Skip to main content

The Intermittent Rivers of South Montenegro: Ecology and Biomonitoring

  • Chapter
  • First Online:
The Rivers of Montenegro

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 93))

Abstract

Intermittent rivers (IRs), rivers that periodically cease to flow, are common in the southern part of Montenegro and form a high proportion of the river networks in the Mediterranean and sub-Mediterranean parts of the country. IRs comprise of lentic, lotic, and dry patches that support rich aquatic, semiaquatic, and terrestrial communities that are largely neglected by ongoing biomonitoring programs. In this chapter, we present the recent research on the communities that inhabit the intermittent rivers of South Montenegro, with a focus on aquatic and terrestrial invertebrates and plants. For each group, we outline the characteristic communities found in the IRs. Future research should focus on including IRs in ongoing monitoring programs ensuring that their status assessment encompasses both their flowing and dry phases and their aquatic and terrestrial biotas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. BioScience 64(3):229–235. https://doi.org/10.1093/biosci/bit027

    Article  Google Scholar 

  2. Acuna V, Datry T, Marshall J, Barcelo D, Dahm CN, Ginebreda A, McGregor G, Sabater S, Tockner K, Palmer MA (2014) Why should we care about temporary waterways? Science 343(6175):1080–1082. https://doi.org/10.1126/science.1246666

    Article  CAS  Google Scholar 

  3. Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738. https://doi.org/10.1111/j.1365-2427.2009.02322.x

    Article  Google Scholar 

  4. Shumilova O, Zak D, Datry T et al (2019) Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter. Glob Change Biol 25:1591–1611. https://doi.org/10.1111/gcb.14537

    Article  Google Scholar 

  5. Datry T, Singer G, Sauquet E et al (2017) Science and management of intermittent rivers and ephemeral streams (SMIRES). Res Ideas Outcomes 3:e21774. https://doi.org/10.3897/rio.3.e21774

    Article  Google Scholar 

  6. Datry T, Foulquier A, Corti R, von Schiller D, Tockner K, Mendoza-Lera C et al (2018) A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat Geosci 11:497–503. https://doi.org/10.1038/s41561-018-0134-4

    Article  CAS  Google Scholar 

  7. European Commission (2000) Directive 2000/60/EC, establishing a framework for community action in the field of water policy. Off J Eur Comm L 327:1–71

    Google Scholar 

  8. Stubbington R, Chadd R, Cid N, Csabai Z, Miliša M, Morais M, Munné A, Pařil P, Pešić V, Tziortzis I, Verdonschot RC (2018) Biomonitoring of intermittent rivers and ephemeral streams in Europe: current practice and priorities to enhance ecological status assessments. Sci Total Environ 618:1096–1113. https://doi.org/10.1016/j.scitotenv.2017.09.137

    Article  CAS  Google Scholar 

  9. Kostianoy AG, Soloviev DM, Pešić V (2020) Remote sensing of intermittent rivers in Montenegro. In: Pešić V, Paunović M, Kostianoy A (eds) The rivers of Montenegro. The handbook of environmental chemistry. Springer, Cham

    Google Scholar 

  10. Pavićević A, Pešić V (2012) Water beetle distribution along a perennial distance gradient in an intermittent stream from the Mediterranean part of Montenegro. Arch Biol Sci 64:345–351. https://doi.org/10.2298/ABS1201345P

    Article  Google Scholar 

  11. Pavićević A (2011) Seasonal dynamics of macroinvertebrates of Mareze and Rimanić with special reference to aquatic Coleoptera. PhD dissertation, University of Montenegro (in Montenegrin)

    Google Scholar 

  12. Pavićević I (2012) Colonization of dry riverbeds by invertebrates on the example of the Rimanic stream. Diploma thesis, University of Montenegro (in Montenegrin)

    Google Scholar 

  13. Zawal A, Pešić V (2018) The diversity of assemblages of water mites from Lake Skadar and its catchment. In: Pešić V, Karaman G, Kostianoy A (eds) The Skadar/Shkodra Lake environment. The handbook of environmental chemistry, vol 80. Springer, Cham, pp 311–323

    Chapter  Google Scholar 

  14. Feminella JW (1996) Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. J N Am Benthol Soc 15:651–669

    Article  Google Scholar 

  15. Datry T, Arscott DB, Sabater S (2011) Recent perspectives on temporary river ecology. Aquat Sci 73:453–457

    Article  Google Scholar 

  16. Korhonen JJ, Soininen J, Hillebrand H (2010) A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91:508–517

    Article  Google Scholar 

  17. Bogan MT, Lytle DA (2007) Seasonal flow variation allows ‘time-sharing’ by disparate aquatic insect communities in montane desert streams. Freshw Biol 52:290–304. https://doi.org/10.1111/j.1365-2427.2006.01691.x

