Skip to main content

Antibiotic Resistance, Sanitation, and Public Health

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 91)

Abstract

Antimicrobial resistance (AMR) poses a serious threat to global health. In countries with poor sanitation conditions, the situation is worrisome. In this chapter, worldwide data, particularly from Brazil, supports a discussion about the risks of sewage and livestock manure on spreading antibiotic resistance, calling attention to the relationship between poor sanitation conditions, water pollution, and public health. The role of wastewater treatment plants (WWTP) and different treatment technologies in reducing AMR from municipal and livestock wastewaters are discussed based on the information available. It has been observed that municipal WWTPs with tertiary treatment systems can be decisive in the prevention and control of AMR spread and thus contribute to the maintenance of environmental and public health. Considering the information provided, there is a potential for antibiotic-resistant bacteria and antibiotic resistance gene dissemination through conventional WWTP effluents and sludges, especially when the latter are used as biosolids. By reaching surrounding aquatic environments, antibiotic-resistant bacteria may arise as a threat for public health since WWTP and water treatment plants (WTP) are not normally designed to specifically remove AMR. In summary, globally and in particular, Brazil has a lot of challenges to monitor and control AMR not only in municipal WWTPs but also in clinical and natural environments. Accurate information provided by research and routine monitoring, political engagement, new policies, and multidisciplinary actions will be vital to tackle this problem. In the short term, the control of the antibiotic prescription and their use by the population and farmers (already in place) and the increase of sewage collection and treatment are strategic actions to reduce AMR and guarantee public health in the country.

Keywords

  • Antibiotic resistance in Brazil
  • Livestock wastes
  • Tertiary treatment
  • Wastewater treatment
  • Water treatment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMR:

Antimicrobial resistance

AR:

Antibiotic resistance

ARB:

Antibiotic-resistant bacteria

ARG:

Antibiotic resistance gene

AOPs:

Advanced oxidative processes

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

ESBL:

Extended-spectrum β-lactamases

HGT:

Horizontal gene transfer

UV:

Ultraviolet

WWTP:

Wastewater treatment plant

WTP:

Water treatment plant

References

  1. WHO (World Health Organization) (2016) Implementation of the global action plan on antimicrobial resistance. WHO GAP AMR Newsletter. WHO, Geneva

    Google Scholar 

  2. Aidara-Kane A, Angulo F, Conly J, Minato Y, Silbergeld E, McEwen S, Collignon P (2018) World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob Resist Infect Control 7(1)

    Google Scholar 

  3. WEF (World Economic Forum). Global Risks – Report 2018 – 13th edn. https://www.weforum.org/reports/the-global-risks-report-2018

  4. WHO (World Health Organization) (2018) WHO Report on Surveillance of Antibiotic Consumption: WHO, 2018

    Google Scholar 

  5. Anvisa (2016) Commission to establish sanitary surveillance actions related to microbial resistance, within the scope of ANVISA. Ordinance No. 854, of April 7. DOU n° 67 of 04/08/16. Committee responsible for elaborating and conducting the health sector component of the National Action Plan for Prevention and Control of Antimicrobial Resistance (NAPPCAM), within the Ministry of Health. Ordinance No. 2,775, dated December 22. Institution of Cipan. DOU n° 246 of 12/23/16. Section 1, p 164

    Google Scholar 

  6. Brasil (2018) Ministry of Agriculture, Livestock and Food Supply. Ordinance n°171 of December 13, 2018. Informs about the intention to ban the use of antimicrobials for the purpose of food performance improver additives and open-ended demonstration

    Google Scholar 

  7. Fair R, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 2014(6):25–64

    Google Scholar 

  8. Livermore D (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34(5):634–640

    CAS  Google Scholar 

  9. LaPara T, Burch T, McNamara P, Tan D, Yan M, Eichmiller J (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environ Sci Technol 45(22):9543–9549

    CAS  Google Scholar 

  10. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy M, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    CAS  Google Scholar 

  11. Al-Jassim N, Ansari M, Harb M, Hong P (2015) Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: is the treated wastewater safe to reuse for agricultural irrigation? Water Res 73:277–290

    CAS  Google Scholar 

  12. Kumar A, Pal D (2018) Antibiotic resistance and wastewater: correlation, impact and critical human health challenges. J Environ Chem Eng 6(1):52–58

