extraction (SBE) of soils: combining a mobilization medium with an absorption sink. Environ Sci Technol 46(19):10682–10689. https://doi.org/10.1021/es301515s

    CAS  CrossRef  Google Scholar 

  91. Latawiec AE, Reid BJ (2010) Sequential extraction of polycyclic aromatic hydrocarbons using subcritical water. Chemosphere 78(8):1042–1048. https://doi.org/10.1016/j.chemosphere.2009.11.029

    CAS  CrossRef  Google Scholar 

  92. Latawiec AE, Swindell AL, Reid BJ (2008) Environmentally friendly assessment of organic compound bioaccessibility using sub-critical water. Environ Pollut 156(2):467–473. https://doi.org/10.1016/j.envpol.2008.01.019

    CAS  CrossRef  Google Scholar 

  93. Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-beta-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46(8):1235–1245. https://doi.org/10.1016/S0045-6535(01)00199-0

    CAS  CrossRef  Google Scholar 

  94. Rhodes A, Hofman J, Semple K (2008) Development of phenanthrene catabolism in natural and artificial soils. Environ Pollut 152(2):424–430. https://doi.org/10.1016/j.envpol.2007.06.072

    CAS  CrossRef  Google Scholar 

  95. Rhodes AH, Dew NM, Semple KT (2008) Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil. Environ Toxicol Chem 27(7):1488–1495. https://doi.org/10.1897/07-363.1

    CAS  CrossRef  Google Scholar 

  96. Doick KJ, Clasper PJ, Urmann K, Semple KT (2006) Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environ Pollut 144(1):345–354. https://doi.org/10.1016/j.envpol.2005.10.054

    CAS  CrossRef  Google Scholar 

  97. Doick KJ, Dew NM, Semple KT (2005) Linking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Environ Sci Technol 39(22):8858–8864. https://doi.org/10.1021/es0507463

    CAS  CrossRef  Google Scholar 

  98. Hickman Z, Reid B (2005) Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environ Pollut 138(2):299–306. https://doi.org/10.1016/j.envpol.2005.03.010

    CAS  CrossRef  Google Scholar 

  99. Hickman ZA, Swindell AL, Allan IJ, Rhodes AH, Hare R, Semple KT, Reid BJ (2008) Assessing biodegradation potential of PAHs in complex multi-contaminant matrices. Environ Pollut 156(3):1041–1045. https://doi.org/10.1016/j.envpol.2008.04.022

    CAS  CrossRef  Google Scholar 

  100. Papadopoulos A, Paton GI, Reid BJ, Semple KT (2007) Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. J Environ Monit 9(6):516–522. https://doi.org/10.1039/b700720e

    CAS  CrossRef  Google Scholar 

  101. Stokes J, Wilkinson A, Reid B, Jones K, Semple K (2005) Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Environ Toxicol Chem 24(6):1325–1330. https://doi.org/10.1897/04-336R.1

    CAS  CrossRef  Google Scholar 

  102. Cuypers C, Clemens R, Grotenhuis T, Rulkens W (2001) Prediction of petroleum hydrocarbon bioavailability in contaminated soils and sediments. Soil Sediment Contam 10(5):459–482. https://doi.org/10.1080/20015891109374

    CAS  CrossRef  Google Scholar 

  103. Dandie C, Weber J, Aleer S, Adetutu E, Ball A, Juhasz A (2010) Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere 81(9):1061–1068. https://doi.org/10.1016/j.chemosphere.2010.09.059

    CAS  CrossRef  Google Scholar 

  104. Allan IJ, Semple KT, Hare R, Reid BJ (2006) Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ Pollut 144(2):562–571. https://doi.org/10.1016/j.envpol.2006.01.026

    CAS  CrossRef  Google Scholar 

  105. Zhang Y, Yang X, Gu C, Wang F, Bian Y, Song Y, Wang D, Jiang X (2016) A novel bioaccessibility prediction method for PAHs in soil: composite extraction with hydroxypropyl-β-cyclodextrin and extracellular polymer substances. Sci Total Environ 569:997–1003

    CrossRef  Google Scholar 

  106. Khan MI, Cheema SA, Shen C, Zhang C, Tang X, Shi J, Chen X, Park J, Chen Y (2012) Assessment of phenanthrene bioavailability in aged and unaged soils by mild extraction. Environ Monit Assess 184(1):549–559

