Skip to main content

Fate of Volatile Methylsiloxanes in Wastewater Treatment Plants

  • Chapter
  • First Online:
Volatile Methylsiloxanes in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 89))

Abstract

Concentration, distribution, fate, removal efficiencies, daily and seasonal variations of volatile methylsiloxanes (VMS) in wastewater treatment plants (WWTPs) were reviewed in this chapter. Purge-and-trap, headspace, liquid-liquid extraction, liquid-solid extraction, membrane-assisted solvent extraction, and modified QuEChERS methods have been developed to analyze of VMS in samples from WWTPs. The different consumption quantities of commercial products containing siloxanes result in the difference of concentrations and proportion of VMS in the world. Daily fluctuations of VMS concentrations in water usage induce in flow variation to WWTP and VMS show seasonal variation in the WWTPs with different types of processes. In cold seasons, VMS prefer to stay in water phase rather than air or sludge because the air/water and organic carbon/water partition coefficients decrease with temperature. Although most WWTP remove siloxanes efficiently, long-term environmental monitoring of VMS is necessary in certain environments, considering the potential of VMS to bioaccumulate in biota and its toxicity to sensitive aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lofrano G, Brown J (2010) Wastewater management through the ages: a history of mankind. Sci Total Environ 408:5254–5264

    Article  CAS  Google Scholar 

  2. Royal Commission on Sewage Disposal Eighth Report (1912) Standards and tests for sewage and sewage effluent discharging to rivers and streams. Cd 6464, London

    Google Scholar 

  3. Tchobanoglous G, Metcalf & Eddy (1991) Wastewater engineering treatment, disposal and reuse. Water resources and environmental engineering, vol 73. McGraw-Hill, New York, pp 50–51

    Google Scholar 

  4. Horii Y, Kannan K (2008) Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Arch Environ Contam Toxicol 55:701–710

    Article  CAS  Google Scholar 

  5. Capela D, Ratola N, Alves A, Homem V (2017) Volatile methylsiloxanes through wastewater treatment plants - a review of levels and implications. Environ Int 102:9–29

    Article  CAS  Google Scholar 

  6. Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Conver Manage 47:1711–1722

    Article  CAS  Google Scholar 

  7. Kaj L, Andersson J, Palm Cousins A, Schmidbauer N, Brorstrom-Lunden E, Cato I (2005) Results from the Swedish national screening programme 2004. Subreport 4: siloxanes. IVL Swedish Environmental Research Institute, Stockholm

    Google Scholar 

  8. Wang D-G, Steer H, Tait T, Williams Z, Pacepavicius G, Young T, Ng T, Smyth SA, Kinsman L, Alaee M (2013) Concentrations of cyclic volatile methylsiloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada. Chemosphere 93:766–773

    Article  CAS  Google Scholar 

  9. Carpenter JC, Gerhards R (1997) Methods for the extraction and detection of trace organosilicon materials in environmental samples. In: Chandra G (ed) Organosilicon materials: the handbook of environmental chemistry. Springer, New York, pp 27–51

    Chapter  Google Scholar 

  10. Varaprath S, Stutts DH, Kozerski GE (2006) A primer on the analytical aspects of silicones at trace levels-challenges and artifacts - a review. Silicon Chem 3:79–102

    Article  CAS  Google Scholar 

  11. Wang D-G, Alaee M, Steer H, Tait T, Williams Z, Brimble S, Svoboda L, Barresi E, DeJong M, Schachtschneider J, Kaminski E, Norwood W, Sverko E (2013) Determination of cyclic volatile methylsiloxanes in water, sediment, soil, biota, and biosolid using large-volume injection-gas chromatography-mass spectrometry. Chemosphere 93:741–748

    Article  CAS  Google Scholar 

  12. Wang D-G, Solla SRD, Lebeuf M, Bisbicos T, Barrett GC, Alaee M (2017) Determination of linear and cyclic volatile methylsiloxanes in blood of turtles, cormorants, and seals from Canada. Sci Total Environ 574:1254–1260

    Article  CAS  Google Scholar 

  13. Badjagbo K, Furtos A, Alaee M, Moore S, Sauve S (2009) Direct analysis of volatile methylsiloxanes in gaseous matrixes using atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Chem 81:7288–7293

    Article  CAS  Google Scholar 

  14. Badjagbo K, Heroux M, Alaee M, Moore S, Sauve S (2009) Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS. Environ Sci Technol 44:600–605

    Article  Google Scholar 

  15. US EPA (2003) Method 5053C: purge-and-trap for aqueous samples

    Google Scholar 

  16. Whelan MJ, Sanders D, van Egmond R (2009) Effect of Aldrich humic acid on water-atmosphere transfer of decamethylcyclopentasiloxane. Chemosphere 74:1111–1116

    Article  CAS  Google Scholar 

  17. David MD, Fendinger NJ, Hand VC (2000) Determination of Henry’s law constants for organosilicones in actual and simulated wastewater. Environ Sci Technol 34:4554–4559

    Article  CAS  Google Scholar 

  18. Varaprath S, Salyers KL, Plotzke KP, Nanavati S (1998) Extraction of octamethylcyclotetrasiloxane and its metabolites from biological matrices. Anal Biochem 256:14–22

