Skip to main content

The Mediterranean Sea

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 94)

Abstract

The Mediterranean Sea, which is considered a biodiversity hotspot, is, by far, the leading tourism destination in the world, receiving more than 267 million international tourists in 2017, and producing a high anthropogenic pressure on its natural environment. The arrival of these tourists is mainly concentrated during the summer season when the use of sunscreen is higher among population. This chapter addressed the potential impact that the use and dumping of sunscreen components has in the Mediterranean Sea and the toxic effects of these components on its local marine biota (e.g. Paracentrotus lividus and Mytilus galloprovincialis), highlighting the lack of information on emblematic endangered species such as the seagrass Posidonia oceanica.

Keywords

  • Biodiversity
  • Environmental threats
  • Mediterranean Sea
  • Sunscreen
  • Tourism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/698_2019_443
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-56077-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Lionello P, Abrantes F, Congedi L et al (2012) Introduction: Mediterranean climate – background information. In: The climate of the Mediterranean region. Elsevier, Amsterdam, pp xxxv–xxxc

    CrossRef  Google Scholar 

  2. Tanhua T, Hainbucher D, Schroeder K et al (2013) The Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci 9:789–803. https://doi.org/10.5194/os-9-789-2013

    CrossRef  Google Scholar 

  3. Powley HR, Krom MD, Cappellen PV (2016) Circulation and oxygen cycling in the Mediterranean Sea: sensitivity to future climate change. J Geophys Res Oceans 121:8230–8247. https://doi.org/10.1002/2016JC012224

    CAS  CrossRef  Google Scholar 

  4. Tsimplis MN, Proctor R, Flather RA (1995) A two-dimensional tidal model for the Mediterranean Sea. J Geophys Res 100(16):16223. https://doi.org/10.1029/95JC01671

    CrossRef  Google Scholar 

  5. Said MA, Gerges MA, Maiyza IA et al (2011) Changes in Atlantic water characteristics in the South-Eastern Mediterranean Sea as a result of natural and anthropogenic activities. Oceanologia 53:81–95. https://doi.org/10.5697/oc.53-1.081

    CrossRef  Google Scholar 

  6. Bonnet S, Tovar-Sánchez A, Panzeca C et al (2013) Geographical gradients of dissolved vitamin B12 in the Mediterranean Sea. Front Microbiol 4. https://doi.org/10.3389/fmicb.2013.00126

  7. Boyle EA, Chapnick SD, Bai XX, Spivack A (1985) Trace metal enrichments in the Mediterranean Sea. Earth Planet Sci Lett 74:405–419. https://doi.org/10.1016/S0012-821X(85)80011-X

    CAS  CrossRef  Google Scholar 

  8. Sarthou G, Jeandel C (2001) Seasonal variations of iron concentrations in the Ligurian Sea and iron budget in the Western Mediterranean Sea. Mar Chem 74:115–129. https://doi.org/10.1016/S0304-4203(00)00119-5

    CAS  CrossRef  Google Scholar 

  9. Sherrell RM, Boyle EA (1988) Zinc, chromium, vanadium and iron in the Mediterranean Sea. Deep Sea Res A Oceanogr Res Papers 35:1319–1334. https://doi.org/10.1016/0198-0149(88)90085-4

    CAS  CrossRef  Google Scholar 

  10. Jordi A, Basterretxea G, Tovar-Sánchez A et al (2012) Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. Proc Natl Acad Sci U S A 109(52):21246–21249. https://doi.org/10.1073/pnas.1207567110

    CrossRef  Google Scholar 

  11. Tovar-Sánchez A, Serón J, Marbà N et al (2010) Long-term records of trace metal content of western Mediterranean seagrass (Posidonia oceanica) meadows: natural and anthropogenic contributions. J Geophys Res 115:10. https://doi.org/10.1029/2009JG001076

    CAS  CrossRef  Google Scholar 

  12. Pasqueron de Fommervault O, D’Ortenzio F, Mangin A et al (2015) Seasonal variability of nutrient concentrations in the Mediterranean Sea: contribution of bio-Argo floats: nitrate float data in the Mediterranean. J Geophys Res Oceans 120:8528–8550. https://doi.org/10.1002/2015JC011103

