Skip to main content

Microplastics in Soil Ecosystem: Insight on Its Fate and Impacts on Soil Quality

  • Chapter
  • First Online:
Microplastics in Terrestrial Environments

Abstract

Plastic film has been intensively used in (semi-)arid agricultural regions, attributing to its great benefits of improving soil productivity and crop yield in China. However, plastic debris, as a consequence of film mulching, remains and accumulates in soil leading to severe soil quality problems, as well as environmental concerns especially the small fragmented particles referred to as microplastics (MPs). Though increasing attention has been aroused for MPs in the aquatic environment, the knowledge of MPs’ behavior and its effects on soil quality is extremely insufficient and urgently needed. In this study, we oriented the benefits of plastic film use, its contribution to agriculture productivity, and the effects of MPs on soil properties and its related soil quality indicators. Admittedly, the increasing trend of using plastic film made by light density of polyethylene would be continued in China, and the pieces of plastic particles would either be persistent and accumulated in soil layers or be slowly aging and degraded. The impacts of MPs on soil quality need more attention due to the limited studies available focusing on its fate and interactions associated with soil ecosystem services and environmental resilience. Although policies and agricultural extending services on plastic film application have been laughed for a few years, alternative materials used for producing environment-friendly film, plastic debris recycling, and solutions on pieced particle removal are the great challenges for sustainable farming. Thus, it is urgent to understand MPs’ effects on soil quality which is crucial for soil-plant system and soil pollution monitoring and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu Y, Du T, Ding R, Yuan Y, Li S, Tong L (2017) An isotope method to quantify soil evaporation and evaluate water vapor movement under plastic film mulch. Agric Water Manag 184:59–66. https://doi.org/10.1016/j.agwat.2017.01.005

    Article  Google Scholar 

  2. Zhang F, Zhang W, Li M, Zhang Y, Li F, Li C (2017) Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change? Agr Syst 150:67–77. https://doi.org/10.1016/j.agsy.2016.10.011

    Article  Google Scholar 

  3. de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416. https://doi.org/10.1111/gcb.14020

    Article  Google Scholar 

  4. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    Article  CAS  Google Scholar 

  5. Pellini G, Gomiero A, Fortibuoni T, Ferrà C, Grati F, Tassetti AN, Polidori P, Fabi G, Scarcella G (2018) Characterization of microplastic litter in the gastrointestinal tract of Solea solea from the Adriatic Sea. Environ Pollut 234:943–952. https://doi.org/10.1016/j.envpol.2017.12.038

    Article  CAS  Google Scholar 

  6. Zhang H, Zhou Q, Xie Z, Zhou Y, Tu C, Fu C, Mi W, Ebinghaus R, Christie P, Luo Y (2018) Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in North China. Sci Total Environ 616–617:1505–1512. https://doi.org/10.1016/j.scitotenv.2017.10.163

    Article  CAS  Google Scholar 

  7. Peng GY, Zhu BS, Yang DQ, Su L, Shi HH, Li DJ (2017) Microplastics in sediments of the Changjiang Estuary, China. Environ Pollut 225:283–290. https://doi.org/10.1016/j.envpol.2016.12.064

    Article  CAS  Google Scholar 

  8. Vaughan R, Turner SD, Rose NL (2017) Microplastics in the sediments of a UK urban lake. Environ Pollut 229:10–18. https://doi.org/10.1016/j.envpol.2017.05.057

    Article  CAS  Google Scholar 

  9. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190

    Article  CAS  Google Scholar 

  10. Bläsing M, Amelung W (2017) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  CAS  Google Scholar 

  11. Nizzetto L, Langaas S, Futter M (2016) Pollution: do microplastics spill on to farm soils? Nature 537:488–488. https://doi.org/10.1038/537488b

    Article  CAS  Google Scholar 

  12. Hurley RR, Nizzetto L (2018) Fate and occurrence of micro(nano)plastics in soils: knowledge gaps and possible risks. Curr Opin Environ Sci Health 1:6–11. https://doi.org/10.1016/j.coesh.2017.10.006

    Article  Google Scholar 

  13. Rezaei M, Riksen MJPM, Sirjani E, Sameni A, Geissen V (2019) Wind erosion as a driver for transport of light density microplastics. Sci Total Environ 669:273–281. https://doi.org/10.1016/j.scitotenv.2019.02.382

    Article  CAS  Google Scholar 

  14. Fendall LS, Sewell MA (2009) Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull 58:1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025

    Article  CAS  Google Scholar 

  15. Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60:2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014

    Article  CAS  Google Scholar 

  16. Wang J, Tan Z, Peng J, Qiu Q, Li M (2016) The behaviors of microplastics in the marine environment. Mar Environ Res 113:7–17. https://doi.org/10.1016/j.marenvres.2015.10.014