    Article  Google Scholar 

  18. Welborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363. https://doi.org/10.1146/annurev.ecolsys.27.1.337

    Article  Google Scholar 

  19. Williams DD, Hynes HBN (1976b) The recolonization mechanisms of stream benthos. Oikos 27:265–272

    Article  Google Scholar 

  20. Minshall GW, Andrews DA, Manuel-Faler CY (1983) Application of island 19 biogeographic theory to streams: macroinvertebrate recolonization of the Teton River, Idaho. In: Barnes JR, Minshall GW (eds) Stream ecology: application and testing of general ecological theory. Plenum Press, New York, pp 279–297

    Chapter  Google Scholar 

  21. Wood PJ, Petts GE (1999) The influence of drought on chalk stream macroinvertebrates. Hydrol Process 13:387–399

    Article  Google Scholar 

  22. Churchel MA, Batzer DP (2006) Recovery of aquatic macroinvertebrate communities from drought in Georgia Piedmont headwater streams. Am Midl Nat 156:259–272

    Article  Google Scholar 

  23. Perrow MR, Skeate ER, Leeming D, England J, Tomlinson ML (2007) Life after low flow – ecological recovery of the river Misbourne. Br Wildl 18:335–346

    Google Scholar 

  24. Williams DD, Feltmate BW (1992) Aquatic insects. CAB International, Wallingford

    Google Scholar 

  25. Gore JA (1979) Patterns of initial benthic recolonization of a reclaimed coal strip-mined river channel. Can J Zool 57:2429–2439

    Article  Google Scholar 

  26. MacKay RJ (1992) Colonization by lotic macroinvertebrates: a review of processes and patterns. Can J Fish Aquat Sci 49:617–628

    Article  Google Scholar 

  27. Williams DD, Hynes HBN (1977) Benthic community development in a new stream. Can J Zool 55:1071–1076

    Article  Google Scholar 

  28. Malmqvist B, Rundle S, Bronmark C, Erlandsson A (1991) Invertebrate colonization of a new, man-made stream in southern Sweden. Freshw Biol 26:307–324

    Article  Google Scholar 

  29. López-Rodríguez MJ, Tierno de Figueroa JM, Fenoglio S, Bo T, Alba-Tercedor J (2009) Life strategies of 3 Perlodidae species (Plecoptera) in a Mediterranean seasonal stream in southern Europe. J N Am Benthol Soc 28:611–625

    Article  Google Scholar 

  30. McArthur JV, Barnes JR (1985) Patterns of macroinvertebrate colonization in an intermittent rocky mountain stream in Utah. Great Basin Nat 45:117–123

    Google Scholar 

  31. Larson DJ, Alarie Y, Roughley RE (2000) Predaceous diving beetles (Coleoptera: Dytiscidae) of the Nearctic region, with emphasis on the fauna of Canada and Alaska. NRC Research Press, Ottawa. 982 pp

    Google Scholar 

  32. Moreno JL, Millán A, Suarez ML, Vidal-Abarca MR, Velasco J (1997) Aquatic Coleoptera and Heteroptera assemblages in waterbodies from ephemeral coastal streams (‘ramblas’) of south-eastern Spain. Arch Hydrobiol 141:93–107

    Article  Google Scholar 

  33. Beauchard O, Gagneur J, Brosse S (2003) Macroinvertebrate richness patterns in North African streams. J Biogeogr 30:1821–1833

    Article  Google Scholar 

  34. Vidal-Abarca MR, Sánchez-Montoya MM, Guerrero C, Gómez R, Arce MI, García-García V, Suárez ML (2013) Effects of intermittent stream flow on macroinvertebrate community composition and biological traits in a naturally saline Mediterranean stream. J Arid Environ 99:28–40

    Article  Google Scholar 

  35. Ribera I (2008) Habitat constraints and the generation of diversity in freshwater macroinvertebrates. In: Lancaster J, Briers RA (eds) Aquatic insects: challenges to populations. CAB International, Wallingford, pp 289–311

    Chapter  Google Scholar 

  36. Davy-Bowker J (2002) A mark and recapture study of water beetles (Coleoptera: Dytiscidae) group of semi-permanent and temporary ponds. Aquat Ecol 36:435–446. https://doi.org/10.1023/A:1016550127986.

    Article  Google Scholar 

  37. Bilton DT (2014) Dispersal in dytiscidae. In: Yee DA (ed) Ecology, systematics, and natural history of predaceous diving beetles (Coleoptera: Dytiscidae). Springer, New York, pp 387–407

    Google Scholar 

  38. Stubbington R, Gunn J, Little S, Worrall TP, Wood PJ (2016) Macroinvertebrate seedbank composition in relation to antecedent duration of drying and multiple wet-dry cycles in a temporary stream. Freshw Biol 61:1293–1307. https://doi.org/10.1111/fwb.12770

    Article  Google Scholar 

  39. Datry T, Corti R, Philippe M (2012) Spatial and temporal aquatic–terrestrial transitions in the temporary Albarine River, France: responses of invertebrates to experimental rewetting. Freshw Biol 57:716–727. https://doi.org/10.1111/j.1365-2427.2012.02737.x

    Article  Google Scholar 

  40. Stubbington R, Datry T (2013) The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshw Biol 58:1202–1220. https://doi.org/10.1111/fwb.12121