    CAS  CrossRef  Google Scholar 

  107. Khan MI, Cheema SA, Shen C, Zhang C, Tang X, Malik Z, Chen X, Chen Y (2011) Assessment of pyrene bioavailability in soil by mild hydroxypropyl-β-cyclodextrin extraction. Arch Environ Con Toxicol 60(1):107–115

    CAS  CrossRef  Google Scholar 

  108. Fan Y-H, Li X-S, Mou X-X, Qin S-B, Qi S-H (2019) Polydopamine-coated polyethylene sieve plate as an efficient and convenient adsorption sink for the bioaccessibility prediction of PAHs in soils. Environ Pollut 255:113168

    CAS  CrossRef  Google Scholar 

  109. Cocovi-Solberg DJ, Kellner A, Schmidt SN, Loibner A, Miró M, Mayer P (2019) Membrane enhanced bioaccessibility extraction (MEBE) of hydrophobic soil pollutants–using a semipermeable membrane for separating desorption medium and acceptor solvent. Environ Pollut 257:113470

    CrossRef  Google Scholar 

  110. Yang X, Lv Z, Bian Y, Wang F, Gu C, Song Y, Jiang X (2013) Predicting PAHs bioavailability for earthworms by mild solvents and Tenax extraction. J Environ Chem Eng 1(4):768–776

    CAS  CrossRef  Google Scholar 

  111. Harwood AD, Nutile SA, Landrum PF, Lydy MJ (2015) Tenax extraction as a simple approach to improve environmental risk assessments. Environ Toxicol Chem 34(7):1445–1453. https://doi.org/10.1002/etc.2960

    CAS  CrossRef  Google Scholar 

  112. Lydy MJ, Harwood AD, Nutile SA, Landrum PF (2015) Tenax extraction of sediments to estimate desorption and bioavailability of hydrophobic contaminants: a literature review. Integr Environ Assess 11(2):208–220. https://doi.org/10.1002/ieam.1603

    CAS  CrossRef  Google Scholar 

  113. Oleszczuk P (2008) Tenax-TA extraction as predictor for free available content of polycyclic aromatic hydrocarbons (PAHs) in composted sewage sludges. J Environ Monit 10(7):883–888. https://doi.org/10.1039/b800532j

    CAS  CrossRef  Google Scholar 

  114. Cornelissen G, Van Noort PCM, Parsons JR, Govers HAJ (1997) Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments. Environ Sci Technol 31(2):454–460. https://doi.org/10.1021/es960300+

    CAS  CrossRef  Google Scholar 

  115. Landrum PF, Robinson SD, Gossiaux DC, You J, Lydy MJ, Mitra S, Ten Hulscher TEM (2007) Predicting bioavailability of sediment-associated organic contaminants for Diporeia spp. and Oligochaetes. Environ Sci Technol 41(18):6442–6447. https://doi.org/10.1021/es0706807

    CAS  CrossRef  Google Scholar 

  116. You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40(20):6348–6353. https://doi.org/10.1021/es060830y

    CAS  CrossRef  Google Scholar 

  117. You J, Landrum PE, Trimble TA, Lydy MJ (2007) Availability of polychlorinated biphenyls in field-contaminated sediment. Environ Toxicol Chem 26(9):1940–1948. https://doi.org/10.1897/07-029r.1

    CAS  CrossRef  Google Scholar 

  118. Trimble TA, You J, Lydy MJ (2008) Bioavailability of PCBs from field-collected sediments: application of Tenax extraction and matrix-SPME techniques. Chemosphere 71(2):337–344. https://doi.org/10.1016/j.chemosphere.2007.09.001

    CAS  CrossRef  Google Scholar 

  119. Mackenbach EM, Jing Y, Mills MA, Landrum PF, Lydy MJ (2012) Application of a Tenax model to assess bioavailability of PCBs in field sediments. Environ Toxicol Chem 31(10):2210–2216. https://doi.org/10.1002/etc.1943

    CAS  CrossRef  Google Scholar 

  120. Harwood AD, Landrum PF, Lydy MJ (2012) Can SPME fiber and Tenax methods predict the bioavailability of biotransformed insecticides? Environ Sci Technol 46(4):2413–2419. https://doi.org/10.1021/es2035174