    CAS  CrossRef  Google Scholar 

  13. Siokou-Frangou I, Christaki U, Mazzocchi MG et al (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7:1543–1586. https://doi.org/10.5194/bg-7-1543-2010

    CrossRef  Google Scholar 

  14. Béthoux JP, Morin P, Ruiz-Pino DP (2002) Temporal trends in nutrient ratios: chemical evidence of Mediterranean ecosystem changes driven by human activity. Deep-Sea Res II Top Stud Oceanogr 49:2007–2016. https://doi.org/10.1016/S0967-0645(02)00024-3

    CrossRef  Google Scholar 

  15. Powley HR, Cappellen PV, Krom MD (2017) Nutrient cycling in the Mediterranean Sea: the key to understanding how the unique marine ecosystem functions and responds to anthropogenic pressures. In: Fuerst-Bjelis B (ed) Mediterranean identities – environment, society, culture. InTech, London

    Google Scholar 

  16. Guieu C, Bozec Y, Blain S et al (2002) Impact of high Saharan dust inputs on dissolved iron concentrations in the Mediterranean Sea. Geophys Res Lett 29(19):1911. https://doi.org/10.1029/2001GL014454

    CAS  CrossRef  Google Scholar 

  17. Ternon E, Guieu C, Loÿe-Pilot M-D et al (2009) The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea. Biogeosci Discuss 6:10737–10773

    CrossRef  Google Scholar 

  18. Tovar-Sánchez A, Arrieta JM, Duarte CM, Sañudo-Wilhelmy SA (2014) Spatial gradients in trace metal concentrations in the surface microlayer of the Mediterranean Sea. Front Mar Sci 1. https://doi.org/10.3389/fmars.2014.00079

  19. Struglia MV, Mariotti A, Filograsso A (2004) River discharge into the Mediterranean Sea: climatology and aspects of the observed variability. J Clim 17:4740–4751. https://doi.org/10.1175/JCLI-3225.1

    CrossRef  Google Scholar 

  20. Trezzi G, Garcia-Orellana J, Rodellas V et al (2016) Submarine groundwater discharge: a significant source of dissolved trace metals to the North Western Mediterranean Sea. Mar Chem 186:90–100. https://doi.org/10.1016/j.marchem.2016.08.004

    CAS  CrossRef  Google Scholar 

  21. Coll M, Piroddi C, Steenbeek J et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e11842. https://doi.org/10.1371/journal.pone.0011842

    CAS  CrossRef  Google Scholar 

  22. Gubbay S, Sanders N, Haynes T et al (2016) European red list of habitats. Part 1. Marine habitats. Publications Office of the European Union, Luxembourg

    Google Scholar 

  23. Mannino AM, Balistreri P, Deidun A (2017) The marine biodiversity of the Mediterranean Sea in a changing climate: the impact of biological invasions. In: Fuerst-Bjelis B (ed) Mediterranean identities – environment, society, culture. InTech, London

    Google Scholar 

  24. Médail F (2017) The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Reg Environ Chang 17:1775–1790. https://doi.org/10.1007/s10113-017-1123-7

    CrossRef  Google Scholar 

  25. UNEP (2017) Mediterranean 2017 quality status report. Socio-economic characteristics

    Google Scholar 

  26. Tovar-Sánchez A (2019) Massive coastal tourism influx to the Mediterranean Sea: the environmental risk of sunscreens. Sci Total Environ:6

    Google Scholar 

  27. European Commission (2016) Coastal and maritime tourism. In: Maritime Affairs – European Commission. https://ec.europa.eu/maritimeaffairs/policy/coastal_tourism_en. Accessed 5 Mar 2019

  28. Ecorys, Deltares and Oceanic DÕveloppement (2012) Blue Growth, Scenarios and drivers for Sustainable Growth from the Oceans, Seas and Coasts. European Commission, DG MARE, Rotterdam/Brussels

