Skip to main content

Understanding the Ecological Consequences of Ubiquitous Contaminants of Emerging Concern in the Laurentian Great Lakes Watershed: A Continuum of Evidence from the Laboratory to the Environment

  • Chapter
  • First Online:
Contaminants of the Great Lakes

Abstract

Contaminants of emerging concern (CECs) represent a plethora of chemicals only recently recognized as potentially causing harm at environmental concentrations to organisms through diverse modes of action. Studies have confirmed CECs are pervasive in water, sediment, and fish tissues collected from the Great Lakes watershed, corroborating studies from ecosystems worldwide. In some tributaries, CECs exceed water-quality benchmarks or screening values expected to cause adverse effects in fish based on data from single-compound exposures. However, a scarcity of data precludes predictions about the adverse effects of long-term exposures of resident fish to complex mixture of CECs. We combine a literature review with recent case studies to explore evidence for the effects of CECs gathered across the continuum from field studies to controlled laboratory investigations. This information is used to identify obstacles to the development of natural resource management practices. Ranking prominent among these obstacles are the dearth of analytical capabilities, paucity of mixture studies, and complexity of integrating CEC effects with additional stressors. Despite these knowledge gaps, using existing water-quality benchmarks and developing screening values from the literature can provide limited directions in identifying CEC sources in need of mitigation. Natural resource managers are encouraged to review data on CEC presence and sources when assessing conservation efforts in Great Lakes tributaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sierszen ME, Morrice JA, Trebitz AS, Hoffman JC (2012) A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquat Ecosyst Health Manag 15:92–106

    Article  Google Scholar 

  2. Swackhamer DL (2005) The past, present, and future of the North American Great Lakes: what lessons do they offer? J Environ Monit 7:540–544

    Article  CAS  Google Scholar 

  3. Klaper R, Welch LC (2011) Emerging contaminant threats and the Great Lakes: existing science, estimating relative risk and determining policies. Alliance for the Great Lakes, Chicago

    Google Scholar 

  4. Arnnok P, Singh RR, Burakham R, Pérez-Fuentetaja A, Aga DS (2017) Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River. Environ Sci Technol 51:10652–10662

    Article  CAS  Google Scholar 

  5. Thomas LM, Jorgenson ZG, Brigham ME, Choy SJ, Moore JN, Banda JA, Gefell DJ, Minarik TA, Schoenfuss HL (2017) Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure. PLoS One 12(9):e0184725

    Article  CAS  Google Scholar 

  6. Brazner JC, Sierszen ME, Keough JR, Tanner DK (2000) Assessing the ecological importance of coastal wetlands in a large lake context. Verh Internat Verein Limnol 27:1950–1961

    Google Scholar 

  7. Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M, van de Zee SEATM, Titsema CJ (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Cons Res 3:57–65

    Article  Google Scholar 

  8. Nilsen E, Smalling KL, Ahrens L, Gros M, Miglioranza KSB, Pico Y, Schoenfuss HL (2019) Critical review: grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environ Toxicol Chem 38:46–60

    Article  CAS  Google Scholar 

  9. Ankley GT, Giesy JP (1998) Endocrine disruption in wildlife: a weight of evidence perspective (Chapter 16). In: Kendall R, Dickerson R, Giesy JP, Suk W (eds) Principles and processes for evaluating endocrine disruption in wildlife. SETAC Press, Pensacola, pp 349–367. ALS Environmental, Analytical Services, Pharmaceutical and personal care product testing (2019). http://www.caslab.com/Pharmaceutical-PPCP-Testing

  10. Cook PM, Erickson RJ, Spehar RL, Bradbury SP, Ankley GT (1993) Interim report on data and methods for assessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin risks to aquatic life and associated wildlife. EPA/600/R-93/05. US Environmental Protection Agency, Duluth

    Google Scholar 

  11. McMaster ME, Van Der Kraak GJ, Munkittrick KR (1996) Exposure to bleached kraft pulp mill effluent reduces the steroid biosynthesis capacity of white sucker ovarian follicles. Comp Biochem Physiol C 112C:169–178