    Article  CAS  Google Scholar 

  17. Huerta Lwanga E, Vega JM, Quej VK, Chi JDLA, Cid LSD, Chi C, Segura GE, Gertsen H, Salánki T, Ploeg MVDJSR (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7:14071. https://doi.org/10.1038/s41598-017-14588-2

    Article  CAS  Google Scholar 

  18. Huerta LE, Thapa B, Yang X, Gertsen H, Salánki T, Geissen V, Garbeva P (2018) Decay of low-density polyethylene by bacteria extracted from earthworm's guts: a potential for soil restoration. Sci Total Environ 624:753–757. https://doi.org/10.1016/j.scitotenv.2017.12.144

    Article  CAS  Google Scholar 

  19. Oberbeckmann S, Osborn AM, Duhaime MB (2016) Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 11:e0159289. https://doi.org/10.1371/journal.pone.0159289

    Article  CAS  Google Scholar 

  20. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146. https://doi.org/10.1021/es401288x

    Article  CAS  Google Scholar 

  21. Tender CA, De Devriese LI, Annelies H, Sara M, Tom R, Peter DJ (2015) Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol 49:9629–9638. https://doi.org/10.1021/acs.est.5b01093

    Article  CAS  Google Scholar 

  22. Artham T, Sudhakar M, Venkatesan R, Madhavan Nair C, Murty KVGK, Doble M (2009) Biofouling and stability of synthetic polymers in sea water. Int Biodeter Biodegr 63:884–890. https://doi.org/10.1016/j.ibiod.2009.03.003

    Article  CAS  Google Scholar 

  23. Carson HS, Nerheim MS, Carroll KA, Eriksen MJMPB (2013) The plastic-associated microorganisms of the North Pacific gyre. Mar Pollut Bull 75:126–132. https://doi.org/10.1016/j.marpolbul.2013.07.054

    Article  CAS  Google Scholar 

  24. Benedict CV, Cameron JA, Huang J (1983) Polycaprolactone degradation by mixed and pure cultures of bacteria and yeast. Appl Polym 28:335–342. https://doi.org/10.1002/app.1983.070280129

    Article  CAS  Google Scholar 

  25. Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara TJA, Microbiology E (1998) Purification and properties of a polyester polyurethane-degrading enzymefrom Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62–67

    Article  CAS  Google Scholar 

  26. Burns RG, Deforest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  27. Liu H, Yang X, Li G, Lian C, Xu S, Che H, Ritsem CJ, Geisse V (2017) Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 185:907–917. https://doi.org/10.1016/j.chemosphere.2017.07.064

    Article  CAS  Google Scholar 

  28. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  29. Magdouli S, Daghrir R, Brar SK, Drogui P, Tyagi RD (2013) Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review. J Environ Manage 127:36–49. https://doi.org/10.1016/j.jenvman.2013.04.013

    Article  CAS  Google Scholar 

  30. Wang J, Lu Y, Ten Y, Christi PLZ (2013) Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ Pollut 180:265–273. https://doi.org/10.1016/j.envpol.2013.05.036

    Article  CAS  Google Scholar 

  31. DRSE(NBSC) (2017) China rural statistic yearbook. China Statistics Press, Beijing, pp 1–433

    Google Scholar 

  32. Gao H, Yan C, Liu Q, Ding W, Chen B, Li Z (2019) Effects of plastic mulching and plastic residue on agricultural production: a meta-analysis. Sci Total Environ 651:484–492. https://doi.org/10.1016/j.scitotenv.2018.09.105

    Article  CAS  Google Scholar 

  33. Heißner A, Schmidt S, Von Elsner B (2005) Comparison of plastic films with different optical properties for soil covering in horticulture: test under simulated environmental conditions. J Sci Food Agric 85:539–548. https://doi.org/10.1002/jsfa.1862

  34. Wang J, Li F, Song Q, Li S (2003) Effects of plastic film mulching on soil temperature and moisture and on yield formation of spring wheat. Chin J Appl Ecol 14:205–210. https://doi.org/10.1300/J064v25n04_035

    Article  CAS  Google Scholar 

  35. Tan CS, Papadopoulos AP, Liptay A (1984) Effect of various types of plastic films on the soil and air temperatures in 80-cm high tunnels. Sci Hortic 23:105–112. https://doi.org/10.1016/0304-4238(84)90013-x

    Article  CAS  Google Scholar 

  36. Wang L, Li XG, Lv J, Fu T, Ma Q, Song W, Wang YP, Li FM (2017) Continuous plastic-film mulching increases soil aggregation but decreases soil pH in semiarid areas of China. Soil Tillage Res 167:46–53. https://doi.org/10.1016/j.still.2016.11.004

    Article  Google Scholar 

  37. Zhou SH, Liu WZ, Liu W (2016) Effect of plastic mulching on water balance and yield of dryland maize in the loess plateau. INMATEH Agric Eng 49:37–46

