Lionello P, Abrantes F, Congedi L et al (2012) Introduction: Mediterranean climate – background information. In: The climate of the Mediterranean region. Elsevier, Amsterdam, pp xxxv–xxxc
CrossRef
Google Scholar
Tanhua T, Hainbucher D, Schroeder K et al (2013) The Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci 9:789–803. https://doi.org/10.5194/os-9-789-2013
CrossRef
Google Scholar
Powley HR, Krom MD, Cappellen PV (2016) Circulation and oxygen cycling in the Mediterranean Sea: sensitivity to future climate change. J Geophys Res Oceans 121:8230–8247. https://doi.org/10.1002/2016JC012224
CAS
CrossRef
Google Scholar
Tsimplis MN, Proctor R, Flather RA (1995) A two-dimensional tidal model for the Mediterranean Sea. J Geophys Res 100(16):16223. https://doi.org/10.1029/95JC01671
CrossRef
Google Scholar
Said MA, Gerges MA, Maiyza IA et al (2011) Changes in Atlantic water characteristics in the South-Eastern Mediterranean Sea as a result of natural and anthropogenic activities. Oceanologia 53:81–95. https://doi.org/10.5697/oc.53-1.081
CrossRef
Google Scholar
Bonnet S, Tovar-Sánchez A, Panzeca C et al (2013) Geographical gradients of dissolved vitamin B12 in the Mediterranean Sea. Front Microbiol 4. https://doi.org/10.3389/fmicb.2013.00126
Boyle EA, Chapnick SD, Bai XX, Spivack A (1985) Trace metal enrichments in the Mediterranean Sea. Earth Planet Sci Lett 74:405–419. https://doi.org/10.1016/S0012-821X(85)80011-X
CAS
CrossRef
Google Scholar
Sarthou G, Jeandel C (2001) Seasonal variations of iron concentrations in the Ligurian Sea and iron budget in the Western Mediterranean Sea. Mar Chem 74:115–129. https://doi.org/10.1016/S0304-4203(00)00119-5
CAS
CrossRef
Google Scholar
Sherrell RM, Boyle EA (1988) Zinc, chromium, vanadium and iron in the Mediterranean Sea. Deep Sea Res A Oceanogr Res Papers 35:1319–1334. https://doi.org/10.1016/0198-0149(88)90085-4
CAS
CrossRef
Google Scholar
Jordi A, Basterretxea G, Tovar-Sánchez A et al (2012) Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. Proc Natl Acad Sci U S A 109(52):21246–21249. https://doi.org/10.1073/pnas.1207567110
CrossRef
Google Scholar
Tovar-Sánchez A, Serón J, Marbà N et al (2010) Long-term records of trace metal content of western Mediterranean seagrass (Posidonia oceanica) meadows: natural and anthropogenic contributions. J Geophys Res 115:10. https://doi.org/10.1029/2009JG001076
CAS
CrossRef
Google Scholar
Pasqueron de Fommervault O, D’Ortenzio F, Mangin A et al (2015) Seasonal variability of nutrient concentrations in the Mediterranean Sea: contribution of bio-Argo floats: nitrate float data in the Mediterranean. J Geophys Res Oceans 120:8528–8550. https://doi.org/10.1002/2015JC011103
CAS
CrossRef
Google Scholar
Siokou-Frangou I, Christaki U, Mazzocchi MG et al (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7:1543–1586. https://doi.org/10.5194/bg-7-1543-2010
CrossRef
Google Scholar
Béthoux JP, Morin P, Ruiz-Pino DP (2002) Temporal trends in nutrient ratios: chemical evidence of Mediterranean ecosystem changes driven by human activity. Deep-Sea Res II Top Stud Oceanogr 49:2007–2016. https://doi.org/10.1016/S0967-0645(02)00024-3
CrossRef
Google Scholar
Powley HR, Cappellen PV, Krom MD (2017) Nutrient cycling in the Mediterranean Sea: the key to understanding how the unique marine ecosystem functions and responds to anthropogenic pressures. In: Fuerst-Bjelis B (ed) Mediterranean identities – environment, society, culture. InTech, London
Google Scholar
Guieu C, Bozec Y, Blain S et al (2002) Impact of high Saharan dust inputs on dissolved iron concentrations in the Mediterranean Sea. Geophys Res Lett 29(19):1911. https://doi.org/10.1029/2001GL014454