    Google Scholar 

  12. Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:15

    Article  CAS  Google Scholar 

  13. Vajda AM, Barber LB, Gray JL, Lopez EM, Woodling JD, Norris DO (2008) Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Environ Sci Technol 42:3407–3414

    Article  CAS  Google Scholar 

  14. Metcalfe CD, Miao XS, Koenig BG, Struger J (2003) Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem 22:2881–2889

    Article  CAS  Google Scholar 

  15. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  16. Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP (1996) Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15:194–202

    Article  CAS  Google Scholar 

  17. Ankley GT, Jensen KM, Durha EJ, Makyne EA, Butterworth BC, Kahl MD, Villeneuve DL, Linnum A, Gray EL, Cardon M, Wilson VS (2005) Effects of two fungicides with multiple modes of action on reproductive endocrine function in the fathead minnow (Pimephales promelas). Toxicol Sci 86:300–308

    Article  CAS  Google Scholar 

  18. Elliott SM, Brigham ME, Lee KE, Banda JA, Choy SJ, Gefell DJ (2017) Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLoS One 12(9):e0182868

    Article  CAS  Google Scholar 

  19. Sorensen JPR, Lapworth DJ, Nkhuwa DCW, Stuart ME, Gooddy DC, Bell RA, Chirwa M, Kabika J, Liemisa M, Chibesa M, Pedley S (2015) Emerging contaminants in urban groundwater sources in South Africa. Water Res 72:51–63

    Article  CAS  Google Scholar 

  20. Tran NH, Reinhard M, Gin KY-H (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographic regions – a review. Water Res 133:182–207

    Article  CAS  Google Scholar 

  21. Klecka G, Persoon C, Currie R (2010) Chemicals of emerging concern in the Great Lakes basin: an analysis of environmental exposure. Rev Environ Contam Toxicol 207:1–93

    CAS  Google Scholar 

  22. Jorgenson ZG, Thomas L, Elliott SM, Cavallin JE, Randolph EC, Choy SJ, Alvarez DA, Banda JA, Gefell DJ, Lee KE, Furlong ET, Schoenfuss HL (2018) Contaminants of emerging concern presence and adverse effects in fish: a case study in the Laurentian Great Lakes. Environ Pollut 236:718–733

    Article  CAS  Google Scholar 

  23. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM et al (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci U S A 104:8897–8901

    Article  CAS  Google Scholar 

  24. Palace VP, Evans RE, Wautier KG, Mills KH, Blanchfield PJ, Park BJ, Baron CL, Kidd KA (2009) Interspecies differences in biochemical, histopathological, and population responses in four wild fish species exposed to ethynylestradiol added to a whole lake. Can J Fish Aquat Sci 66:1920–1935

    Article  CAS  Google Scholar 

  25. Kidd KA, Paterson MJ, Rennie MD, Podemski CL, Findlay DL, Blanchfield PJ, Liber K (2014) Direct and indirect responses of a freshwater food web to a potent synthetic oestrogen. Philos Trans R Soc Lond B Biol Sci 369(1656). https://doi.org/10.1098/rstb.2013.0578

  26. Heynen M, Fick J, Jonsson M, Klaminder J, Brodin T (2016) Effects of bioconcentration and trophic transfer on realized exposure to oxazepam in 2 predators, the dragonfly larvae (Aeshna grandis) and the Eurasian perch (Perca fluviatilis). Environ Toxicol Chem 35:930–937

    Article  CAS  Google Scholar 

  27. Elliott SM, Brigham ME, Kiesling RL, Schoenfuss HL, Jorgenson ZG (2018) Environmentally relevant chemical mixtures of concern in U.S. tributaries to the Great Lakes. Integr Environ Assess Manag 14:509–518