    CAS  CrossRef  Google Scholar 

  121. Gouliarmou V, Collins CD, Christiansen E, Mayer P (2013) Sorptive physiologically based extraction of contaminated solid matrices: incorporating silicone rod as absorption sink for hydrophobic organic contaminants. Environ Sci Technol 47(2):941–948. https://doi.org/10.1021/es303165u

    CAS  CrossRef  Google Scholar 

  122. Holman HYN, Goth-Goldstein R, Aston D, Yun M, Kengsoontra J (2002) Evaluation of gastrointestinal solubilization of petroleum hydrocarbon residues in soil using an in vitro physiologically based model. Environ Sci Technol 36(6):1281–1286. https://doi.org/10.1021/es010987k

    CAS  CrossRef  Google Scholar 

  123. Khan S, Cao Q, Lin AJ, Zhu YG (2008) Concentrations and bioaccessibility of polycyclic aromatic hydrocarbons in wastewater-irrigated soil using in vitro gastrointestinal test. Environ Sci Pollut Res 15(4):344–353. https://doi.org/10.1007/s11356-008-0004-5

    CrossRef  Google Scholar 

  124. Lu M, Yuan DX, Lin QM, Ouyang T (2010) Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in topsoils from different urban functional areas using an in vitro gastrointestinal test. Environ Monit Assess 166(1–4):29–39. https://doi.org/10.1007/s10661-009-0982-x

    CAS  CrossRef  Google Scholar 

  125. Oomen AG, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, van de Wiele T, Wragg J, Rompelberg CJM, Sips AJAM, van Wijnen JH (2002) Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol 36(15):3326–3334. https://doi.org/10.1021/es010204v

    CAS  CrossRef  Google Scholar 

  126. Ruby M, Davis A, Schoof R, Eberle S, Sellstone C (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30(2):422–430. https://doi.org/10.1021/es950057z

    CAS  CrossRef  Google Scholar 

  127. Ruby MV, Fehling KA, Paustenbach DJ, Landenberger BD, Holsapple MP (2002) Oral bioaccessibility of dioxins/furans at low concentrations (50-350 ppt toxicity equivalent) in soil. Environ Sci Technol 36(22):4905–4911. https://doi.org/10.1021/es020636l

    CAS  CrossRef  Google Scholar 

  128. Tang XY, Tang L, Zhu YG, Xing BS, Duan J, Zheng MH (2006) Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environ Pollut 140(2):279–285. https://doi.org/10.1016/j.envpol.2005.07.010

    CAS  CrossRef  Google Scholar 

  129. Goni I, Serrano J, Saura-Calixto F (2006) Bioaccessibility of beta-carotene, lutein, and lycopene from fruits and vegetables. J Agric Food Chem 54(15):5382–5387. https://doi.org/10.1021/jf0609835

    CAS  CrossRef  Google Scholar 

  130. Hurdzan CM, Basta NT, Hatcher PG, Tuovinen OH (2008) Phenanthrene release from natural organic matter surrogates under simulated human gastrointestinal conditions. Ecotoxicol Environ Saf 69(3):525–530. https://doi.org/10.1016/j.ecoenv.2007.02.006

    CAS  CrossRef  Google Scholar 

  131. Oomen AG, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Con Toxicol 44(3):281–287. https://doi.org/10.1007/s00244-002-1278-0

    CAS  CrossRef  Google Scholar 

  132. Tao S, Li L, Ding JN, Zhong JJ, Zhang DY, Lu Y, Yang YF, Wang XL, Li XQ, Cao J, Lu XX, Liu WX (2011) Mobilization of soil-bound residue of organochlorine pesticides and polycyclic aromatic hydrocarbons in an in vitro gastrointestinal model. Environ Sci Technol 45(3):1127–1132. https://doi.org/10.1021/es1025849

    CAS  CrossRef  Google Scholar 

  133. Tao S, Zhang DY, Lu Y, Li L, Ding JN, Yang Y, Yang YF, Wang XL, Liu WX, Xing BS (2010) Mobility of polycyclic aromatic hydrocarbons in the gastrointestinal tract assessed using an in vitro digestion model with sorption rectification. Environ Sci Technol 44(14):5608–5612. https://doi.org/10.1021/es1010626