    Google Scholar 

  29. European Commission (2012) Blue Growth, Opportunities for marine and maritime sustainable growth. Publications Office of the European Union, Luxembourg

    Google Scholar 

  30. World Tourism Organization (UNWTO) (2019) UNWTO – International Tourism Results 2018 and Outlook 2019

    Google Scholar 

  31. International Tourist Arrivals Reach 1.4 billion Two Years Ahead of Forecasts|World Tourism Organization UNWTO. http://www2.unwto.org/press-release/2019-01-21/international-tourist-arrivals-reach-14-billion-two-years-ahead-forecasts. Accessed 26 Feb 2019

  32. World Tourism Organization (UNWTO) (2018) UNWTO Tourism Highlights: 2018 Edition. World Tourism Organization (UNWTO)

    Google Scholar 

  33. World Tourism Organization (UNWTO) (2011) Tourism towards 2030: global overview. UNWTO, Madrid

    Google Scholar 

  34. Tovar-Sánchez A, Sánchez-Quiles D, Rodríguez-Romero A (2019) Massive coastal tourism influx to the Mediterranean Sea: the environmental risk of sunscreens. Sci Total Environ 656:316–321. https://doi.org/10.1016/j.scitotenv.2018.11.399

    CAS  CrossRef  Google Scholar 

  35. Eurostat/Regions and Cities Illustrated (RCI). In: Eurostat. http://ec.europa.eu/eurostat/cache/RCI/. Accessed 20 Aug 2019

  36. MedCruise Association (2018) Cruise activities in MedCruise ports. 2017 statistics. MedCruise Association, Greece

    Google Scholar 

  37. UNESCO Human Heritage. https://www.illesbalears.travel/article/en/mallorca-menorca-ibiza/unesco-human-heritage. Accessed 7 Mar 2019

  38. Balearic Islands Tourism Agency. http://www.caib.es/sites/estadistiquesdelturisme/es/anuarios_de_turismo-22816/. Accessed 7 Mar 2019

  39. WHO|Sun protection. In: WHO. http://www.who.int/uv/sun_protection/en/. Accessed 18 Mar 2019

  40. Cabezas-Rabadán C, Rodilla M, Pardo-Pascual JE, Herrera-Racionero P (2019) Assessing users’ expectations and perceptions on different beach types and the need for diverse management frameworks along the Western Mediterranean. Land Use Policy 81:219–231. https://doi.org/10.1016/j.landusepol.2018.10.027

    CrossRef  Google Scholar 

  41. Mas Parera L, Blázquez Salom M (2005) An analysis of beaches’ frequency of use and a study of associated sustainability-related parameters. Documents d’Analisi Geografica 15–40

    Google Scholar 

  42. Tovar-Sánchez A, Sánchez-Quiles D, Basterretxea G et al (2013) Sunscreen products as emerging pollutants to coastal waters. PLoS One 8:e65451. https://doi.org/10.1371/journal.pone.0065451

    CAS  CrossRef  Google Scholar 

  43. Seité S, del MV, Moyal D, Friedman AJ (2017) Public primary and secondary skin cancer prevention, perceptions and knowledge: an international cross-sectional survey. J Eur Acad Dermatol Venereol 31:815–820. https://doi.org/10.1111/jdv.14104

    CrossRef  Google Scholar 

  44. Osterwalder U, Sohn M, Herzog B (2014) Global state of sunscreens. Photodermatol Photoimmunol Photomed 30:62–80. https://doi.org/10.1111/phpp.12112

    CrossRef  Google Scholar 

  45. Cercato MC, Ramazzotti V, Sperduti I et al (2015) Sun protection among Spanish beachgoers: knowledge, attitude and behaviour. J Cancer Educ 30:4–11. https://doi.org/10.1007/s13187-014-0671-5

    CAS  CrossRef  Google Scholar 

  46. Picot-Groz M, Fenet H, Martinez Bueno MJ et al (2018) Diurnal variations in personal care products in seawater and mussels at three Mediterranean coastal sites. Environ Sci Pollut Res Int 25:9051–9059. https://doi.org/10.1007/s11356-017-1100-1