CAS
CrossRef
Google Scholar
Ternon E, Guieu C, Loÿe-Pilot M-D et al (2009) The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea. Biogeosci Discuss 6:10737–10773
CrossRef
Google Scholar
Tovar-Sánchez A, Arrieta JM, Duarte CM, Sañudo-Wilhelmy SA (2014) Spatial gradients in trace metal concentrations in the surface microlayer of the Mediterranean Sea. Front Mar Sci 1. https://doi.org/10.3389/fmars.2014.00079
Struglia MV, Mariotti A, Filograsso A (2004) River discharge into the Mediterranean Sea: climatology and aspects of the observed variability. J Clim 17:4740–4751. https://doi.org/10.1175/JCLI-3225.1
CrossRef
Google Scholar
Trezzi G, Garcia-Orellana J, Rodellas V et al (2016) Submarine groundwater discharge: a significant source of dissolved trace metals to the North Western Mediterranean Sea. Mar Chem 186:90–100. https://doi.org/10.1016/j.marchem.2016.08.004
CAS
CrossRef
Google Scholar
Coll M, Piroddi C, Steenbeek J et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e11842. https://doi.org/10.1371/journal.pone.0011842
CAS
CrossRef
Google Scholar
Gubbay S, Sanders N, Haynes T et al (2016) European red list of habitats. Part 1. Marine habitats. Publications Office of the European Union, Luxembourg
Google Scholar
Mannino AM, Balistreri P, Deidun A (2017) The marine biodiversity of the Mediterranean Sea in a changing climate: the impact of biological invasions. In: Fuerst-Bjelis B (ed) Mediterranean identities – environment, society, culture. InTech, London
Google Scholar
Médail F (2017) The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Reg Environ Chang 17:1775–1790. https://doi.org/10.1007/s10113-017-1123-7
CrossRef
Google Scholar
UNEP (2017) Mediterranean 2017 quality status report. Socio-economic characteristics
Google Scholar
Tovar-Sánchez A (2019) Massive coastal tourism influx to the Mediterranean Sea: the environmental risk of sunscreens. Sci Total Environ:6
Google Scholar
European Commission (2016) Coastal and maritime tourism. In: Maritime Affairs – European Commission. https://ec.europa.eu/maritimeaffairs/policy/coastal_tourism_en. Accessed 5 Mar 2019
Ecorys, Deltares and Oceanic DÕveloppement (2012) Blue Growth, Scenarios and drivers for Sustainable Growth from the Oceans, Seas and Coasts. European Commission, DG MARE, Rotterdam/Brussels
Google Scholar
European Commission (2012) Blue Growth, Opportunities for marine and maritime sustainable growth. Publications Office of the European Union, Luxembourg
Google Scholar
World Tourism Organization (UNWTO) (2019) UNWTO – International Tourism Results 2018 and Outlook 2019
Google Scholar
International Tourist Arrivals Reach 1.4 billion Two Years Ahead of Forecasts|World Tourism Organization UNWTO. http://www2.unwto.org/press-release/2019-01-21/international-tourist-arrivals-reach-14-billion-two-years-ahead-forecasts. Accessed 26 Feb 2019
World Tourism Organization (UNWTO) (2018) UNWTO Tourism Highlights: 2018 Edition. World Tourism Organization (UNWTO)
Google Scholar
World Tourism Organization (UNWTO) (2011) Tourism towards 2030: global overview. UNWTO, Madrid
Google Scholar
Tovar-Sánchez A, Sánchez-Quiles D, Rodríguez-Romero A (2019) Massive coastal tourism influx to the Mediterranean Sea: the environmental risk of sunscreens. Sci Total Environ 656:316–321. https://doi.org/10.1016/j.scitotenv.2018.11.399
CAS
CrossRef
Google Scholar
Eurostat/Regions and Cities Illustrated (RCI). In: Eurostat. http://ec.europa.eu/eurostat/cache/RCI/. Accessed 20 Aug 2019
MedCruise Association (2018) Cruise activities in MedCruise ports. 2017 statistics. MedCruise Association, Greece
Google Scholar