    Google Scholar 

  13. Lamba M, Ahammad SZ (2017) Sewage treatment effluents in Delhi: a key contributor of b-lactam resistant bacteria and genes to the environment. Chemosphere 188:249–256

    CAS  Google Scholar 

  14. Taneja N, Sharma M (2019) Antimicrobial resistance in the environment: the Indian scenario. Indian J Med Res 149(2):119–128

    Google Scholar 

  15. SNIS (2017) Sanitation National Secretary of Ministry of Regional Development, data published on February 22nd/2017 as a result of the work conducted by the National Information System about Sanitation (Sistema Nacional de Informação sobre Saneamento – SNIS)

    Google Scholar 

  16. Von Sperling M (2016) Urban wastewater treatment in Brazil: Water and Sanitation Division. Technical note N° IDB-TN-970

    Google Scholar 

  17. Chagas T, Seki L, Cury J, Oliveira J, Dávila A, Silva D, Asensi M (2011) Multiresistance, beta-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. J Appl Microbiol 111(3):572–581

    CAS  Google Scholar 

  18. Picão RC, Cardoso JP, Campana EH, Nicoletti AG, Petrolini FV, Assis DM, Juliano L, Gales AC (2013) The route of antimicrobial resistance from the hospital effluent to the environment: focus on the occurrence of KPC-producing Aeromonas spp. and Enterobacteriaceae in sewage. Diagn Microbiol Infect Dis 76(1):80–85

    Google Scholar 

  19. Rossi F (2011) The challenges of antimicrobial resistance in Brazil. Clin Infect Dis 52(9):1138–1143

    Google Scholar 

  20. Ferreira da Silva M, Tiago I, Verissimo A, Boaventura RAR, Nunes OC, Manaia CM (2006) Antibiotic resistance of enterococci and related bacteria in an urban waste water treatment plant. FEMS Microbiol Ecol 55:322–329

    CAS  Google Scholar 

  21. Liao J, Chen Y (2018) Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments. Rev Environ Sci Biotechnol 17(3):471–500

    CAS  Google Scholar 

  22. Di Cesare A, Eckert E, D’Urso S, Bertoni R, Gillan D, Wattiez R, Corno G (2016) Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res 94:208–214

    Google Scholar 

  23. Schlüter A, Szczepanowski R, Pühler A, Top EM (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plant provides evidence for a widely accessible drug resistance pool. FEMS Microbiol Rev 31:449–477

    Google Scholar 

  24. Bouki C, Venieri D, Diamadopoulos E (2013) Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicol Environ Saf 91:1–9

    CAS  Google Scholar 

  25. Novo A, Manaia C (2010) Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Appl Microbiol Biotechnol 87(3):1157–1166

    CAS  Google Scholar 

  26. Papa M, Foladori P, Guglielmi L, Bertanza G (2017) How far are we from closing the loop of sewage resource recovery? A real picture of municipal wastewater treatment plants in Italy. J Environ Manag 198:9–15

    CAS  Google Scholar 

  27. Goldstein R, Micallef S, Gibbs S, He X, George A, Sapkota A, Joseph S, Sapkota A (2014) Occupational exposure to Staphylococcus aureus and Enterococcus spp. among spray irrigation workers using reclaimed water. Int J Environ Res Public Health 11(4):4340–4355

    Google Scholar 

  28. Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45(2):681–693

    CAS  Google Scholar 

  29. Proia L, Anzil A, Subirats J, Borrego C, Farrè M, Llorca M, Balcázar J, Servais P (2018) Antibiotic resistance along an urban river impacted by treated wastewaters. Sci Total Environ 628-629:453–466

    CAS  Google Scholar 

  30. Prichula J, Pereira R, Wachholz G, Cardoso L, Tolfo N, Santestevan N, Medeiros A, Tavares M, Frazzon J, d’Azevedo P, Frazzon A (2019) Corrigendum “Resistance to antimicrobial agents among enterococci isolated from fecal samples of wild marine species in the southern coast of Brazil” [mar. Pollut. Bull. 105 (2016) 51–57]. Mar Pollut Bull 141:655–656

    CAS  Google Scholar 

  31. Nnadozie C, Kumari S, Bux F (2017) Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Rev Environ Sci Biotechnol 16(3):491–515

    CAS  Google Scholar 

  32. Li X, Shi H, Li K, Zhang L, Gan Y (2014) Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Front Environ Sci Eng 8:888–894