    CAS  CrossRef  Google Scholar 

  134. Wang B, Xue M, Lv Y, Yang Y, Zhong JJ, Su YH, Wang R, Shen GF, Wang XL, Tao S (2011) Cell absorption induced desorption of hydrophobic organic contaminants from digested soil residue. Chemosphere 83(11):1461–1466. https://doi.org/10.1016/j.chemosphere.2011.03.008

    CAS  CrossRef  Google Scholar 

  135. Basta NT, Foster JN, Dayton EA, Rodriguez RR, Casteel SW (2007) The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soils. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 42(9):1275–1281. https://doi.org/10.1080/10934520701434927

    CAS  CrossRef  Google Scholar 

  136. Smith BA, Kirk JL, Stephenson GL (2010) The influence of liquid to soil ratios on arsenic and lead bioaccessibility in reference and field soil. Hum Ecol Risk Assess 16(1):149–162. https://doi.org/10.1080/10807030903459163

    CAS  CrossRef  Google Scholar 

  137. Laird BD, van de Wiele TR, Corriveau MC, Jamieson HE, Parsons MB, Verstraete W, Siciliano SD (2007) Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the simulator of the human intestinal microbial ecosystem. Environ Sci Technol 41(15):5542–5547. https://doi.org/10.1021/es062410e

    CAS  CrossRef  Google Scholar 

  138. Molly K, Vandewoestyne M, Desmet I, Verstraete W (1994) Validation of the simulator of the human intestinal microbial ecosystem (Shime) reactor using microorganism-associated activities. Microb Ecol Health D 7(4):191–200

    Google Scholar 

  139. Siciliano SD, Laird BD, Lemieux CL (2010) Polycyclic aromatic hydrocarbons are enriched but bioaccessibility reduced in brownfield soils adhered to human hands. Chemosphere 80(9):1101–1108. https://doi.org/10.1016/j.chemosphere.2010.04.061

    CAS  CrossRef  Google Scholar 

  140. Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J, Verstraete W, Siciliano S (2005) Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect 113(1):6–10

    CrossRef  Google Scholar 

  141. Van de Wiele TR, Verstraete W, Siciliano SD (2004) Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract. J Environ Qual 33(4):1343–1353

    CrossRef  Google Scholar 

  142. Meyer W, Kons S, Achten C (2015) Impact of reference geosorbents on oral bioaccessibility of PAH in a human in vitro digestive tract model. Environ Sci Pollut Res 22(7):5164–5170. https://doi.org/10.1007/s11356-014-3804-9

    CAS  CrossRef  Google Scholar 

  143. Gron C, Oomen A, Weyand E, Wittsiepe J (2007) Bioaccessibility of PAH from Danish soils. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 42(9):1233–1239. https://doi.org/10.1080/10934520701435619

    CAS  CrossRef  Google Scholar 

  144. Hansen JB, Oomen AG, Edelgaard I, Gron C (2007) Oral bioaccessibility and leaching: tests for soil risk assessment. Eng Life Sci 7(2):170–176. https://doi.org/10.1002/elsc.200620174

    CAS  CrossRef  Google Scholar 

  145. Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJM, Sips AJAM (2005) Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 43(1):31–40. https://doi.org/10.1016/j.fct.2004.08.007

    CAS  CrossRef  Google Scholar 

  146. Cave MR, Wragg J, Harrison I, Vane CH, Van de Wiele T, De Groeve E, Nathanail CP, Ashmore M, Thomas R, Robinson J, Daly P (2010) Comparison of batch mode and dynamic physiologically based bioaccessibility tests for PAHs in soil samples. Environ Sci Technol 44(7):2654–2660. https://doi.org/10.1021/es903258v

    CAS  CrossRef  Google Scholar 

  147. Lorenzi D, Cave M, Dean JR (2010) An investigation into the occurrence and distribution of polycyclic aromatic hydrocarbons in two soil size fractions at a former industrial site in NE England, UK using in situ PFE-GC-MS. Environ Geochem Health 32(6):553–565. https://doi.org/10.1007/s10653-010-9316-8

    CAS  CrossRef  Google Scholar 

  148. Lorenzi D, Entwistle J, Cave M, Wragg J, Dean JR (2012) The application of an in vitro gastrointestinal extraction to assess the oral bioaccessibility of polycyclic aromatic hydrocarbons in soils from a former industrial site. Anal Chim Acta 735:54–61. https://doi.org/10.1016/j.aca.2012.05.030