    Google Scholar 

  38. Niu JY, Gan YT, Huang GB (2004) Dynamics of root growth in spring wheat mulched with plastic film. Crop Sci 44:1682–1688. https://doi.org/10.2135/cropsci2004.1682

    Article  Google Scholar 

  39. Zhang GS, Chan KY, Li GD, Huang GB (2008) Effect of straw and plastic film management under contrasting tillage practices on the physical properties of an erodible loess soil. Soil Tillage Res 98:113–119. https://doi.org/10.1016/j.still.2007.09.001

    Article  Google Scholar 

  40. Anikwe MAN, Mbah CN, Ezeaku PI, Onyia VN (2007) Tillage and plastic mulch effects on soil properties and growth and yield of cocoyam (Colocasia esculenta) on an ultisol in southeastern Nigeria. Soil Tillage Res 93:264–272. https://doi.org/10.1016/j.still.2006.04.007

    Article  Google Scholar 

  41. Wu Y, Huang F, Jia Z, Ren X, Cai T (2017) Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of Northwest China. Soil Tillage Res 166:113–121. https://doi.org/10.1016/j.still.2016.10.012

    Article  Google Scholar 

  42. Fan T, Wang S, Li Y, Yang X, Li S, Ma M (2019) Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in Rainfed areas. Agric Water Manag 217:1–10. https://doi.org/10.1016/j.agwat.2019.02.031

    Article  Google Scholar 

  43. Lin W, Liu W, Xue Q (2016) Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the loess plateau. Sci Rep 6:1–11. https://doi.org/10.1038/srep38995

    Article  CAS  Google Scholar 

  44. Zhu QC, Wei CZ, Li MN, Zhu JL, Wang J (2013) Nutrient availability in the rhizosphere of rice grown with plastic film mulch and drip irrigation. J Soil Sci Plant Nutr 13:943–953. https://doi.org/10.4067/s0718-95162013005000074

    Article  Google Scholar 

  45. Zhang HY, Liu QJ, Yu XX, Wang LZ (2014) Influences of mulching durations on soil erosion and nutrient losses in a peanut (Arachis hypogaea)-cultivated land. Nat Hazards 72:1175–1187. https://doi.org/10.1007/s11069-014-1063-1

    Article  Google Scholar 

  46. Wang X, Li Z, Xing Y (2015) Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric Water Manag 161:53–64. https://doi.org/10.1016/j.agwat.2015.07.019

    Article  Google Scholar 

  47. Farmer J, Zhang B, Jin X, Zhang P, Wang J (2017) Long-term effect of plastic film mulching and fertilization on bacterial communities in a brown soil revealed by high through-put sequencing. Arch Agron Soil Sci 63:230–241. https://doi.org/10.1080/03650340.2016.1193667

    Article  Google Scholar 

  48. Koitabashi M, Sameshima-Yamashita Y, Watanabe T, Shinozaki Y, Kitamoto H (2016) Phylloplane fungal enzyme accelerate decomposition of biodegradable plastic film in agricultural settings. Jpn Agr Res Q 50:229–234. https://doi.org/10.6090/jarq.50.229

    Article  CAS  Google Scholar 

  49. Wang YP, Li XG, Fu T, Wang L, Turner NC, Siddique KHM, Li FM (2016) Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric Forest Meteorol 228–229:42–51. https://doi.org/10.1016/j.agrformet.2016.06.016

    Article  Google Scholar 

  50. Kader MA, Senge M, Mojid MA, Ito K (2017) Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res 168:155–166. https://doi.org/10.1016/j.still.2017.01.001

    Article  Google Scholar 

  51. Liu EK, He WQ, Yan CR (2014) ‘White revolution’ to ‘white pollution’ – agricultural plastic film mulch in China. Environ Res Lett 9:1–3. https://doi.org/10.1088/1748-9326/9/9/091001

    Article  Google Scholar 

  52. Daryanto S, Wang L, Jacinthe PA (2017) Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems? Agric Water Manag 190:1–5. https://doi.org/10.1016/j.agwat.2017.05.005

    Article  Google Scholar 

  53. Yan C, He W, Mei X (2010) Agricultural application of plastic film and its residue pollution prevention. China Science Press, Beijing

    Google Scholar 

  54. He W, Li Z, Liu E, Liu Q, Sun D, Yan C (2017) The benefits and challenge of plastic film mulching in China. World Agriculture #1706, 10th May. http://www.world-agriculture.net/article/the-benefits-and-challenge-of-plastic-film-mulching-in-china

  55. Brodhagen M, Goldberger JR, Hayes DG, Inglis DA, Marsh TL, Miles C (2017) Policy considerations for limiting unintended residual plastic in agricultural soils. Environ Sci Policy 69:81–84. https://doi.org/10.1016/j.envsci.2016.12.014