    CAS  Google Scholar 

  33. Berglund B (2015) Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol 5(1):28564

    Google Scholar 

  34. Laht M, Karkman A, Voolaid V, Ritz C, Tenson T, Virta M, Kisand V (2014) Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. PLoS One 9(8):e103705

    Google Scholar 

  35. Lee J, Jeon J, Shin J, Jang H, Kim S, Song M, Kim Y (2017) Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Sci Total Environ 605–606:906–914

    Google Scholar 

  36. Rafraf I, Lekunberri I, Sànchez-Melsió A, Aouni M, Borrego C, Balcázar J (2016) Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia. Environ Pollut 219:353–358

    CAS  Google Scholar 

  37. Su J, An X, Li B, Chen Q, Gillings M, Chen H, Zhang T, Zhu Y (2017) Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome 5(1)

    Google Scholar 

  38. Lamba M, Ahammad S (2017) Performance comparison of secondary and tertiary treatment systems for treating antibiotic resistance. Water Res 127:172–182

    CAS  Google Scholar 

  39. Harb M, Hong P-Y (2017) Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study. Environ Sci Pollut Res 24:5370–5380

    CAS  Google Scholar 

  40. Guo M, Yuan Q, Yang J (2015) Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ Sci Technol 49(9):5771–5778

    CAS  Google Scholar 

  41. Manaia C, Macedo G, Fatta-Kassinos D, Nunes O (2016) Antibiotic resistance in urban aquatic environments: can it be controlled? Appl Microbiol Biotechnol 100(4):1543–1557

    CAS  Google Scholar 

  42. Czekalski N, Imminger S, Salhi E, Veljkovic M, Kleffel K, Drissner D, Hammes F, Bürgmann H, von Gunten U (2016) Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment. Environ Sci Technol 50(21):11862–11871

    CAS  Google Scholar 

  43. Liu S, Qu H, Yang D, Hu H, Liu W, Qiu Z, Hou A, Guo J, Li J, Shen Z, Jin M (2018) Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res 136:131–136

    Google Scholar 

  44. Di Cesare A, Fontaneto D, Doppelbauer J, Corno G (2016) Fitness and recovery of bacterial communities and antibiotic resistance genes in urban wastewaters exposed to classical disinfection treatments. Environ Sci Technol 50(18):10153–10161

    Google Scholar 

  45. Lopes T, Costa I, Periotto F, Pletsch A (2016) Antibiotic resistance in E. coli isolated in effluent from a wastewater treatment plant and sediments in receiver body. Int J River Basin Manag 14(4):441–445

    Google Scholar 

  46. Munck C, Albertsen M, Telke A, Ellabaan M, Nielsen P, Sommer M (2015) Limited dissemination of the wastewater treatment plant core resistome. Nat Commun 6(1)

    Google Scholar 

  47. LaPara T, Madson M, Borchardt S, Lang K, Johnson T (2015) Multiple discharges of treated municipal wastewater have a small effect on the quantities of numerous antibiotic resistance determinants in the upper Mississippi River. Environ Sci Technol 49(19):11509–11515

    CAS  Google Scholar 

  48. Taučer-Kapteijn M, Hoogenboezem W, Heiliegers L, de Bolster D, Medema G (2016) Screening municipal wastewater effluent and surface water used for drinking water production for the presence of ampicillin and vancomycin resistant enterococci. Int J Hyg Environ Health 219(4–5):437–442

    Google Scholar 

  49. Karkman A, Do TT, Walsh F, Virta MP (2018) Antibiotic-resistance genes in waste water. Trends Microbiol 26(3):220–228

    CAS  Google Scholar 

  50. De Silva P, Chong P, Fernando D, Westmacott G, Kumar A (2018) Effect of incubation temperature on antibiotic resistance and virulence factors of Acinetobacter baumannii ATCC 17978. Antimicrob Agents Chemother 62(1):e01514–e01517

    Google Scholar 

  51. Banerjee G, Kumar A, Kumar R (2016) Effect of temperature on lateral gene transfer efficiency of multi-antibiotics resistant bacterium, Alcaligenes faecalis. Sains Malaysiana 45(6):909–914

    CAS  Google Scholar 

  52. McConnell M, Truelstrup Hansen L, Jamieson R, Neudorf K, Yost C, Tong A (2018) Removal of antibiotic resistance genes in two tertiary level municipal wastewater treatment plants. Sci Total Environ 643:292–300