    CAS  CrossRef  Google Scholar 

  47. Tarazona I, Chisvert A, León Z, Salvador A (2010) Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. J Chromatogr A 1217:4771–4778. https://doi.org/10.1016/j.chroma.2010.05.047

    CAS  CrossRef  Google Scholar 

  48. Benedé JL, Chisvert A, Salvador A et al (2014) Determination of UV filters in both soluble and particulate fractions of seawaters by dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Anal Chim Acta 812:50–58. https://doi.org/10.1016/j.aca.2013.12.033

    CAS  CrossRef  Google Scholar 

  49. Tarazona I, Chisvert A, Salvador A (2014) Development of a gas chromatography-mass spectrometry method for the determination of ultraviolet filters in beach sand samples. Anal Methods 6:7772–7780. https://doi.org/10.1039/C4AY01403K

    CAS  CrossRef  Google Scholar 

  50. Amine H, Gomez E, Halwani J et al (2012) UV filters, ethylhexyl methoxycinnamate, octocrylene and ethylhexyl dimethyl PABA from untreated wastewater in sediment from eastern Mediterranean river transition and coastal zones. Mar Pollut Bull 64:2435–2442. https://doi.org/10.1016/j.marpolbul.2012.07.051

    CAS  CrossRef  Google Scholar 

  51. Bachelot M, Li Z, Munaron D et al (2012) Organic UV filter concentrations in marine mussels from French coastal regions. Sci Total Environ 420:273–279. https://doi.org/10.1016/j.scitotenv.2011.12.051

    CAS  CrossRef  Google Scholar 

  52. Sánchez-Brunete C, Miguel E, Albero B, Tadeo JL (2011) Analysis of salicylate and benzophenone-type UV filters in soils and sediments by simultaneous extraction cleanup and gas chromatography–mass spectrometry. J Chromatogr A 1218:4291–4298. https://doi.org/10.1016/j.chroma.2011.05.030

    CAS  CrossRef  Google Scholar 

  53. Magi E, Di Carro M, Scapolla C, Nguyen KTN (2012) Stir bar sorptive extraction and LC-MS/MS for trace analysis of UV filters in different water matrices. Chromatographia 75:973–982. https://doi.org/10.1007/s10337-012-2202-z

    CAS  CrossRef  Google Scholar 

  54. Cuderman P, Heath E (2007) Determination of UV filters and antimicrobial agents in environmental water samples. Anal Bioanal Chem 387:1343–1350. https://doi.org/10.1007/s00216-006-0927-y

    CAS  CrossRef  Google Scholar 

  55. Vidal L, Chisvert A, Canals A, Salvador A (2010) Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples. Talanta 81:549–555. https://doi.org/10.1016/j.talanta.2009.12.042

    CAS  CrossRef  Google Scholar 

  56. Nguyen KTN, Scapolla C, Di Carro M, Magi E (2011) Rapid and selective determination of UV filters in seawater by liquid chromatography-tandem mass spectrometry combined with stir bar sorptive extraction. Talanta 85:2375–2384. https://doi.org/10.1016/j.talanta.2011.07.085

    CAS  CrossRef  Google Scholar 

  57. Lambropoulou DA, Giokas DL, Sakkas VA et al (2002) Gas chromatographic determination of 2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction. J Chromatogr A 967:243–253. https://doi.org/10.1016/S0021-9673(02)00781-1

    CAS  CrossRef  Google Scholar 

  58. Giokas DL, Sakkas VA, Albanis TA (2004) Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography-photodiode array detection and gas chromatography-mass spectrometry. J Chromatogr A 1026:289–293. https://doi.org/10.1016/j.chroma.2003.10.114

    CAS  CrossRef  Google Scholar 

  59. Giokas DL, Sakkas VA, Albanis TA, Lampropoulou DA (2005) Determination of UV-filter residues in bathing waters by liquid chromatography UV-diode array and gas chromatography-mass spectrometry after micelle mediated extraction-solvent back extraction. J Chromatogr A 1077:19–27. https://doi.org/10.1016/j.chroma.2005.04.074