    Article  CAS  Google Scholar 

  28. Baldwin AK, Corsi SR, De Cicco LA, Lenaker PL, Lutz MA, Sullivan DJ (2016) Organic contaminants in Great Lakes tributaries: prevalence and potential aquatic toxicity. Sci Total Environ 554-555:42–52

    Article  CAS  Google Scholar 

  29. Gefell, DJ, Annis M, Banda JA, Bellamy A, Choy S, Hummel SL, Jorgenson Z, Moore JN, Secord AL, Tucker WA (2019) Ecological hazard assessment of contaminants of emerging concern in the U.S. Great Lakes Basin: Part A – screening assessment of relative hazard to fish from surface water exposures to fourteen contaminants of emerging concern in the Great Lakes basin. U.S. Department of the Interior; U.S. Fish and Wildlife Service (in press)

    Google Scholar 

  30. Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123

    Article  CAS  Google Scholar 

  31. Kiesling RL, Elliott SM, Kammel LE, Choy SJ, Hummel SL (2018) Predicting the occurrence of chemicals of emerging concern in surface water and sediment across the U.S. portion of the Great Lakes Basin. Sci Total Environ 651:838–850

    Article  CAS  Google Scholar 

  32. Barber LB, Loyo-Rosales JE, Rice CP, Minarik TA, Oskouie AK (2015) Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions. Sci Total Environ 517:195–206

    Article  CAS  Google Scholar 

  33. Martinovic-Weigelt D, Minarik TA, Curran EM, Marschuk JS, Pazderka MJ, Smith EA, Goldenstein RL, Miresse CL, Matlon TJ, Schultz MM, Schoenfuss HL (2013) Environmental estrogens in an urban aquatic ecosystem: I. Spatial and temporal occurrence of estrogenic activity in effluent-dominated systems. Environ Int 61:127–137

    Article  CAS  Google Scholar 

  34. Fairbairn DJ, Elliott SM, Kiesling RL, Schoenfuss HL, Ferrey ML, Westerhoff BM (2018) Contaminants of emerging concern in urban stormwater: spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs). Water Res 145:334–345

    Article  CAS  Google Scholar 

  35. Swartz CH, Reddy S, Benotti MJ, Yin H, Barber LB, Brownawell BJ, Rudel RA (2006) Steroid estrogens, nonylphenol ethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA. Environ Sci Technol 40:4894–4902

    Article  CAS  Google Scholar 

  36. Guyader M, Warren L, Green E, Proudian A, Kiesling R, Schoenfuss HL, Higgins CP (2018) Trace Organic Contaminant (TOrC) Mixtures in Minnesota littoral zones: effects of on-site wastewater treatment system (OWTS) proximity and biologic impact. Sci Total Environ 626:1157–1166

    Article  CAS  Google Scholar 

  37. McGee MR, Julius ML, Vajda AM, Norris DO, Barber LB, Schoenfuss HL (2009) Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures. Aquat Toxicol 91:355–361

    Article  CAS  Google Scholar 

  38. Rearick DC, Ward J, Venturelli P, Schoenfuss HL (2018) Environmental oestrogens cause predation-induced population decline in a freshwater fish. R Soc Open Sci 5:181065

    Article  CAS  Google Scholar 

  39. Brodin T, Piovano S, Fick J, Klaminder J, Heynen M, Jonsson M (2014) Ecological effects of pharmaceuticals in aquatic systems—impacts through behavioral alterations. Philos Trans R Soc Lond B Biol Sci 369(1656). https://doi.org/10.1098/rstb.2013.0580

  40. Gray MA, Metcalfe CD (1997) Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed to p-nonylphenol. Environ Toxicol Chem 16:1082–1086

    CAS  Google Scholar 

  41. Blazer VS, Iwanowicz DD, Walsh HL, Sperry AJ, Iwanowicz LR, Alvarez DA, Brightbill RA, Smith G, Foreman WT, Manning R (2014) Reproductive health indicators of fishes from Pennsylvania watersheds: association with chemicals of emerging concern. Environ Monit Assess 186:6471–6491