    Article  Google Scholar 

  56. van der Zee SEATM, Stofberg SF, Yang X, Liu Y, Islam MN, Yin F (2017) Irrigation and drainage in agriculture: a salinity and environmental perspective. In: Current perspective on irrigation and drainage. INTECH Press, Ditzingen

    Google Scholar 

  57. Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Tröger J, Muñoz K, Frör O, Schaumann GE (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705. https://doi.org/10.1016/j.scitotenv.2016.01.153

    Article  CAS  Google Scholar 

  58. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008

    Article  CAS  Google Scholar 

  59. Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin? Environ Sci Technol 50:10777–10779. https://doi.org/10.1021/acs.est.6b04140

    Article  CAS  Google Scholar 

  60. Souza de MacHado AA, Lau CW, Till J, Kloas W, Lehmann A, Becker R, Rillig MC (2018) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52:9656–9665. https://doi.org/10.1021/acs.est.8b02212

    Article  CAS  Google Scholar 

  61. Souza de Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416. https://doi.org/10.1111/gcb.14020

    Article  Google Scholar 

  62. Rillig MC, Bonkowski M (2018) Microplastic and soil protists: a call for research. Environ Pollut 241:1128–1131. https://doi.org/10.1016/j.envpol.2018.04.147

    Article  CAS  Google Scholar 

  63. Jiang XJ, Liu WJ, Wang EH, Zhou TZ, Xin P (2017) Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin oasis, northwestern China. Soil Tillage Res 166:100–107. https://doi.org/10.1016/j.still.2016.10.011

    Article  Google Scholar 

  64. Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V (2018) Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229

    Article  CAS  Google Scholar 

  65. Liu H, Yang X, Liang C, Li Y, Qiao L, Ai Z, Xue S, Liu G (2019) Interactive effects of microplastics and glyphosate on the dynamics of soil dissolved organic matter in a Chinese loess soil. Catena 182:104177. https://doi.org/10.1016/j.catena.2019.104177

    Article  CAS  Google Scholar 

  66. Yang X, Bento CPM, Chen H, Zhang H, Xue S, Lwanga EH, Zomer P, Ritsema CJ, Geissen V (2018) Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environ Pollut 242:338–347. https://doi.org/10.1016/j.envpol.2018.07.006

    Article  CAS  Google Scholar 

  67. Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality – a critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  CAS  Google Scholar 

  68. Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46:6453–6454. https://doi.org/10.1021/es302011r

    Article  CAS  Google Scholar 

  69. Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, Van Der Ploeg M, Besseling E, Koelmans AA, Geissen V (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50:2685–2691. https://doi.org/10.1021/acs.est.5b05478

    Article  CAS  Google Scholar 

  70. Huerta LE, Gertsen H, Gooren H, Peters P, Salánki T, Ploeg vd M, Besseling E, Koelmans AA, Geissen V (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut 220:523–531. https://doi.org/10.1016/j.envpol.2016.09.096

    Article  CAS  Google Scholar 

  71. Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7:1362. https://doi.org/10.1038/s41598-017-01594-7

    Article  CAS  Google Scholar 

  72. Yang X, Lwanga EH, Bemani A, Gertsen H, Salanki T, Guo X, Fu H, Xue S, Ritsema C, Geissen V (2019) Biogenic transport of glyphosate in the presence of LDPE microplastics: a mesocosm experiment. Environ Pollut 245:829–835. https://doi.org/10.1016/j.envpol.2018.11.044

    Article  CAS  Google Scholar 

  73. Rose MT, Cavagnaro TR, Scanlan CA, Rose TJ, Vancov T, Kimber S, Kennedy IR, Kookana RS, Van Zwieten L (2015) Impact of herbicides on soil biology and function. Adv Agron 136:133–220. https://doi.org/10.1016/bs.agron.2015.11.005

    Article  Google Scholar 

  74. Scheurer M, Bigalke M (2018) Microplastics in Swiss floodplain soils. Environ Sci Technol 52:3591–3598. https://doi.org/10.1021/acs.est.7b06003

    Article  CAS  Google Scholar 

  75. Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784. https://doi.org/10.1021/es504038a

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support by Key Laboratory for efficient utilization of water resources in Dryland areas, Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, China (HNSJJ-2019-03, HNSJJ-2019-04); the National Natural Science Foundation of China (41877072); Natural Science Foundation of Shaanxi (2019JQ-639); and youth research funding of Gansu Academy of Agricultural Sciences (2019GAAS36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinglu Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, X. et al. (2020). Microplastics in Soil Ecosystem: Insight on Its Fate and Impacts on Soil Quality. In: He, D., Luo, Y. (eds) Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry, vol 95. Springer, Cham. https://doi.org/10.1007/698_2020_458

Download citation

Publish with us

Policies and ethics