    CAS  CrossRef  Google Scholar 

  60. Combi T, Pintado-Herrera MG, Lara-Martin PA et al (2016) Distribution and fate of legacy and emerging contaminants along the Adriatic Sea: a comparative study. Environ Pollut 218:1055–1064. https://doi.org/10.1016/j.envpol.2016.08.057

    CAS  CrossRef  Google Scholar 

  61. Sang Z, Leung KS-Y (2016) Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters. Sci Total Environ 566–567:489–498. https://doi.org/10.1016/j.scitotenv.2016.05.120

    CAS  CrossRef  Google Scholar 

  62. Gago-Ferrero P, Alonso MB, Bertozzi CP et al (2013) First determination of UV filters in marine mammals. Octocrylene levels in Franciscana dolphins. Environ Sci Technol 47:5619–5625. https://doi.org/10.1021/es400675y

    CAS  CrossRef  Google Scholar 

  63. Sánchez-Quiles D, Tovar-Sánchez A (2015) Are sunscreens a new environmental risk associated with coastal tourism? Environ Int 83:158–170. https://doi.org/10.1016/j.envint.2015.06.007

    CrossRef  Google Scholar 

  64. Corinaldesi C, Damiani E, Marcellini F et al (2017) Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Sci Rep 7:7815. https://doi.org/10.1038/s41598-017-08013-x

    CAS  CrossRef  Google Scholar 

  65. Sendra M, Sánchez-Quiles D, Blasco J et al (2017) Effects of TiO2 nanoparticles and sunscreens on coastal marine microalgae: ultraviolet radiation is key variable for toxicity assessment. Environ Int 98:62–68. https://doi.org/10.1016/j.envint.2016.09.024

    CAS  CrossRef  Google Scholar 

  66. Castro M, Fernandes JO, Pena A, Cunha SC (2018) Occurrence, profile and spatial distribution of UV-filters and musk fragrances in mussels from Portuguese coastline. Mar Environ Res 138:110–118. https://doi.org/10.1016/j.marenvres.2018.04.005

    CAS  CrossRef  Google Scholar 

  67. Sureda A, Capó X, Busquets-Cortés C, Tejada S (2018) Acute exposure to sunscreen containing titanium induces an adaptive response and oxidative stress in Mytilus galloprovincialis. Ecotoxicol Environ Saf 149:58–63. https://doi.org/10.1016/j.ecoenv.2017.11.014

    CAS  CrossRef  Google Scholar 

  68. Vidal-Liñán L, Villaverde-de-Sáa E, Rodil R et al (2018) Bioaccumulation of UV filters in Mytilus galloprovincialis mussel. Chemosphere 190:267–271. https://doi.org/10.1016/j.chemosphere.2017.09.144

    CAS  CrossRef  Google Scholar 

  69. Paredes E, Perez S, Rodil R et al (2014) Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata. Chemosphere 104:44–50. https://doi.org/10.1016/j.chemosphere.2013.10.053

    CAS  CrossRef  Google Scholar 

  70. Araújo MJ, Rocha RJM, Soares AMVM et al (2018) Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858. Sci Total Environ 628–629:1395–1404. https://doi.org/10.1016/j.scitotenv.2018.02.112

    CAS  CrossRef  Google Scholar 

  71. Giraldo A, Montes R, Rodil R et al (2017) Ecotoxicological evaluation of the UV filters Ethylhexyl dimethyl p-Aminobenzoic acid and Octocrylene using marine organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus. Arch Environ Contam Toxicol 72:606–611. https://doi.org/10.1007/s00244-017-0399-4

    CAS  CrossRef  Google Scholar 

  72. Ciacci C, Canonico B, Bilaniĉovă D et al (2012) Immunomodulation by different types of N-oxides in the Hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS One 7:e36937. https://doi.org/10.1371/journal.pone.0036937