    Article  CAS  Google Scholar 

  42. Routledge EJ, Sheahan D, Desbrow C, Brighty GC, Waldock M, Sumpter JP (1998) Identification of oestrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Technol 32:1559–1565

    Article  CAS  Google Scholar 

  43. Metcalfe CD, Metcalfe TL, Kiprassis Y, Koenig BG, Khan C, Hughes RJ, Croley TR, March RE, Potter T (2001) Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays in Japanese medaka (Oryzias latipes). Environ Toxicol Chem 20:297–308

    Article  CAS  Google Scholar 

  44. Villeneuve DL, Mueller ND, Martinovic D, Makynen EAA, Kahl MD, Jensen KM, Durhan EJ, Cavallin JE, Bencic D, Ankley GT (2009) Direct effects, compensations, and recovery in female fathead minnows exposed to a model aromatase inhibitor. Environ Health Perspect 117:624–631

    Article  CAS  Google Scholar 

  45. Davis JM, Ekman DR, Teng Q, Ankley GT, Berninger JP, Cavallin JE, Jensen KM, Kahl MD, Schroeder AL, Villeneuve DL, Jorgenson ZG, Lee KE, Colette TW (2016) Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin. Environ Toxicol Chem 35:2493–2502

    Article  CAS  Google Scholar 

  46. Arcand-Hoy LD, Benson WH (1998) Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environ Toxicol Chem 17:49–61

    Article  CAS  Google Scholar 

  47. Parrott JL, Blunt BR (2005) Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males. Environ Toxicol 20:131–141

    Article  CAS  Google Scholar 

  48. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506

    Article  CAS  Google Scholar 

  49. Harries JE, Sheahan DA, Jobling S, Matthiessen P, Neall M, Sumpter JP, Taylor T, Zaman N (1997) Estrogenic activity in five United Kingdom rivers detected by measurement of vitellogenesis in caged male trout. Environ Toxicol Chem 16:534–542

    Article  CAS  Google Scholar 

  50. Niemuth NJ, Jordan R, Crago J, Blanksma C, Johnson R, Klaper RD (2014) Metformin exposure at environmentally relevant concentrations caises potential endocrine disruption in adult male fish. Environ Toxicol Chem 34:291–296

    Article  CAS  Google Scholar 

  51. Kavanagh RJ, Balch GC, Kiparissis Y, Niimi AJ, Sherry J, Tinson C, Metcalfe CD (2004) Endocrine disruption and altered gonadal development in white perch (Morone americana) from the lower Great Lakes region. Environ Health Perspect 112:898–902

    Article  CAS  Google Scholar 

  52. Choy SJ, Annis ML, Banda JA, Bowman SR, Brigham ME, Elliott SM, Gefell DJ, Jankowski MD, Jorgenson ZG, Lee KE, Moore JN, Tucker WA (2017) Contaminants of emerging concern in the Great Lakes Basin: a report on sediment, water, and fish tissue chemistry collected in 2010–2012. Biol Tech Pub BTP-R3017e2013

    Google Scholar 

  53. Jackson MC, Loewen CJG, Vinebrooke RD, Chimimba CT (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob Chang Biol 22:180–189

    Article  Google Scholar 

  54. Burki R, Vermeirssen ELM, Korner O, Joris C, Burkhardt-Holm P, Segner H (2006) Assessment of estrogenic exposure in brown trout (Salmo trutta) in a Swiss midland river: integrated analysis of passive samplers, wild and caged fish, and vitellogenin mRNA and protein. Environ Toxicol Chem 25:2077–2086

    Article  CAS  Google Scholar 

  55. Sellin MK, Snow DD, Akerly DL, Kolok AS (2009) Estrogenic compounds downstream from three small cities in Eastern Nebraska: occurrence and biological effects. J Am Water Resour Assoc 45:14–21

    Article  CAS  Google Scholar 

  56. Crago J, Corsi SR, Weber D, Bannerman R, Klaper R (2011) Linking biomarkers to reproductive success of caged fathead minnows in streams with increasing urbanization. Chemosphere 82:1669–1674

