Advertisement

Membrane Technology in Bioprocess Engineering

  • Randeep SinghEmail author
  • K. V. V. Satyannarayana
  • R. Vinoth Kumar
  • I. Ganesh Moorthy
Chapter
  • 28 Downloads
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 104)

Abstract

This chapter discusses about the role of membrane processes, namely, microfiltration, ultrafiltration, nanofiltration, and reverse osmosis in the field of bioprocess engineering. Membrane processes are widely accepted and used techniques in separation and filtration applications because of their unique and beneficial properties, such as low cost, environment friendliness, ease to scale up, ease to integrate with other processes, and compactness. Therefore, their use and implementation in various fields of bioprocess engineering helps in saving a lot of energy and resources. The basic concept and fundamentals along with the classification of different types of membranes and membrane systems are explained with suitable examples. The important applications of membrane technology in various fields of bioprocess engineering, such as food, pharmaceuticals, and biotechnology, are also discussed along with their advantages over other conventional separation techniques. The main applications where membrane processes proved their worth are virus purification, sterilization of heat labile products, concentration of food and dairy products, separation and filtration of racemic and azeotropic mixtures, fruit juice clarification, and beer and wine production. Hence, this chapter provides complete details about the importance, applications, and benefits of membrane technology in the field of bioprocess engineering.

Keywords

Bioprocess engineering Membrane separation processes Membrane systems Membrane technology Separation and filtration 