    CAS  CrossRef  Google Scholar 

  73. Montes MO, Hanna SK, Lenihan HS, Keller AA (2012) Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225–226:139–145. https://doi.org/10.1016/j.jhazmat.2012.05.009

    CAS  CrossRef  Google Scholar 

  74. Hanna SK, Miller RJ, Muller EB et al (2013) Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PLoS One 8:e61800. https://doi.org/10.1371/journal.pone.0061800

    CAS  CrossRef  Google Scholar 

  75. Katsumiti A, Arostegui I, Oron M et al (2016) Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: relevance of size, shape and additives. Nanotoxicology 10:185–193. https://doi.org/10.3109/17435390.2015.1039092

    CAS  CrossRef  Google Scholar 

  76. Manzo S, Miglietta ML, Rametta G et al (2013) Embryotoxicity and spermiotoxicity of nanosized ZnO for Mediterranean sea urchin Paracentrotus lividus. J Hazard Mater 254–255:1–9. https://doi.org/10.1016/j.jhazmat.2013.03.027

    CAS  CrossRef  Google Scholar 

  77. Oliviero M, Schiavo S, Rametta G et al (2017) Different sizes of ZnO diversely affected the cytogenesis of the sea urchin Paracentrotus lividus. Sci Total Environ 607–608:176–183. https://doi.org/10.1016/j.scitotenv.2017.07.038

    CAS  CrossRef  Google Scholar 

  78. Oliviero M, Schiavo S, Dumontet S, Manzo S (2019) DNA damages and offspring quality in sea urchin Paracentrotus lividus sperms exposed to ZnO nanoparticles. Sci Total Environ 651:756–765. https://doi.org/10.1016/j.scitotenv.2018.09.243

    CAS  CrossRef  Google Scholar 

  79. Nigro M, Bernardeschi M, Costagliola D et al (2015) n-TiO2 and CdCl2 co-exposure to titanium dioxide nanoparticles and cadmium: genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). Aquat Toxicol 168:72–77. https://doi.org/10.1016/j.aquatox.2015.09.013

    CAS  CrossRef  Google Scholar 

  80. Vannuccini ML, Grassi G, Leaver MJ, Corsi I (2015) Combination effects of nano-TiO2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. Comp Biochem Physiol C Toxicol Pharmacol 176–177:71–78. https://doi.org/10.1016/j.cbpc.2015.07.009

    CAS  CrossRef  Google Scholar 

  81. Canesi L, Fabbri R, Gallo G et al (2010) Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat Toxicol 100:168–177. https://doi.org/10.1016/j.aquatox.2010.04.009

    CAS  CrossRef  Google Scholar 

  82. Canesi L, Ciacci C, Vallotto D et al (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 96:151–158. https://doi.org/10.1016/j.aquatox.2009.10.017

    CAS  CrossRef  Google Scholar 

  83. Barmo C, Ciacci C, Canonico B et al (2013) In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 132–133:9–18. https://doi.org/10.1016/j.aquatox.2013.01.014

    CAS  CrossRef  Google Scholar 

  84. Libralato G, Minetto D, Totaro S et al (2013) Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar Environ Res 92:71–78. https://doi.org/10.1016/j.marenvres.2013.08.015

    CAS  CrossRef  Google Scholar 

  85. D’Agata A, Fasulo S, Dallas LJ et al (2014) Enhanced toxicity of “bulk” titanium dioxide compared to “fresh” and “aged” nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 8:549–558. https://doi.org/10.3109/17435390.2013.807446

    CAS  CrossRef  Google Scholar 

  86. Balbi T, Smerilli A, Fabbri R et al (2014) Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci Total Environ 493:355–364. https://doi.org/10.1016/j.scitotenv.2014.05.146

    CAS  CrossRef  Google Scholar 

  87. Della Torre C, Balbi T, Grassi G et al (2015) Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J Hazard Mater 297:92–100. https://doi.org/10.1016/j.jhazmat.2015.04.072

    CAS  CrossRef  Google Scholar 

  88. Katsumiti A, Berhanu D, Howard KT et al (2015) Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: influence of synthesis method, crystalline structure, size and additive. Nanotoxicology 9:543–553. https://doi.org/10.3109/17435390.2014.952362