    Article  Google Scholar 

  41. Strachan SR, Chester ET, Robson BJ (2015) Freshwater invertebrate life history strategies for surviving desiccation. Springer Sci Rev 3:57–75

    Article  Google Scholar 

  42. Stubbington R (2012) The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behavior. Mar Freshwater Res 63:293–311

    Article  Google Scholar 

  43. Vander Vorste R, Malard F, Datry T (2016) Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshw Biol 61:1276–1292

    Article  Google Scholar 

  44. Williams DD (1998) The role of dormancy in the evolution and structure of temporary water invertebrate communities. Arch Hydrobiol 52:109–124

    Google Scholar 

  45. Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181

    Article  Google Scholar 

  46. Krivolutsky DA (ed) (1995) Oribatid mites: morphology, development, phylogeny, ecology, methods of study, the characteristic of modelling species Nothrus palustris C.L. Koch, 1839. Nauka, Moscow. 224 pp

    Google Scholar 

  47. Steward AL, Marshall JC, Sheldon F, Harch B, Choy S, Bunn SE, Tockner K (2011) Terrestrial invertebrates of dry river beds are not simply subsets of riparian assemblages. Aquat Sci 73:551–566. https://doi.org/10.1007/s00027-011-0217-4

    Article  Google Scholar 

  48. Corti R, Datry T (2016) Terrestrial and aquatic invertebrates in the riverbed of an intermittent river: parallels and contrasts in community organisation. Freshw Biol 61:1308–1320. https://doi.org/10.1111/fwb.12692

    Article  Google Scholar 

  49. Steward AL, Langhans SD, Corti R, Datry T (2017) The biota of intermittent rivers and ephemeral streams: terrestrial and semiaquatic invertebrates. In: Datry T, Bonada N, Boulton AJ (eds) Intermittent rivers and ephemeral streams: ecology and management. Elsevier, Amsterdam, pp 245–271

    Chapter  Google Scholar 

  50. Desender K, Segers R (1985) A simple device and technique for quantitative sampling of riparian beetle populations with some Carabid and Staphylinid abundance estimates on different riparian habitats (Coleoptera). Rev Ecol Biol Sol 22:497–506

    Google Scholar 

  51. Melbourne BA (1999) Bias in the effect of habitat structure on pitfall traps: an experimental evaluation. Aust J Ecol 24:228–239

    Article  Google Scholar 

  52. Missa O, Basset Y, Alonso A, Miller SE, Curletti G, De Meyer M et al (2009) Monitoring arthropods in a tropical landscape: relative effects of sampling methods and habitat types on trap catches. J Insect Conserv 13:103–118

    Article  Google Scholar 

  53. Pešić V, Grabowski M, Hadžiablahović S, Marić S, Paunović M (2018) The biodiversity and biogeographical characteristics of the river basins of Montenegro. In: Pešić V, Paunović M, Kostianoy A (eds) The rivers of Montenegro. The handbook of environmental chemistry. Springer, Cham

    Google Scholar 

  54. Rodwell JS (ed) (1995) British plant communities. Aquatic communities, swamps and tall-herb fens, vol 4. Cambridge University Press, Cambridge. 283 pp

    Google Scholar 

  55. Dodds WK, Gido K, Whiles MR, Fritz KM, Matthews WJ (2004) Life on the edge: the ecology of Great Plains prairie streams. BioScience 54:205–216. https://doi.org/10.1641/0006-3568(2004)054%5b0205:LOTETE%5d2.0.CO;2

    Article  Google Scholar 

  56. Stromberg JC, Merritt D (2016) Riparian plant guilds of ephemeral, intermittent and perennial rivers. Freshw Biol 61:1259–1275. https://doi.org/10.1111/fwb.12686

    Article  Google Scholar 

  57. Miller SJ, Wardrop DH, Mahaney WM, Brooks RP (2006) A plant-based index of biological integrity (IBI) for headwater wetlands in central Pennsylvania. Ecol Indic 6:290–312

    Article  Google Scholar 

  58. González del Tánago M, García de Jalón D (2011) Riparian Quality Index (RQI): a methodology for characterising and assessing the environmental conditions of riparian zones. Limnetica 30:235–254. https://doi.org/10.23818/limn.30.18

    Article  Google Scholar 

  59. Bruno D, Gutiérrez-Cánovas C, Velasco J, Sánchez-Fernández D (2016) Functional redundancy as a tool for bioassessment: a test using riparian vegetation. Sci Total Environ 566:1268–1276. https://doi.org/10.1016/j.scitotenv.2016.05.186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Pešić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pešić, V., Pavićević, A., Savić, A., Hadžiablahović, S. (2019). The Intermittent Rivers of South Montenegro: Ecology and Biomonitoring. In: Pešić, V., Paunović, M., Kostianoy, A. (eds) The Rivers of Montenegro. The Handbook of Environmental Chemistry, vol 93. Springer, Cham. https://doi.org/10.1007/698_2019_415

Download citation

Publish with us

Policies and ethics