UNESCO Human Heritage. https://www.illesbalears.travel/article/en/mallorca-menorca-ibiza/unesco-human-heritage. Accessed 7 Mar 2019
Balearic Islands Tourism Agency. http://www.caib.es/sites/estadistiquesdelturisme/es/anuarios_de_turismo-22816/. Accessed 7 Mar 2019
WHO|Sun protection. In: WHO. http://www.who.int/uv/sun_protection/en/. Accessed 18 Mar 2019
Cabezas-Rabadán C, Rodilla M, Pardo-Pascual JE, Herrera-Racionero P (2019) Assessing users’ expectations and perceptions on different beach types and the need for diverse management frameworks along the Western Mediterranean. Land Use Policy 81:219–231. https://doi.org/10.1016/j.landusepol.2018.10.027
CrossRef
Google Scholar
Mas Parera L, Blázquez Salom M (2005) An analysis of beaches’ frequency of use and a study of associated sustainability-related parameters. Documents d’Analisi Geografica 15–40
Google Scholar
Tovar-Sánchez A, Sánchez-Quiles D, Basterretxea G et al (2013) Sunscreen products as emerging pollutants to coastal waters. PLoS One 8:e65451. https://doi.org/10.1371/journal.pone.0065451
CAS
CrossRef
Google Scholar
Seité S, del MV, Moyal D, Friedman AJ (2017) Public primary and secondary skin cancer prevention, perceptions and knowledge: an international cross-sectional survey. J Eur Acad Dermatol Venereol 31:815–820. https://doi.org/10.1111/jdv.14104
CrossRef
Google Scholar
Osterwalder U, Sohn M, Herzog B (2014) Global state of sunscreens. Photodermatol Photoimmunol Photomed 30:62–80. https://doi.org/10.1111/phpp.12112
CrossRef
Google Scholar
Cercato MC, Ramazzotti V, Sperduti I et al (2015) Sun protection among Spanish beachgoers: knowledge, attitude and behaviour. J Cancer Educ 30:4–11. https://doi.org/10.1007/s13187-014-0671-5
CAS
CrossRef
Google Scholar
Picot-Groz M, Fenet H, Martinez Bueno MJ et al (2018) Diurnal variations in personal care products in seawater and mussels at three Mediterranean coastal sites. Environ Sci Pollut Res Int 25:9051–9059. https://doi.org/10.1007/s11356-017-1100-1
CAS
CrossRef
Google Scholar
Tarazona I, Chisvert A, León Z, Salvador A (2010) Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. J Chromatogr A 1217:4771–4778. https://doi.org/10.1016/j.chroma.2010.05.047
CAS
CrossRef
Google Scholar
Benedé JL, Chisvert A, Salvador A et al (2014) Determination of UV filters in both soluble and particulate fractions of seawaters by dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Anal Chim Acta 812:50–58. https://doi.org/10.1016/j.aca.2013.12.033
CAS
CrossRef
Google Scholar
Tarazona I, Chisvert A, Salvador A (2014) Development of a gas chromatography-mass spectrometry method for the determination of ultraviolet filters in beach sand samples. Anal Methods 6:7772–7780. https://doi.org/10.1039/C4AY01403K
CAS
CrossRef
Google Scholar
Amine H, Gomez E, Halwani J et al (2012) UV filters, ethylhexyl methoxycinnamate, octocrylene and ethylhexyl dimethyl PABA from untreated wastewater in sediment from eastern Mediterranean river transition and coastal zones. Mar Pollut Bull 64:2435–2442. https://doi.org/10.1016/j.marpolbul.2012.07.051
CAS
CrossRef
Google Scholar
Bachelot M, Li Z, Munaron D et al (2012) Organic UV filter concentrations in marine mussels from French coastal regions. Sci Total Environ 420:273–279. https://doi.org/10.1016/j.scitotenv.2011.12.051
CAS
CrossRef
Google Scholar
Sánchez-Brunete C, Miguel E, Albero B, Tadeo JL (2011) Analysis of salicylate and benzophenone-type UV filters in soils and sediments by simultaneous extraction cleanup and gas chromatography–mass spectrometry. J Chromatogr A 1218:4291–4298. https://doi.org/10.1016/j.chroma.2011.05.030
CAS
CrossRef
Google Scholar