    CAS  CrossRef  Google Scholar 

  89. Rocco L, Santonastaso M, Nigro M et al (2015) Genomic and chromosomal damage in the marine mussel Mytilus galloprovincialis: effects of the combined exposure to titanium dioxide nanoparticles and cadmium chloride. Mar Environ Res 111:144–148. https://doi.org/10.1016/j.marenvres.2015.09.004

    CAS  CrossRef  Google Scholar 

  90. Gornati R, Longo A, Rossi F et al (2016) Effects of titanium dioxide nanoparticle exposure in Mytilus galloprovincialis gills and digestive gland. Nanotoxicology 10:807–817. https://doi.org/10.3109/17435390.2015.1132348

    CAS  CrossRef  Google Scholar 

  91. Mezni A, Alghool S, Sellami B et al (2018) Titanium dioxide nanoparticles: synthesis, characterisations and aquatic ecotoxicity effects. Chem Ecol 34:288–299. https://doi.org/10.1080/02757540.2017.1420178

    CAS  CrossRef  Google Scholar 

  92. Auguste M, Lasa A, Pallavicini A et al (2019) Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci Total Environ 670:129–137. https://doi.org/10.1016/j.scitotenv.2019.03.133

    CAS  CrossRef  Google Scholar 

  93. Grimaldi AM, Belcari P, Pagano E et al (2013) Immune responses of Octopus vulgaris (Mollusca: Cephalopoda) exposed to titanium dioxide nanoparticles. J Exp Mar Biol Ecol 447:123–127. https://doi.org/10.1016/j.jembe.2013.02.018

    CAS  CrossRef  Google Scholar 

  94. Gambardella C, Aluigi MG, Ferrando S et al (2013) Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. Aquat Toxicol 130–131:77–85. https://doi.org/10.1016/j.aquatox.2012.12.025

    CAS  CrossRef  Google Scholar 

  95. Gambardella C, Ferrando S, Morgana S et al (2015) Exposure of Paracentrotus lividus male gametes to engineered nanoparticles affects skeletal bio-mineralization processes and larval plasticity. Aquat Toxicol 158:181–191. https://doi.org/10.1016/j.aquatox.2014.11.014

    CAS  CrossRef  Google Scholar 

  96. Alijagic A, Gaglio D, Napodano E et al (2020) Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. J Hazard Mater 384:121389. https://doi.org/10.1016/j.jhazmat.2019.121389

    CAS  CrossRef  Google Scholar 

  97. Saidani W, Sellami B, Khazri A et al (2019) Metal accumulation, biochemical and behavioral responses on the Mediterranean clams Ruditapes decussatus exposed to two photocatalyst nanocomposites (TiO2 NPs and AuTiO2NPs). Aquat Toxicol 208:71–79. https://doi.org/10.1016/j.aquatox.2019.01.003

    CAS  CrossRef  Google Scholar 

  98. Bernardeschi M, Guidi P, Scarcelli V et al (2010) Genotoxic potential of TiO2 on bottlenose dolphin leukocytes. Anal Bioanal Chem 396:619–623. https://doi.org/10.1007/s00216-009-3261-3

    CAS  CrossRef  Google Scholar 

  99. Frenzilli G, Bernardeschi M, Guidi P et al (2014) Effects of in vitro exposure to titanium dioxide on DNA integrity of bottlenose dolphin (Tursiops truncatus) fibroblasts and leukocytes. Mar Environ Res 100:68–73. https://doi.org/10.1016/j.marenvres.2014.01.002

    CAS  CrossRef  Google Scholar 

  100. Danovaro R, Corinaldesi C (2003) Sunscreen products increase virus production through prophage induction in marine bacterioplankton. Microb Ecol 45:109–118. https://doi.org/10.1007/s00248-002-1033-0

    CAS  CrossRef  Google Scholar 

  101. Sánchez-Quiles D, Tovar-Sánchez A (2014) Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ Sci Technol 48:9037–9042. https://doi.org/10.1021/es5020696