    CAS  Google Scholar 

  53. Osińska A, Korzeniewska E, Harnisz M, Niestępski S (2017) Impact of type of wastewater treatment process on the antibiotic resistance of bacterial populations. E3S Web of Conferences 17, 00070 (2017), pp1–8. https://doi.org/10.1051/e3sconf/20171700070

  54. Chen H, Zhang M (2013) Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environ Int 55:9–14

    CAS  Google Scholar 

  55. Chen H, Zhang M (2013) Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China. Environ Sci Technol:130711162357003

    Google Scholar 

  56. Rizzo L, Agovino T, Nahim-Granados S, Castro-Alférez M, Fernández-Ibáñez P, Polo-López M (2018) Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: effect on contaminants of emerging concern and antibiotic resistance. Water Res 149:272–281

    Google Scholar 

  57. Huang H, Wu Q, Tang X, Jiang R, Hu H (2016) Formation of haloacetonitriles and haloacetamides and their precursors during chlorination of secondary effluents. Chemosphere 144:297–303

    CAS  Google Scholar 

  58. Park K, Choi S, Lee S, Kweon J, Song J (2016) Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna. Environ Pollut 215:314–321

    CAS  Google Scholar 

  59. Zhuang Y, Ren H, Geng J, Zhang Y, Zhang Y, Ding L, Xu K (2014) Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environ Sci Pollut Res 22(9):7037–7044

    Google Scholar 

  60. Hu Q, Zhang X, Jia S, Huang K, Tang J, Shi P, Ye L, Ren H (2016) Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater. Water Res 101:309–317

    CAS  Google Scholar 

  61. Sousa J, Macedo G, Pedrosa M, Becerra-Castro C, Castro-Silva S, Pereira M, Silva A, Nunes O, Manaia C (2017) Ozonation and UV 254 nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. J Hazard Mater 323:434–441

    CAS  Google Scholar 

  62. Alexander J, Knopp G, Dötsch A, Wieland A, Schwartz T (2016) Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Sci Total Environ 559:103–112

    CAS  Google Scholar 

  63. Zheng J, Su C, Zhou J, Xu L, Qian Y, Chen H (2017) Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem Eng J 317:309–316

    CAS  Google Scholar 

  64. Guo M, Yuan Q, Yang J (2013) Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant. Water Res 47(16):6388–6394

    CAS  Google Scholar 

  65. Mao D, Yu S, Rysz M, Luo Y, Yang F, Li F, Hou J, Mu Q, Alvarez P (2015) Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res 85:458–466

    CAS  Google Scholar 

  66. Yuan Q, Guo M, Yang J (2015) Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control. PLoS One 10(3):e0119403

    Google Scholar 

  67. Zhang Y, Zhuang Y, Geng J, Ren H, Zhang Y, Ding L, Xu K (2015) Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Sci Total Environ 512-513:125–132

    CAS  Google Scholar 

  68. Quach-Cu J, Herrera-Lynch B, Marciniak C, Adams S, Simmerman A, Reinke R (2018) The effect of primary, secondary, and tertiary wastewater treatment processes on antibiotic resistance gene (ARG) concentrations in solid and dissolved wastewater fractions. Water 10(1):37

    Google Scholar 

  69. He Y, Nurul S, Schmitt H, Sutton N, Murk T, Blokland M, Rijnaarts H, Langenhoff A (2018) Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents. Sci Total Environ 631-632:1572–1581

    CAS  Google Scholar 

  70. Li N, Sheng G, Lu Y, Zeng R, Yu H (2017) Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Res 111:204–212

    CAS  Google Scholar 

  71. Le T, Ng C, Tran N, Chen H, Gin K (2018) Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res 145:498–508

    CAS  Google Scholar 

  72. Ren S, Boo C, Guo N, Wang S, Elimelech M, Wang Y (2018) Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent. Environ Sci Technol 52(15):8666–8673

    CAS  Google Scholar 

  73. Zhu Y, Wang Y, Zhou S, Jiang X, Ma X, Liu C (2018) Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: role of membrane foulants. Water Res 130:139–150

    CAS  Google Scholar 

  74. Kappell A, Kimbell L, Seib M, Carey D, Choi M, Kalayil T, Fujimoto M, Zitomer D, McNamara P (2018) Removal of antibiotic resistance genes in an anaerobic membrane bioreactor treating primary clarifier effluent at 20 °C. Environ Sci 4(11):1783–1793