Magi E, Di Carro M, Scapolla C, Nguyen KTN (2012) Stir bar sorptive extraction and LC-MS/MS for trace analysis of UV filters in different water matrices. Chromatographia 75:973–982. https://doi.org/10.1007/s10337-012-2202-z
CAS
CrossRef
Google Scholar
Cuderman P, Heath E (2007) Determination of UV filters and antimicrobial agents in environmental water samples. Anal Bioanal Chem 387:1343–1350. https://doi.org/10.1007/s00216-006-0927-y
CAS
CrossRef
Google Scholar
Vidal L, Chisvert A, Canals A, Salvador A (2010) Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples. Talanta 81:549–555. https://doi.org/10.1016/j.talanta.2009.12.042
CAS
CrossRef
Google Scholar
Nguyen KTN, Scapolla C, Di Carro M, Magi E (2011) Rapid and selective determination of UV filters in seawater by liquid chromatography-tandem mass spectrometry combined with stir bar sorptive extraction. Talanta 85:2375–2384. https://doi.org/10.1016/j.talanta.2011.07.085
CAS
CrossRef
Google Scholar
Lambropoulou DA, Giokas DL, Sakkas VA et al (2002) Gas chromatographic determination of 2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction. J Chromatogr A 967:243–253. https://doi.org/10.1016/S0021-9673(02)00781-1
CAS
CrossRef
Google Scholar
Giokas DL, Sakkas VA, Albanis TA (2004) Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography-photodiode array detection and gas chromatography-mass spectrometry. J Chromatogr A 1026:289–293. https://doi.org/10.1016/j.chroma.2003.10.114
CAS
CrossRef
Google Scholar
Giokas DL, Sakkas VA, Albanis TA, Lampropoulou DA (2005) Determination of UV-filter residues in bathing waters by liquid chromatography UV-diode array and gas chromatography-mass spectrometry after micelle mediated extraction-solvent back extraction. J Chromatogr A 1077:19–27. https://doi.org/10.1016/j.chroma.2005.04.074
CAS
CrossRef
Google Scholar
Combi T, Pintado-Herrera MG, Lara-Martin PA et al (2016) Distribution and fate of legacy and emerging contaminants along the Adriatic Sea: a comparative study. Environ Pollut 218:1055–1064. https://doi.org/10.1016/j.envpol.2016.08.057
CAS
CrossRef
Google Scholar
Sang Z, Leung KS-Y (2016) Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters. Sci Total Environ 566–567:489–498. https://doi.org/10.1016/j.scitotenv.2016.05.120
CAS
CrossRef
Google Scholar
Gago-Ferrero P, Alonso MB, Bertozzi CP et al (2013) First determination of UV filters in marine mammals. Octocrylene levels in Franciscana dolphins. Environ Sci Technol 47:5619–5625. https://doi.org/10.1021/es400675y
CAS
CrossRef
Google Scholar
Sánchez-Quiles D, Tovar-Sánchez A (2015) Are sunscreens a new environmental risk associated with coastal tourism? Environ Int 83:158–170. https://doi.org/10.1016/j.envint.2015.06.007
CrossRef
Google Scholar
Corinaldesi C, Damiani E, Marcellini F et al (2017) Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Sci Rep 7:7815. https://doi.org/10.1038/s41598-017-08013-x
CAS
CrossRef
Google Scholar
Sendra M, Sánchez-Quiles D, Blasco J et al (2017) Effects of TiO2 nanoparticles and sunscreens on coastal marine microalgae: ultraviolet radiation is key variable for toxicity assessment. Environ Int 98:62–68. https://doi.org/10.1016/j.envint.2016.09.024
CAS
CrossRef
Google Scholar
Castro M, Fernandes JO, Pena A, Cunha SC (2018) Occurrence, profile and spatial distribution of UV-filters and musk fragrances in mussels from Portuguese coastline. Mar Environ Res 138:110–118. https://doi.org/10.1016/j.marenvres.2018.04.005
CAS
CrossRef
Google Scholar
Sureda A, Capó X, Busquets-Cortés C, Tejada S (2018) Acute exposure to sunscreen containing titanium induces an adaptive response and oxidative stress in Mytilus galloprovincialis. Ecotoxicol Environ Saf 149:58–63. https://doi.org/10.1016/j.ecoenv.2017.11.014
CAS
CrossRef
Google Scholar