    Article  CAS  Google Scholar 

  57. Smolders R, Boeck GD, Blust R (2003) Changes in cellular energy budget as a measure of whole effluent toxicity in zebrafish (Danio rerio). Environ Toxicol Chem 22:890–899

    Article  CAS  Google Scholar 

  58. Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 294:827–832

    Article  CAS  Google Scholar 

  59. Cipoletti N, Jorgenson ZG, Banda JA, Hummel SL, Schoenfuss HL (in review) Biological consequences of agricultural and urban land-use along the Maumee River, a major tributary to the Laurentian Great Lakes

    Google Scholar 

  60. Higashitani T, Miyajima K, Nakada N, Yasojima M, Tanaka H, Suzuki Y (2005) Development of on-site fish exposure system placed in water quality monitoring station along a river. Water Sci Technol 52:275–282

    Article  CAS  Google Scholar 

  61. Barber LB, Lee KE, Swackhamer D, Schoenfuss HL (2007) Response of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds. Aquat Toxicol 82:36–46

    Article  CAS  Google Scholar 

  62. Parrott JL, Hewitt ML, Kovacs TG, Maclatchy DL, Martel PH, van den Heuvel MR, van der Kraak GJ, McMaster ME (2010) Responses in a fathead minnow (Pimephales promelas) lifecycle test and in wild white sucker (Catostomus commersoni) exposed to a Canadian bleached kraft mill effluent. Water Qual Res J Can 45:187–200

    Article  CAS  Google Scholar 

  63. Vajda AM, Barber LB, Gray JL, Lopez EM, Bolden AM, Schoenfuss HL, Norris DO (2011) Demasculinization of male fish by wastewater treatment plant effluent. Aquat Toxicol 103:213–221

    Article  CAS  Google Scholar 

  64. Hanson N, Larsson A (2010) Biomarker analysis in caged and wild fish suggest exposure to pollutants in an urban area with a landfill. Environ Toxicol 26:315–324

    Article  CAS  Google Scholar 

  65. Minarik TA, Vick JA, Schultz MA, Bartell SE, Martinovic-Weigelt D, Rearick DC, Schoenfuss HL (2014) On-site exposure to treated wastewater effluent has subtle effects on male fathead minnows and pronounced effects on carp. J Am Water Resour Assoc 50:358–375

    Article  CAS  Google Scholar 

  66. Cipoletti N, Jorgenson ZG, Banda JA, Hummel SL, Kohno S, Schoenfuss HL (2019) Land use contributions to adverse biological effects in a complex agricultural and urban watershed: a case study of the Maumee River. Environ Toxicol Chem 38:1035–1051

    Article  CAS  Google Scholar 

  67. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43:W566–W570

    Article  CAS  Google Scholar 

  68. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:540–542

    Article  Google Scholar 

  69. RStudio Team (2018) RStudio: integrated development for R. 2018. RStudio, Inc., Boston. http://www.rstudio.com/

  70. Pal A, Gin KY, Lin AY, Reinhard M (2010) Impacts of emerging contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Article  CAS  Google Scholar 

  71. Noguera-Oviedo K, Aga DS (2016) Lessons learned from more than two decades of research on emerging contaminants in the environment. J Hazard Mater 316:242–251

    Article  CAS  Google Scholar 

  72. Wilkinson JL, Hooda PS, Barker J, Barton S, Swinden J (2016) Ecotoxic pharmaceuticals, personal care products and other emerging contaminants: a review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Crit Rev Environ Sci Technol 46:336–381

    Article  CAS  Google Scholar 

  73. Ankley GT, Bencic DC, Breen MS, Collette TW, Conolly RB, Denslow ND, Edwards SW, Ekman DR, Garcia-Reyero N, Jensen KM, Lazorchak JM, Martinovic D, Miller DH, Perkins EJ, Orlando EF, Villeneuve DL, Wang R-L, Watanabe KH (2009) Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Aquat Toxicol 92:168–178