    CAS  Google Scholar 

  75. Moreira N, Narciso-da-Rocha C, Polo-López M, Pastrana-Martínez L, Faria J, Manaia C, Fernández-Ibáñez P, Nunes O, Silva A (2018) Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Res 135:195–206

    CAS  Google Scholar 

  76. Rodríguez-Chueca J, Varella della Giustina S, Rocha J, Fernandes T, Pablos C, Encinas Á, Barceló D, Rodríguez-Mozaz S, Manaia C, Marugán J (2019) Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: removal or persistence of antibiotics and antibiotic resistance genes? Sci Total Environ 652:1051–1061

    Google Scholar 

  77. Zhang Y, Zhuang Y, Geng J, Ren H, Xu K, Ding L (2016) Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Sci Total Environ 550:184–191

    CAS  Google Scholar 

  78. Dunlop P, Ciavola M, Rizzo L, McDowell D, Byrne J (2015) Effect of photocatalysis on the transfer of antibiotic resistance genes in urban wastewater. Catal Today 240:55–60

    CAS  Google Scholar 

  79. Ferro G, Guarino F, Castiglione S, Rizzo L (2016) Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Sci Total Environ 560-561:29–35

    CAS  Google Scholar 

  80. Giannakis S, Le T, Entenza J, Pulgarin C (2018) Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. Water Res 143:334–345

    CAS  Google Scholar 

  81. Karaolia P, Michael-Kordatou I, Hapeshi E, Drosou C, Bertakis Y, Christofilos D, Armatas G, Sygellou L, Schwartz T, Xekoukoulotakis N, Fatta-Kassinos D (2018) Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Appl Catal B Environ 224:810–824

    CAS  Google Scholar 

  82. ABPA. Brazilian Association of Animal Protein (BAAP) (2019). http://abpa-br.com.br/

  83. Regitano JB, Leal RMP (2010) Comportamento e impacto ambiental de antibióticos usados na produção animal brasileira. Rev Bras Ciênc Solo 34(3):601–616

    CAS  Google Scholar 

  84. European Centre for Disease Prevention and Control (ECDC) and European Medicines Agency (EMEA) (2009) ECDC/EMEA joint technical report – the bacterial challenge: time to react. Estocolmo

    Google Scholar 

  85. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14:742–750

    Google Scholar 

  86. ABCS. Brazilian Swine Breeders Association (BSBA) (2016) Mapeamento da suinocultura brasileira.1st edn. SEBRAE, Brasília, p 376

    Google Scholar 

  87. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166:145–167

    CAS  Google Scholar 

  88. Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408(5):1069–1075

    CAS  Google Scholar 

  89. Frey SK, Topp E, Khan IU, Ball BR, Edwards M, Gottschall N, Sunohara M, Lapen DR (2015) Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: influence of tile drainage control. Sci Total Environ 532:138–153

    CAS  Google Scholar 

  90. Pinheiro A, Rosa Albano R, Alves T, Kaufmann V, da Silva M (2013) Veterinary antibiotics and hormones in water from application of pig slurry to soil. Agric Water Manag 129:1–8

    Google Scholar 

  91. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8(1):1–13

    CAS  Google Scholar 

  92. Brasil (2016) Commission to establish sanitary surveillance actions related to microbial resistance, within the scope of ANVISA. Ordinance No. 854, of April 7, 2016. DOU n° 67 of 04/08/16. Committee responsible for elaborating and conducting the health sector component of the National Action Plan for Prevention and Control of Antimicrobial Resistance (NAPPCAM), within the Ministry of Health. Ordinance No. 2,775, dated December 22, 2016. Institution of Cipan. DOU n° 246 of 12/23/16. Section 1, p 164

    Google Scholar 

  93. Linton AH, Hinton MH (1988) Enterobacteriaceae associated with animals in health and disease. J Appl Bacteriol 65:71–85

    Google Scholar 

  94. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (vas) in the environment. Chemosphere 65(5):725–759

    CAS  Google Scholar 

  95. Arias CA, Murray BE (2008) Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti-Infect Ther 6(5):637–655

    CAS  Google Scholar 

  96. Kumar R, Lee J, Cho J (2012) Fate, occurrence, and toxicity of veterinary antibiotics in environment. J Korean Soc Appl Biol Chem 55(6):701–709