References

  1. 1.
    Purkait MK, Singh R (2018) Membrane technology in separation science. CRC Press, Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Purkait MK, Singh R, Mondal P, Haldar D Thermal induced membrane separation processes. Elsevier, Academic Press, AmsterdamGoogle Scholar
  3. 3.
    Purkait MK, Sinha MK, Mondal P, Singh R (2018) Stimuli responsive polymeric membranes. Elsevier, Academic Press, AmsterdamGoogle Scholar
  4. 4.
    van Reis R, Zydney A (2007) Bioprocess membrane technology. J Membr Sci 297:16–50CrossRefGoogle Scholar
  5. 5.
    Singh R, Purkait MK (2018) Microfiltration membranes. In: Ismail AF, Rahman MA, Othman MHD, Matsuura T (eds) Membrane separation principles and applications: from material selection to mechanisms and industrial uses. Elsevier, Amsterdam, pp 111–146Google Scholar
  6. 6.
    Nandi BK, Rahaman M, Singh R, Purkait MK (2018) Microfiltration membranes: fabrication and application. In: Sridhar S (ed) Membrane technology: sustainable solutions in water, health, energy and environmental sectors. CRC Press, Taylor & Francis, Boca Raton, pp 190–210Google Scholar
  7. 7.
    Shimizu Y, Shimodera K-I, Watanabe A (1993) Cross flow microfiltration of bacterial cells. J Ferment Bioeng 76(6):493–500CrossRefGoogle Scholar
  8. 8.
    Frohlich H, Villian L, Melzner D, Strube J (2012) Membrane technology in bioprocess science. ChemieIngenieurTechnik 84(6):905–917Google Scholar
  9. 9.
    Singh R, Purkait MK (2016) Evaluation of mPEG effect on the hydrophilicity and antifouling nature of the PVDF-co-HFP flat sheet polymeric membranes for humic acid removal. J Water Process Eng 14:9–18CrossRefGoogle Scholar
  10. 10.
    Boi C (2019) Membrane chromatography for biomolecule purification. In: Basile A, Charcosset C (eds) Current trends and future developments on (bio-) membranes, membrane processes in thepharmaceutical and biotechnological field. Elsevier, Amsterdam, pp 151–166CrossRefGoogle Scholar
  11. 11.
    Vicente T, Fáber R, Alves PM, Carrondo MJ, Mota JP (2011) Impact of ligand density on the optimization of ion-exchange membrane chromatography for viral vector purification. Biotechnol Bioeng 108:1347–1359CrossRefGoogle Scholar
  12. 12.
    Opitz L, Lehmann S, Reichl U, Wolff MW (2009) Sulfated membrane adsorbers for economic pseudo affinity capture of influenza virus particles. Biotechnol Bioeng 103:1144–1154CrossRefGoogle Scholar
  13. 13.
    Darvishmanesh S, Qian X, Wickramasinghe SR (2015) Responsive membranes for advanced separations. Curr Opin Chem Eng 8:98–104Google Scholar
  14. 14.
    Orr V, Zhong L, Young MM, Chou CP (2013) Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 31:450–465CrossRefGoogle Scholar
  15. 15.
    Willats WGT, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17(3):97–104CrossRefGoogle Scholar
  16. 16.
    Ninga KA, Sengupta S, Jain A, Desobgo ZSC, Nso EJ, De S (2018) Kinetics of enzymatic hydrolysis of pectinaceous matter in guava juice. J Food Eng 221:158–166CrossRefGoogle Scholar
  17. 17.
    Karmakar S, De S (2019) Pectin removal and clarification of juices. In: Galanakis CM (ed) Separation of functional molecules in food by membrane technology. Elsevier, Academic Press, Amsterdam, pp 155–194CrossRefGoogle Scholar
  18. 18.
    Chamchonc M, Noomhorm A (1991) Effect of PH and enzymatic treatment on microfiltration and ultrafiltration of tangerine juice. J Food Process Eng 14(1):21–34CrossRefGoogle Scholar
  19. 19.
    Rai P, Majumdar GC, DasGupta S, De S (2004) Optimizing pectinase usage in pretreatment of mosambi juice for clarification by response surface methodology. J Food Eng 64(3):397–403CrossRefGoogle Scholar
  20. 20.
    Onsekizoglu P, Bahceci KS, Acar MJ (2010) Clarification and the concentration of apple juice using membrane processes: a comparative quality assessment. J Membr Sci 352(1–2):160–165CrossRefGoogle Scholar
  21. 21.
    Youn KS, Hong J-H, Bae D-H, Kim S-J, Kim SD (2004) Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment. J Membr Sci 228:179–186CrossRefGoogle Scholar
  22. 22.
    Nandi BK, Das B, Uppaluri R, Purkait MK (2009) Microfiltration of mosambi juice using low cost ceramic membrane. J Food Eng 95:597–605CrossRefGoogle Scholar
  23. 23.
    Bhattacharjee C, Saxena VK, Dutta S (2017) Fruit juice processing using membrane technology: a review. Innov Food Sci Emerg Technol 43:136–153CrossRefGoogle Scholar
  24. 24.
    Abel JJ, Rowntree LG, Turner BB (1914) Plasma removal with return of corpuscles (Plasmapheresis). J Pharmacol Exp Ther 5(6):625–641Google Scholar
  25. 25.
    Haas G (1925) Versuche der Blutauswaschung am LebendenmitHilfe der Dialyse. KlinWochenschr 4(1):13–14CrossRefGoogle Scholar
  26. 26.
    Kolff WJ, Berk HTJ, Welle M, van der Ley AJW, van Dijk EC, van Noordwijk J (1944) The artificial kidney: a dialyser with a great area. J Intern Med 117(2):121–134Google Scholar
  27. 27.
    Annesini MC, Marrelli L, Piemonte V, Turchetti L (2017) Artificial organ engineering. Springer, LondonCrossRefGoogle Scholar
  28. 28.
    Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, HobokenGoogle Scholar
  29. 29.
    Purkait MK, Sinha MK, Mondal P, Singh R (2018) pH-responsive membranes. Interface Sci Technol 25:39–66CrossRefGoogle Scholar
  30. 30.
    Purkait MK, Sinha MK, Mondal P, Singh R (2018) Temperature-responsive membranes. Interface Sci Technol 25:67–113CrossRefGoogle Scholar
  31. 31.
    Purkait MK, Sinha MK, Mondal P, Singh R (2018) Photoresponsive membranes. Interface Sci Technol 25:115–144CrossRefGoogle Scholar
  32. 32.
    Purkait MK, Sinha MK, Mondal P, Singh R (2018) Biologically responsive membranes. Interface Sci Technol 25:145–171CrossRefGoogle Scholar
  33. 33.
    Purkait MK, Sinha MK, Mondal P, Singh R (2018) Magentic-responsive membranes. Interface Sci Technol 25:193–219CrossRefGoogle Scholar
  34. 34.
    Purkait MK, Sinha MK, Mondal P, Singh R (2018) Electric field-responsive membranes. Interface Sci Technol 25:173–191CrossRefGoogle Scholar
  35. 35.
    Singh R, Yadav VSK, Purkait MK (2019) Cu2O photocatalyst modified antifouling polysulfone mixed matrix membrane for ultrafiltration of protein and visible light driven photocatalytic pharmaceutical removal. Sep Purif Technol 212:191–204CrossRefGoogle Scholar
  36. 36.
    Sinha MK, Purkait MK (2014) Preparation and characterization of stimuli-responsive hydrophilic polysulfone membrane modified with poly (N-vinylcaprolactam-co-acrylic acid). Desalination 348:16–25Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Randeep Singh
    • 1
    • 2
    Email author
  • K. V. V. Satyannarayana
    • 3
  • R. Vinoth Kumar
    • 3
  • I. Ganesh Moorthy
    • 4
  1. 1.Institute of Environmental Engineering and ManagementNational Taipei University of TechnologyTaipeiTaiwan
  2. 2.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Department of Chemical EngineeringNational Institute of Technology Andhra PradeshTadepalligudemIndia
  4. 4.Department of BiotechnologyKamaraj College of Engineering and TechnologyVirudhunagarIndia

Personalised recommendations