    Article  CAS  Google Scholar 

  74. Brian JV, Harris CA, Scholze M, Backhaus T, Booy P, Lamoree M, Pojana G, Jonkers N, Runnalls T, Bonfa A, Marcomini A, Sumpter JP (2005) Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals. Environ Health Perspect 113:721–728

    Article  CAS  Google Scholar 

  75. Bistodeau TJ, Barber LB, Bartell SE, Cediel RA, Grove KJ, Klaustermeier J, Woodard JC, Lee KE, Schoenfuss HL (2006) Larval exposure to environmentally relevant mixtures of alkylphenolethoxylates reduces reproductive competence in male fathead minnows. Aquat Toxicol 79:268–277

    Article  CAS  Google Scholar 

  76. Painter MR, Buerkley MA, Julius ML, Vajda AM, Norris DO, Barber LB, Furlong ET, Schultz MM, Schoenfuss HL (2009) Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). Environ Toxicol Chem 28:2677–2684

    Article  CAS  Google Scholar 

  77. Backhaus T (2014) Medicines, shaken and stirred: a critical review on the ecotoxicology of pharmaceutical mixtures. Philos Trans R Soc B 369:20130585. https://doi.org/10.1098/rstb.2013.0585

    Article  Google Scholar 

  78. Thrupp TJ, Runnalls TJ, Scholze M, Kugathas S, Kortenkamp A, Sumpter JP (2018) The consequences of exposure to mixtures of chemicals: something from ‘nothing’ and ‘a lot from a little’ when fish are exposed to steroid hormones. Sci Total Environ 619-620:1482–1492

    Article  CAS  Google Scholar 

  79. Klaminder J, Jonsson M, Fick J, Brodin T (2014) The conceptual imperfection of aquatic risk assessment tests: highlighting the need for tests designed to detect therapeutic effects of pharmaceutical contaminants. Environ Res Lett 9:084003

    Article  CAS  Google Scholar 

  80. Elliott SM, Kiesling RL, Jorgenson ZG, Rearick DC, Schoenfuss HL, Fredricks KT, Gaikowski MP (2014) Fathead minnow and bluegill sunfish life-stage responses to 17b-estradiol exposure in outdoor mesocosms. J Am Water Resour Assoc 50:376–387

    Article  CAS  Google Scholar 

  81. Lagesson A, Fahlman J, Brodin T, Fick J, Jonsson M, Bystrom P, Klaminder J (2016) Bioaccumulation of five pharmaceuticals at multiple trophic levels in an aquatic food web – insights from a field experiment. Sci Total Environ 568:208–215

    Article  CAS  Google Scholar 

  82. Gefell DJ, Banda J, Moore JN, Secord AL, Tucker WA (2019) Ecological hazard assessment of contaminants of emerging concern in the U.S. Great Lakes Basin: Part B: technical resources for ecological hazard assessments of contaminants of emerging concern in freshwater fish (BTPR3018-2019). U.S. Department of the Interior; U.S. Fish and Wildlife Service. https://digitalmedia.fws.gov/digital/collection/document/id/2251/rec/1

  83. Oehlmann J, Schulte-Oehlmann U, Bachmann J, Oetken M, Lutz I, Kloas W, Ternes TA (2006) Bisphenol A induces superfeminization in the ramshorn snail Marisa cornuarietis (Gastropoda: Prosobranchia) at environmentally relevant concentrations. Environ Health Perspect 114:127–133

    Article  Google Scholar 

  84. Johnson L, Gage S (1997) Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biol 37:113–132

    Article  Google Scholar 

  85. Medvinsky AB, Petrovskii SV, Tikonov DA, Tikhonava IA, Ivanitsky GR, Venturino E, Malchow H (2001) Biological factors underlying regularity and chaos in aquatic ecosystems: simple models of complex dynamics. J Biosci 26:77–108