    CAS  Google Scholar 

  97. Migliore L, Civitareale C, Brambilla G, Cozzolino S, Casoria P, Gaudio L (1997) Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.). Agric Ecosyst Environ 65(2):163–168

    CAS  Google Scholar 

  98. Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52(7):1233–1244

    CAS  Google Scholar 

  99. Mobasseri G, Teh C, Ooi P, Thong K (2019) The emergence of colistin-resistant Klebsiella pneumoniae strains from swine in Malaysia. J Glob Antimicrob Resist 17:227–232

    Google Scholar 

  100. Amador P, Fernandes R, Prudêncio C, Duarte I (2019) Prevalence of antibiotic resistance genes in multidrug-resistant Enterobacteriaceae on Portuguese livestock manure. Antibiotics 8(1):23

    CAS  Google Scholar 

  101. Chénier MR, Juteau P (2009) Fate of chlortetracycline- and tylosin-resistant bacteria in an aerobic thermophilic sequencing batch reactor treating swine waste. Microb Ecol 58(1):86–97

    Google Scholar 

  102. McKinney CW, Loftin KA, Meyer MT, Davis JG, Pruden A (2010) Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44(16):6102–6109

    CAS  Google Scholar 

  103. Whitehead TR, Cotta MA (2013) Stored swine manure and swine faeces as reservoirs of antibiotic resistance genes. Lett Appl Microbiol 56(4):264–267

    CAS  Google Scholar 

  104. Wolters B, Widyasari-Mehta A, Kreuzig R, Smalla K (2016) Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock? Appl Microbiol Biotechnol 100(21):9343–9353

    CAS  Google Scholar 

  105. Yin Y, Gu J, Wang X, Song W, Zhang K, Sun W, Zhang X, Zhang Y, Li H (2017) Effects of copper addition on copper resistance, antibiotic resistance genes, and intl1 during swine manure composting. Front Microbiol 8:1–10

    Google Scholar 

  106. Zhang Y, Hu HW, Gou M, Wang JT, Chen D, He JZ (2017) Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ Pollut 231:1621–1632

    CAS  Google Scholar 

  107. Kyselková M, Jirout J, Vrchotová N, Schmitt H, Elhottová D (2015) Spread of tetracycline resistance genes at a conventional dairy farm. Front Microbiol 6:1–14

    Google Scholar 

  108. Ngbede EO, Raji MA, Kwanashie CN, Kwaga JKP (2017) Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria. Trop Anim Health Prod 49(3):451–458

    Google Scholar 

  109. Khan AA, Nawas MS, Khan SA, Steele R (2002) Detection and characterization of erythromycin-resistant methylase genes in gram-positive bacteria isolated from poultry litter. Appl Microbiol Biotechnol 59:377–381

    CAS  Google Scholar 

  110. Zhang Y, Li H, Gu J, Qian X, Yin Y, Li Y, Zhang R, Wang X (2016) Effects of adding different surfactants on antibiotic resistance genes and intI1 during chicken manure composting. Bioresour Technol 219:545–551

    CAS  Google Scholar 

  111. Li H, Duan M, Gu J, Zhang Y, Qian X, Ma J, Zhang R, Wang X (2017) Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicol Environ Saf 140:1–6

    Google Scholar 

  112. Yu Z, Michel FC, Hansen G, Wittum T, Morrison M (2005) Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl Environ Microbiol 71(11):6926–6933

    CAS  Google Scholar 

  113. Hölzel CS, Schwaiger K, Harms K, Küchenhoff H, Kunz A, Meyer K, Müller C, Bauer J (2010) Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria. Environ Res 110(4):318–326

    Google Scholar 

  114. Zhang M, Liu Y-S, Zhao J-L, Liu W-R, He L-Y, Zhang J-N, Chen J, He LK, Zhang Q-Q, Ying G-G (2018) Occurrence, fate and mass loadings of antibiotics in two swine wastewater treatment systems. Sci Total Environ 639:1421–1431

    CAS  Google Scholar 

  115. Joy SR, Bartelt-Hunt SL, Snow DD, Gilley JE, Woodbury BL, Parker DB, Marx DB, Li X (2013) Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry. Environ Sci Technol 47(21):12081–12088

    CAS  Google Scholar 

  116. Chen J, Yu Z, Michel FC, Wittum T, Morrison M (2007) Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol 73(14):4407–4416