    Article  CAS  Google Scholar 

  19. Dewil R, Appels L, Baeyens J, Buczynska A, Van Vaeck L (2007) The analysis of volatile siloxanes in waste activated sludge. Talanta 74:14–19

    Article  CAS  Google Scholar 

  20. Wang DG, Norwood W, Alaee M, Byer JD, Brimble S (2013) Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere 93:711–725

    Article  CAS  Google Scholar 

  21. Xu L, He X, Zhi L, Zhang C, Zeng T, Cai Y (2016) Chlorinated methylsiloxanes generated in papermaking process and their fate in wastewater treatment processes. Environ Sci Technol 50:12732–12741

    Article  CAS  Google Scholar 

  22. Wang D-G, Steer H, Pacepavicius G, Smyth SA, Kinsman L, Alaee M (2013) Seasonal variation and temperature-dependent removal efficiencies of cyclic volatile methylsiloxanes in fifteen wastewater treatment plants. Organohalogen Compd 75:1286–1290

    CAS  Google Scholar 

  23. Mueller JA, Di Toro DM, Maiello JA (1995) Fate of octamethylcyclotetrasiloxane (OMCTS) in the atmosphere and in sewage treatment plants as an estimation of aquatic exposure. Environ Toxicol Chem 14:1657–1666

    Article  CAS  Google Scholar 

  24. Parker WJ, Shi J, Fendinger NJ, Monteith HD, Chandra G (1999) Pilot plant study to assess the fate of two volatile methyl siloxane compounds during municipal wastewater treatment. Environ Toxicol Chem 18:172–181

    Article  CAS  Google Scholar 

  25. Zhang Z, Qi H, Ren N, Li Y, Gao D, Kannan K (2011) Survey of cyclic and linear siloxanes in sediment from the Songhua river and in sewage sludge from wastewater treatment plants, northeastern China. Arch Environ Contam Toxicol 60:204–211

    Article  CAS  Google Scholar 

  26. Liu N, Shi Y, Li W, Xu L, Cai Y (2014) Concentrations and distribution of synthetic musks and siloxanes in sewage sludge of wastewater treatment plants in China. Sci Total Environ 476–477:65–72

    Article  Google Scholar 

  27. Wang D-G, Aggarwal M, Tait T, Brimble S, Pacepavicius G, Kinsman L, Theocharides M, Smyth SA, Alaee M (2015) Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant. Water Res 72:209–217

    Article  CAS  Google Scholar 

  28. Bletsou AA, Asimakopoulos AG, Stasinakis AS, Thomaidis NS, Kannan K (2013) Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece. Environ Sci Technol 47:1824–1832

    Article  CAS  Google Scholar 

  29. Schweigkofler M, Niessner R (1999) Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis. Environ Sci Technol 33:3680–3685

    Article  CAS  Google Scholar 

  30. Schweigkofler M, Niessner R (2001) Removal of siloxanes in biogases. J Hazard Mater 83:183–196

    Article  CAS  Google Scholar 

  31. Rasi S, Lehtinen J, Rintala J (2010) Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants. Renew Energy 35:2666–2673

    Article  CAS  Google Scholar 

  32. Tansel B, Surita SC (2014) Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations. Waste Manag 34:2271–2277

    Article  CAS  Google Scholar 

  33. Graiver D, Farminer KW, Narayan R (2003) A review of the fate and effects of silicones in the environment. J Polym Environ 11:129–136

    Article  CAS  Google Scholar 

  34. Kent D, Fackler P, Hartley D, Hobson J (1996) Interpretation of data from nonstandard studies: the fate of octamethylcyclotetrasiloxane in a sediment/water microcosm system. Environ Toxicol Water Qual 11:145–149

    Article  CAS  Google Scholar 

  35. Xu S (1999) Fate of cyclic methylsiloxanes in soils. 1. The degradation pathway. Environ Sci Technol 33:603–608

    Article  CAS  Google Scholar 

  36. Xu S, Chandra G (1999) Fate of cyclic methylsiloxanes in soils. 2. Rates of degradation and volatilization. Environ Sci Technol 33:4034–4039

    Article  CAS  Google Scholar 

  37. Wang D-G, Du J, Pei W, Liu Y, Guo M (2015) Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors. Sci Total Environ 512–513:472–479

    Article  Google Scholar 

  38. Sanchís J, Martínez E, Ginebreda A, Farré M, Barceló D (2013) Occurrence of linear and cyclic volatile methylsiloxanes in wastewater, surface water and sediments from Catalonia. Sci Total Environ 443:530–538

    Article  Google Scholar 

  39. Stevens C, Annelin RB (1997) Ecotoxicity testing challenges of organosilicon materials. In: Chandra G (ed) Organosilicon materials: the handbook of environmental chemistry. Springer, New York, pp 83–103

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Alaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, DG., Alaee, M. (2018). Fate of Volatile Methylsiloxanes in Wastewater Treatment Plants. In: Homem, V., Ratola, N. (eds) Volatile Methylsiloxanes in the Environment. The Handbook of Environmental Chemistry, vol 89. Springer, Cham. https://doi.org/10.1007/698_2018_365

Download citation

Publish with us

Policies and ethics