    Article  CAS  Google Scholar 

  86. Nikora V (2007) Hydrodynamics of aquatic ecosystems: spatial-averaging perspective. Acta Geophys 55:3–10

    Article  Google Scholar 

  87. Metcalfe CD, Chu S, Judt C, Hongxia L, Oakes KD, Servos MR, Andrews DM (2010) Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ Toxicol Chem 29:79–89

    Article  CAS  Google Scholar 

  88. Poi CD, Bostil K, Bouchart V, Halm-Lemeille MP (2018) Toxicity assessment of five emerging pollutants, alone and in binary or ternary mixtures towards three aquatic organisms. Environ Sci Pollut Res 25:6122–6134

    Article  CAS  Google Scholar 

  89. Schultz MM, Painter MM, Bartell SE, Logue A, Furlong ET, Werner SL, Schoenfuss HL (2011) Selective update and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquat Toxicol 104:38–47

    Article  CAS  Google Scholar 

  90. Cory WC, Welch AM, Ramirez JN, Rein LC (2019) Naproxen and its phototransformation products: persistence and ecotoxicity to toad tadpoles (Anaxyrus terrestris), individually and in mixtures. Environ Toxicol Chem 38:2008–2019

    Article  CAS  Google Scholar 

  91. Jorgenson ZG, Buhl K, Bartell SE, Schoenfuss HL (2015) Do laboratory species protect endangered species? Interspecies variation in responses to 17b-estradiol, a model endocrine active compound. Arch Environ Contam Toxicol 68:204–215

    Article  CAS  Google Scholar 

  92. Kohno S, Katsu Y, Cipoletti N, Wang LC, Jorgenson ZG, Miyagawa S, Schoenfuss HL (2018) Divergent responsiveness of two isoforms of the estrogen receptor to mixtures of contaminants of emerging concern in four vertebrates. J Appl Toxicol 38:705–713

    Article  CAS  Google Scholar 

  93. Bremle G, Okla L, Larsson P (1998) PCB in water and sediment of a lake after remediation of contaminated sediment. R Swedish Acad Sci 27:398–403

    Google Scholar 

  94. Förstner U, Apitz SE (2007) Sediment remediation: US focus on capping and monitored natural recovery. J Soils Sediments 7:351–358

    Article  Google Scholar 

  95. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals in contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  96. Singh M, Pant G, Hossain K, Bhatia AK (2017) Green remediation: tool for safe and sustainable environment: a review. Appl Water Sci 7:2629–2635

    Article  CAS  Google Scholar 

  97. Daughton CG (2002) Environmental stewardship and drugs as pollutants. Lancet 360:1035–1036

    Article  Google Scholar 

  98. Padmavathiamma PK, Ahmed M, Rahman HA (2014) Phytoremediation – a sustainable approach for contaminant remediation in arid and semi-arid regions – a review. Plant Sci 26:757–772

    Google Scholar 

  99. Wang K, Cai J, Fen J, Xie S (2014) Phytoremediation of phenol using Polygonum orientale, including optimized conditions. Environ Monit Assess 186:8667–8681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank students in the Aquatic Toxicology Laboratory at St. Cloud State University and staff on the US Fish and Wildlife Service’s Contaminants of Emerging Concern Team for their assistance in these studies. Funding was provided by the Great Lakes Restoration Initiative through the US Fish and Wildlife Service’s Contaminants of Emerging Concern Team.

Disclaimers

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the US Fish and Wildlife Service or the US Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko L. Schoenfuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schoenfuss, H.L., Wang, L.C., Korn, V.R., King, C.K., Kohno, S., Hummel, S.L. (2020). Understanding the Ecological Consequences of Ubiquitous Contaminants of Emerging Concern in the Laurentian Great Lakes Watershed: A Continuum of Evidence from the Laboratory to the Environment. In: Crossman, J., Weisener, C. (eds) Contaminants of the Great Lakes. The Handbook of Environmental Chemistry, vol 101. Springer, Cham. https://doi.org/10.1007/698_2020_491

Download citation

Publish with us

Policies and ethics