Vidal-Liñán L, Villaverde-de-Sáa E, Rodil R et al (2018) Bioaccumulation of UV filters in Mytilus galloprovincialis mussel. Chemosphere 190:267–271. https://doi.org/10.1016/j.chemosphere.2017.09.144
CAS
CrossRef
Google Scholar
Paredes E, Perez S, Rodil R et al (2014) Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata. Chemosphere 104:44–50. https://doi.org/10.1016/j.chemosphere.2013.10.053
CAS
CrossRef
Google Scholar
Araújo MJ, Rocha RJM, Soares AMVM et al (2018) Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858. Sci Total Environ 628–629:1395–1404. https://doi.org/10.1016/j.scitotenv.2018.02.112
CAS
CrossRef
Google Scholar
Giraldo A, Montes R, Rodil R et al (2017) Ecotoxicological evaluation of the UV filters Ethylhexyl dimethyl p-Aminobenzoic acid and Octocrylene using marine organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus. Arch Environ Contam Toxicol 72:606–611. https://doi.org/10.1007/s00244-017-0399-4
CAS
CrossRef
Google Scholar
Ciacci C, Canonico B, Bilaniĉovă D et al (2012) Immunomodulation by different types of N-oxides in the Hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS One 7:e36937. https://doi.org/10.1371/journal.pone.0036937
CAS
CrossRef
Google Scholar
Montes MO, Hanna SK, Lenihan HS, Keller AA (2012) Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225–226:139–145. https://doi.org/10.1016/j.jhazmat.2012.05.009
CAS
CrossRef
Google Scholar
Hanna SK, Miller RJ, Muller EB et al (2013) Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PLoS One 8:e61800. https://doi.org/10.1371/journal.pone.0061800
CAS
CrossRef
Google Scholar
Katsumiti A, Arostegui I, Oron M et al (2016) Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: relevance of size, shape and additives. Nanotoxicology 10:185–193. https://doi.org/10.3109/17435390.2015.1039092
CAS
CrossRef
Google Scholar
Manzo S, Miglietta ML, Rametta G et al (2013) Embryotoxicity and spermiotoxicity of nanosized ZnO for Mediterranean sea urchin Paracentrotus lividus. J Hazard Mater 254–255:1–9. https://doi.org/10.1016/j.jhazmat.2013.03.027
CAS
CrossRef
Google Scholar
Oliviero M, Schiavo S, Rametta G et al (2017) Different sizes of ZnO diversely affected the cytogenesis of the sea urchin Paracentrotus lividus. Sci Total Environ 607–608:176–183. https://doi.org/10.1016/j.scitotenv.2017.07.038
CAS
CrossRef
Google Scholar
Oliviero M, Schiavo S, Dumontet S, Manzo S (2019) DNA damages and offspring quality in sea urchin Paracentrotus lividus sperms exposed to ZnO nanoparticles. Sci Total Environ 651:756–765. https://doi.org/10.1016/j.scitotenv.2018.09.243
CAS
CrossRef
Google Scholar
Nigro M, Bernardeschi M, Costagliola D et al (2015) n-TiO2 and CdCl2 co-exposure to titanium dioxide nanoparticles and cadmium: genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). Aquat Toxicol 168:72–77. https://doi.org/10.1016/j.aquatox.2015.09.013
CAS
CrossRef
Google Scholar
Vannuccini ML, Grassi G, Leaver MJ, Corsi I (2015) Combination effects of nano-TiO2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. Comp Biochem Physiol C Toxicol Pharmacol 176–177:71–78. https://doi.org/10.1016/j.cbpc.2015.07.009
CAS
CrossRef
Google Scholar
Canesi L, Fabbri R, Gallo G et al (2010) Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat Toxicol 100:168–177. https://doi.org/10.1016/j.aquatox.2010.04.009
CAS
CrossRef
Google Scholar
Canesi L, Ciacci C, Vallotto D et al (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 96:151–158. https://doi.org/10.1016/j.aquatox.2009.10.017
CAS
CrossRef
Google Scholar
Barmo C, Ciacci C, Canonico B et al (2013) In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 132–133:9–18. https://doi.org/10.1016/j.aquatox.2013.01.014