    CAS  CrossRef  Google Scholar 

  102. Díaz-Gil C, Cotgrove L, Smee SL et al (2017) Anthropogenic chemical cues can alter the swimming behaviour of juvenile stages of a temperate fish. Mar Environ Res 125:34–41. https://doi.org/10.1016/j.marenvres.2016.11.009

    CAS  CrossRef  Google Scholar 

  103. Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077. https://doi.org/10.1016/j.watres.2003.10.029

    CAS  CrossRef  Google Scholar 

  104. Zhang A-P, Sun Y-P (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10:3191–3193. https://doi.org/10.3748/wjg.v10.i21.3191

    CAS  CrossRef  Google Scholar 

  105. Robichaud CO, Uyar AE, Darby MR et al (2009) Estimates of upper bounds and trends in Nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233. https://doi.org/10.1021/es8032549

    CAS  CrossRef  Google Scholar 

  106. Ma J, Liu J, Bao Y et al (2013) Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram Int 39:2803–2810. https://doi.org/10.1016/j.ceramint.2012.09.049

    CAS  CrossRef  Google Scholar 

  107. Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186C:257–271. https://doi.org/10.1016/j.envpol.2013.11.014

    CAS  CrossRef  Google Scholar 

  108. Canesi L, Corsi I (2016) Effects of nanomaterials on marine invertebrates. Sci Total Environ 565:933–940. https://doi.org/10.1016/j.scitotenv.2016.01.085

    CAS  CrossRef  Google Scholar 

  109. Canesi L, Ciacci C, Fabbri R et al (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21. https://doi.org/10.1016/j.marenvres.2011.06.005

    CAS  CrossRef  Google Scholar 

  110. Canesi L, Frenzilli G, Balbi T et al (2014) Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 153:53–65. https://doi.org/10.1016/j.aquatox.2013.11.002

    CAS  CrossRef  Google Scholar 

  111. Muller EB, Hanna SK, Lenihan HS et al (2014) Impact of engineered zinc oxide nanoparticles on the energy budgets of Mytilus galloprovincialis. J Sea Res 94:29–36. https://doi.org/10.1016/j.seares.2013.12.013

    CrossRef  Google Scholar 

  112. Banni M, Sforzini S, Balbi T et al (2016) Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland: a transcriptomic and immunohistochemical study. Environ Res 145:135–144. https://doi.org/10.1016/j.envres.2015.12.003

    CAS  CrossRef  Google Scholar 

  113. Rodríguez-Romero A, Ruiz-Gutiérrez G, Viguri JR, Tovar-Sánchez A (2019) Sunscreens as a new source of metals and nutrients to coastal waters. Environ Sci Technol 53:10177–10187. https://doi.org/10.1021/acs.est.9b02739

    CAS  CrossRef  Google Scholar 

  114. Downs CA, Kramarsky-Winter E, Segal R et al (2016) Toxicopathological effects of the sunscreen UV filter, Oxybenzone (Benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Arch Environ Contam Toxicol 70:265–288. https://doi.org/10.1007/s00244-015-0227-7

    CAS  CrossRef  Google Scholar 

  115. Republic of Palau. Office of the President (2018) Senate Bill No. 10-135, SD1, HD1: The Responsible Tourism Education Act of 2018. https://www.palaugov.pw/wp-content/uploads/2018/10/RPPL-No.-10-30-re.-The-Responsible-Tourism-Education-Act-of-2018.pdf

  116. EUR-Lex – 01992L0043-19920610 – EN – EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01992L0043-19920610. Accessed 22 Oct 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Tovar-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Tovar-Sánchez, A., Sánchez-Quiles, D., Rodríguez-Romero, A. (2020). The Mediterranean Sea. In: Tovar-Sánchez, A., Sánchez-Quiles, D., Blasco, J. (eds) Sunscreens in Coastal Ecosystems. The Handbook of Environmental Chemistry, vol 94. Springer, Cham. https://doi.org/10.1007/698_2019_443

Download citation