    CAS  Google Scholar 

  117. Luby EM, Moorman TB, Soupir ML (2016) Fate and transport of tylosin-resistant bacteria and macrolide resistance genes in artificially drained agricultural fields receiving swine manure. Sci Total Environ 550:1126–1133

    CAS  Google Scholar 

  118. Alexander TW, Yanke JL, Reuter T, Topp E, Read RR, Selinger BL, McAllister TA (2011) Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics. BMC Microbiol 11(1):1–12

    Google Scholar 

  119. Zhang Y, Zhang C, Parker DB, Snow DD, Zhou Z, Li X (2013) Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons. Sci Total Environ 463-464:631–638

    CAS  Google Scholar 

  120. Brasil (2019) Ministry of Agriculture, Livestock and Food Supply. http://www.agricultura.gov.br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/tratamento-de-residuos-animais.pdf/view

  121. Jindal A, Kocherginskaya S, Mehboob A, Robert M, Mackie RI, Raskin L, Zilles JL (2006) Antimicrobial use and resistance in swine waste treatment systems. Appl Environ Microbiol 72(12):7813–7820

    CAS  Google Scholar 

  122. Graves AK, Liwimbi L, Israel DW, van Heugten E, Robinson B, Cahoon CW, Lubbers JF (2011) Distribution of ten antibiotic resistance genes in E. coli isolates from swine manure, lagoon effluent and soil collected from a lagoon waste application field. Folia Microbiol 56(2):131–137

    CAS  Google Scholar 

  123. Agga GE, Arthur TM, Durso LM, Harhay DM, Schmidt JW (2015) Antimicrobial-resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste. PLoS One 10(7):1–19

    Google Scholar 

  124. Huang X, Liu C, Li K, Su J, Zhu G, Liu L (2015) Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes. Water Res 70:109–117

    CAS  Google Scholar 

  125. Huang X, Zheng J, Liu C, Liu L, Liu Y, Fan H (2017) Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type. Chem Eng J 308:692–699

    CAS  Google Scholar 

  126. Resende JA, Diniz CG, Silva VL, Otenio MH, Bonnafous A, Arcuri PB, Godon JJ (2014) Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion. J Appl Microbiol 117(6):1689–1699

    CAS  Google Scholar 

  127. Sun W, Gu J, Wang X, Qian X, Tuo X (2018) Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater. Bioresour Technol 256:342–349

    CAS  Google Scholar 

  128. Qian X, Sun W, Gu J, Wang XJ, Sun JJ, Yin YN, Duan ML (2016) Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure. J Hazard Mater 315:61–69

    CAS  Google Scholar 

  129. Wallace JS, Garner E, Pruden A, Aga DS (2018) Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. Environ Pollut 236:764–772

    CAS  Google Scholar 

  130. Wang L, Oda Y, Grewal S, Morrison M, Michel FC, Yu Z (2012) Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. Microb Ecol 63(1):32–40

    CAS  Google Scholar 

  131. Zhang Y, Snow DD, Parker D, Zhou Z, Li X (2013) Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures. Environ Sci Technol 47(18):10206–10213

    CAS  Google Scholar 

  132. Tao CW, Hsu BM, Ji WT, Hsu TK, Kao PM, Hsu CP, Shen SM, Shen TY, Wan TJ, Huang YL (2014) Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci Total Environ 496:116–121

    CAS  Google Scholar 

  133. Wan M, Chou C (2015) Class 1 integrons and the antiseptic resistance gene (qacEΔ1) in municipal and swine slaughterhouse wastewater treatment plants and wastewater – associated methicillin-resistant Staphylococcus aureus. Int J Environ Res Public Health 12(6):6249–6260

    CAS  Google Scholar 

  134. Park JH, Kim YJ, Binn-Kim, Seo KH (2018) Spread of multidrug-resistant Escherichia coli harboring integron via swine farm waste water treatment plant. Ecotoxicol Environ Saf 149:36–42

    CAS  Google Scholar 

  135. Schmidt V, Cardoso MRI (2003) Sobrevivência e perfil de resistência aos antimicrobianos de Salmonella sp. isoladas em um sistema de tratamento de dejetos suínos. Ciência Rural 33(5):881–888

    Google Scholar 

  136. Hu Y, Jiang L, Zhang T, Jin L, Han Q, Zhang D, Lin K, Cui C (2018) Occurrence and removal of sulfonamide antibiotics and antibiotic resistance genes in conventional and advanced drinking water treatment processes. J Hazard Mater 360:364–372