CAS
CrossRef
Google Scholar
Libralato G, Minetto D, Totaro S et al (2013) Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar Environ Res 92:71–78. https://doi.org/10.1016/j.marenvres.2013.08.015
CAS
CrossRef
Google Scholar
D’Agata A, Fasulo S, Dallas LJ et al (2014) Enhanced toxicity of “bulk” titanium dioxide compared to “fresh” and “aged” nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 8:549–558. https://doi.org/10.3109/17435390.2013.807446
CAS
CrossRef
Google Scholar
Balbi T, Smerilli A, Fabbri R et al (2014) Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci Total Environ 493:355–364. https://doi.org/10.1016/j.scitotenv.2014.05.146
CAS
CrossRef
Google Scholar
Della Torre C, Balbi T, Grassi G et al (2015) Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J Hazard Mater 297:92–100. https://doi.org/10.1016/j.jhazmat.2015.04.072
CAS
CrossRef
Google Scholar
Katsumiti A, Berhanu D, Howard KT et al (2015) Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: influence of synthesis method, crystalline structure, size and additive. Nanotoxicology 9:543–553. https://doi.org/10.3109/17435390.2014.952362
CAS
CrossRef
Google Scholar
Rocco L, Santonastaso M, Nigro M et al (2015) Genomic and chromosomal damage in the marine mussel Mytilus galloprovincialis: effects of the combined exposure to titanium dioxide nanoparticles and cadmium chloride. Mar Environ Res 111:144–148. https://doi.org/10.1016/j.marenvres.2015.09.004
CAS
CrossRef
Google Scholar
Gornati R, Longo A, Rossi F et al (2016) Effects of titanium dioxide nanoparticle exposure in Mytilus galloprovincialis gills and digestive gland. Nanotoxicology 10:807–817. https://doi.org/10.3109/17435390.2015.1132348
CAS
CrossRef
Google Scholar
Mezni A, Alghool S, Sellami B et al (2018) Titanium dioxide nanoparticles: synthesis, characterisations and aquatic ecotoxicity effects. Chem Ecol 34:288–299. https://doi.org/10.1080/02757540.2017.1420178
CAS
CrossRef
Google Scholar
Auguste M, Lasa A, Pallavicini A et al (2019) Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci Total Environ 670:129–137. https://doi.org/10.1016/j.scitotenv.2019.03.133
CAS
CrossRef
Google Scholar
Grimaldi AM, Belcari P, Pagano E et al (2013) Immune responses of Octopus vulgaris (Mollusca: Cephalopoda) exposed to titanium dioxide nanoparticles. J Exp Mar Biol Ecol 447:123–127. https://doi.org/10.1016/j.jembe.2013.02.018
CAS
CrossRef
Google Scholar
Gambardella C, Aluigi MG, Ferrando S et al (2013) Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. Aquat Toxicol 130–131:77–85. https://doi.org/10.1016/j.aquatox.2012.12.025
CAS
CrossRef
Google Scholar
Gambardella C, Ferrando S, Morgana S et al (2015) Exposure of Paracentrotus lividus male gametes to engineered nanoparticles affects skeletal bio-mineralization processes and larval plasticity. Aquat Toxicol 158:181–191. https://doi.org/10.1016/j.aquatox.2014.11.014
CAS
CrossRef
Google Scholar
Alijagic A, Gaglio D, Napodano E et al (2020) Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. J Hazard Mater 384:121389. https://doi.org/10.1016/j.jhazmat.2019.121389
CAS
CrossRef
Google Scholar
Saidani W, Sellami B, Khazri A et al (2019) Metal accumulation, biochemical and behavioral responses on the Mediterranean clams Ruditapes decussatus exposed to two photocatalyst nanocomposites (TiO2 NPs and AuTiO2NPs). Aquat Toxicol 208:71–79. https://doi.org/10.1016/j.aquatox.2019.01.003
CAS
CrossRef
Google Scholar
Bernardeschi M, Guidi P, Scarcelli V et al (2010) Genotoxic potential of TiO2 on bottlenose dolphin leukocytes. Anal Bioanal Chem 396:619–623. https://doi.org/10.1007/s00216-009-3261-3
CAS
CrossRef
Google Scholar