    CAS  CrossRef  Google Scholar 

  149. Wragg J, Cave M, Taylor H, Basta N, Brandon E, Casteel S, Gron C, Oomen A, van de Wiele T (2009) Inter-labolaratory trial of unified bioaccessibility procedure. British Geological Survey Open Report

    Google Scholar 

  150. Collins CD, Mosquera-Vazquez M, Gomez-Eyles JL, Mayer P, Gouliarmou V, Blum E (2013) Is there sufficient ‘sink’ in current bioaccessibility determinations of organic pollutants in soils? Environ Pollut 181:128–132. https://doi.org/10.1016/j.envpol.2013.05.053

    CAS  CrossRef  Google Scholar 

  151. Nathanail CP, Ogden RC (2013) Derivation of a site-specific assessment criterion for benzo[a]pyrene in red shale at a former coking works. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 48(6):594–603. https://doi.org/10.1080/10934529.2013.731353

    CAS  CrossRef  Google Scholar 

  152. Tilston EL, Gibson GR, Collins CD (2011) Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH. Environ Sci Technol 45(12):5301–5308. https://doi.org/10.1021/es2004705

    CAS  CrossRef  Google Scholar 

  153. Tao S, Lu Y, Zhang DY, Yang YF, Yang Y, Lu XX, Sai DJ (2009) Assessment of oral bioaccessibility of organochlorine pesticides in soil using an in vitro gastrointestinal model. Environ Sci Technol 43(12):4524–4529. https://doi.org/10.1021/es900188c

    CAS  CrossRef  Google Scholar 

  154. Li C, Cui XY, Fan YY, Teng Y, Nan ZR, Ma LQ (2015) Tenax as sorption sink for in vitro bioaccessibility measurement of polycyclic aromatic hydrocarbons in soils. Environ Pollut 196:47–52. https://doi.org/10.1016/j.envpol.2014.09.016

    CAS  CrossRef  Google Scholar 

  155. Umeh AC, Duan L, Naidu R, Semple KT (2018) Enhanced recovery of nonextractable Benzo[a]pyrene residues in contrasting soils using exhaustive methanolic and nonmethanolic alkaline treatments. Anal Chem. https://doi.org/10.1021/acs.analchem.8b04440

  156. Eschenbach A, Kastner M, Bierl R, Schaefer G, Mahro B (1994) Evaluation of a new, effective method to extract polycyclic aromatic-hydrocarbons from soil samples. Chemosphere 28(4):683–692. https://doi.org/10.1016/0045-6535(94)90219-4

    CAS  CrossRef  Google Scholar 

  157. Tang JX, Petersen EJ, Huang QG, Weber WJ (2007) Development of engineered natural organic sorbents for environmental applications: 3. Reducing PAH mobility and bioavailability in contaminated soil and sediment systems. Environ Sci Technol 41(8):2901–2907. https://doi.org/10.1021/es061736k

    CAS  CrossRef  Google Scholar 

  158. Drexler JW, Brattin WJ (2007) An in vitro procedure for estimation of lead relative bioavailability: with validation. Hum Ecol Risk Assess 13(2):383–401. https://doi.org/10.1080/10807030701226350

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk T. Semple .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 4 Variations in the gastrointestinal compartmental conditions and design in different bioaccessibility models
Table 5 Variations in the gastrointestinal compartmental fluid compositions in different bioaccessibility models
Table 6 Variations in Initial PAH concentrations (∑PAH), particle size and bioaccessibility estimates from different bioaccessibility models
Table 7 Variations in extraction and analytical techniques in different in vitro bioaccessibility studies

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Umeh, A.C., Naidu, R., Owojori, O.J., Semple, K.T. (2020). Bioavailability and Bioaccessibility of Hydrophobic Organic Contaminants in Soil and Associated Desorption-Based Measurements. In: Ortega-Calvo, J.J., Parsons, J.R. (eds) Bioavailability of Organic Chemicals in Soil and Sediment. The Handbook of Environmental Chemistry, vol 100. Springer, Cham. https://doi.org/10.1007/698_2020_521

Download citation