    CAS  Google Scholar 

  137. Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G (2018) Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ 616-617:453–461. https://doi.org/10.1016/j.scitotenv.2017.10.318

    CrossRef  CAS  Google Scholar 

  138. Xu L, Ouyang W, Qian Y, Su C, Su J, Chen H (2016) High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ Pollut 213:119–126

    CAS  Google Scholar 

  139. Mataseje LF, Neumann N, Crago B, Baudry P, Zhanel GG, Louie M, Mulvey MR, ARO Water Study Group (2009) Characterization of cefoxitin-resistant Escherichia coli isolates from recreational beaches and private drinking water in Canada between 2004 and 2006. Antimicrob Agents Chemother 53(7):3126–3130. https://doi.org/10.1128/aac.01353-08

    CrossRef  CAS  Google Scholar 

  140. Macedo A, Freitas A, Abreu C, Machado E, Peixe L, Sousa J, Novais C (2011) Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal. Int J Food Microbiol 145(1):315–319

    Google Scholar 

  141. Samra ZQ, Naseem M, Khan SJ, Dar N, Athar MA (2009) PCR targeting of antibiotic resistant bacteria in public drinking water of Lahore Metropolitan, Pakistan. Biomed Environ Sci 22(6):458–463

    CAS  Google Scholar 

  142. Araujo C, Silva D, Carneiro M, Ribeiro S, Fontana-Maurell M, Alvarez P, Asensi M, Zahner V, Carvalho-Assef A (2016) Detection of carbapenemase genes in aquatic environments in Rio de Janeiro, Brazil. Antimicrob Agents Chemother 60(7):4380–4383

    Google Scholar 

  143. Conte D, Palmeiro J, da Silva Nogueira K, de Lima T, Cardoso M, Pontarolo R, Degaut Pontes F, Dalla-Costa L (2017) Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol Environ Saf 136:62–69

    CAS  Google Scholar 

  144. Freitas D, Araújo S, Folador A, Ramos R, Azevedo J, Tacão M, Silva A, Henriques I, Baraúna R (2019) Extended spectrum beta-lactamase-producing gram-negative bacteria recovered from an Amazonian Lake near the City of Belém, Brazil. Front Microbiol 10

    Google Scholar 

  145. De Oliveira AJFC, De Franca PTR, Pinto AB (2010) Antimicrobial resistance of heterotrophic marine bacteria isolated from seawater and sands of recreational beaches with different organic pollution levels in southeastern Brazil: evidences of resistance dissemination. Environ Monit Assess 169(1–4):375–384

    Google Scholar 

  146. Montezzi L, Campana E, Corrêa L, Justo L, Paschoal R, da Silva I, Souza M, Drolshagen M, Picão R (2015) Occurrence of carbapenemase-producing bacteria in coastal recreational waters. Int J Antimicrob Agents 45(2):174–177

    CAS  Google Scholar 

  147. Silva M, Filho I, Endo E, Nakamura C, Ueda-Nakamura T, Filho B (2008) Characterisation of potential virulence markers in Pseudomonas aeruginosa isolated from drinking water. Antonie Van Leeuwenhoek 93(4):323–334

    Google Scholar 

  148. Scoaris D, Colacite J, Nakamura C, Ueda-Nakamura T, de Abreu Filho B, Dias Filho B (2008) Virulence and antibiotic susceptibility of Aeromonas spp. isolated from drinking water. Antonie Van Leeuwenhoek 93(1–2):111–122

    CAS  Google Scholar 

  149. Brasil (2017) Ministry of Health (Ministério da Saúde) – Anexo XX da Portaria de Consolidação n. 5 de 28/09/2017 (in portuguese)

    Google Scholar 

  150. Sanganyado E, Gwenzi W (2019) Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks. Sci Total Environ 669(2019):785–797

    CAS  Google Scholar 

  151. WHO (World Health Organization) (2017) Guidelines for drinking water quality [electronic resource]: incorporating first addendum, vol 1. Recommendations, 4th edn. Electronic version

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Calabria de Araújo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Araújo, J.C. et al. (2020). Antibiotic Resistance, Sanitation, and Public Health. In: Manaia, C., Donner, E., Vaz-Moreira, I., Hong, P. (eds) Antibiotic Resistance in the Environment . The Handbook of Environmental Chemistry, vol 91. Springer, Cham. https://doi.org/10.1007/698_2020_470

Download citation