Frenzilli G, Bernardeschi M, Guidi P et al (2014) Effects of in vitro exposure to titanium dioxide on DNA integrity of bottlenose dolphin (Tursiops truncatus) fibroblasts and leukocytes. Mar Environ Res 100:68–73. https://doi.org/10.1016/j.marenvres.2014.01.002
CAS
CrossRef
Google Scholar
Danovaro R, Corinaldesi C (2003) Sunscreen products increase virus production through prophage induction in marine bacterioplankton. Microb Ecol 45:109–118. https://doi.org/10.1007/s00248-002-1033-0
CAS
CrossRef
Google Scholar
Sánchez-Quiles D, Tovar-Sánchez A (2014) Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ Sci Technol 48:9037–9042. https://doi.org/10.1021/es5020696
CAS
CrossRef
Google Scholar
Díaz-Gil C, Cotgrove L, Smee SL et al (2017) Anthropogenic chemical cues can alter the swimming behaviour of juvenile stages of a temperate fish. Mar Environ Res 125:34–41. https://doi.org/10.1016/j.marenvres.2016.11.009
CAS
CrossRef
Google Scholar
Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077. https://doi.org/10.1016/j.watres.2003.10.029
CAS
CrossRef
Google Scholar
Zhang A-P, Sun Y-P (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10:3191–3193. https://doi.org/10.3748/wjg.v10.i21.3191
CAS
CrossRef
Google Scholar
Robichaud CO, Uyar AE, Darby MR et al (2009) Estimates of upper bounds and trends in Nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233. https://doi.org/10.1021/es8032549
CAS
CrossRef
Google Scholar
Ma J, Liu J, Bao Y et al (2013) Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram Int 39:2803–2810. https://doi.org/10.1016/j.ceramint.2012.09.049
CAS
CrossRef
Google Scholar
Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186C:257–271. https://doi.org/10.1016/j.envpol.2013.11.014
CAS
CrossRef
Google Scholar
Canesi L, Corsi I (2016) Effects of nanomaterials on marine invertebrates. Sci Total Environ 565:933–940. https://doi.org/10.1016/j.scitotenv.2016.01.085
CAS
CrossRef
Google Scholar
Canesi L, Ciacci C, Fabbri R et al (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21. https://doi.org/10.1016/j.marenvres.2011.06.005
CAS
CrossRef
Google Scholar
Canesi L, Frenzilli G, Balbi T et al (2014) Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 153:53–65. https://doi.org/10.1016/j.aquatox.2013.11.002
CAS
CrossRef
Google Scholar
Muller EB, Hanna SK, Lenihan HS et al (2014) Impact of engineered zinc oxide nanoparticles on the energy budgets of Mytilus galloprovincialis. J Sea Res 94:29–36. https://doi.org/10.1016/j.seares.2013.12.013
CrossRef
Google Scholar
Banni M, Sforzini S, Balbi T et al (2016) Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland: a transcriptomic and immunohistochemical study. Environ Res 145:135–144. https://doi.org/10.1016/j.envres.2015.12.003
CAS
CrossRef
Google Scholar
Rodríguez-Romero A, Ruiz-Gutiérrez G, Viguri JR, Tovar-Sánchez A (2019) Sunscreens as a new source of metals and nutrients to coastal waters. Environ Sci Technol 53:10177–10187. https://doi.org/10.1021/acs.est.9b02739
CAS
CrossRef
Google Scholar
Downs CA, Kramarsky-Winter E, Segal R et al (2016) Toxicopathological effects of the sunscreen UV filter, Oxybenzone (Benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Arch Environ Contam Toxicol 70:265–288. https://doi.org/10.1007/s00244-015-0227-7
CAS
CrossRef
Google Scholar
Republic of Palau. Office of the President (2018) Senate Bill No. 10-135, SD1, HD1: The Responsible Tourism Education Act of 2018. https://www.palaugov.pw/wp-content/uploads/2018/10/RPPL-No.-10-30-re.-The-Responsible-Tourism-Education-Act-of-2018.pdf
EUR-Lex – 01992L0043-19920610 – EN – EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01992L0043-19920610. Accessed 22 Oct 2019