Skip to main content

Fermented Food in Egypt: A Sustainable Bio-preservation to Improve the Safety of Food

  • Chapter
  • First Online:
Sustainability of Agricultural Environment in Egypt: Part I

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 76))

Abstract

The research in agricultural microbiology has experienced great changes in the past few decades, resulted in today’s systematic farming that is a backbone of the economy all over the globe (Verma and Srivastav, Microorganisms in sustainable agriculture, food, and the environment. CRC Press, Taylor & Francis Group, Boca Raton, 2017). The production of fermented milk and cheeses made from raw milk of cows or other animals (cows, buffalo, camels, goat, and sheep) is an agri-food sector with high production volumes and product diversification in all the countries. Milk and dairy products play a role of primary importance in the diet of local consumers of all ages for the supply of essential nutrients such as high biological value proteins, vitamins, and minerals. These products also represent a resource for the economic sustenance of marginal areas and, for their high quality and genuineness, deserve a boost for expansion on a global scale market. Also, raw milk for direct consumption can be considered a typical product for countries, such as Egypt, where most consumers consider it safer than heat sanitized milk for a deeply rooted popular belief. Fresh milk in Egypt is mostly used to prepare traditional products such as cheese (White, Karish, Mish, and Ras), yogurt, Rayeb, Labneh, and butter. However, the many microbiological hazards and deterioration processes that can occur in raw milk and derived products pose a public health risk and determine a very short shelf-life of the product which is an obstacle for its distribution at longer distances. The effect of the implemented natural preservation on fermented products’ compositional characteristics, the chapter will be focused on this point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verma DK, Srivastav PP (2017) Microorganisms in sustainable agriculture, food, and the environment. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  2. Steinkraus KH (2002) Fermentations in world food processing. Compr Rev Food Sci Food Saf 1:24–32

    Google Scholar 

  3. Steinkraus KH (1994) Nutritional significance of fermented foods. Food Res Int 27(3):259–267

    Google Scholar 

  4. Gaggia F, Di Gioia D, Baffoni L, Biavati B (2011) The role of protective and probiotic cultures in food and feed and their impact on food safety. Trends Food Sci Technol 22:S58–S66

    CAS  Google Scholar 

  5. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16

    CAS  Google Scholar 

  6. Adams MR, Nicolaides L (2008) Review of the sensitivity of different foodborne pathogens to fermentation. Food Control 8:227–239

    Google Scholar 

  7. Hammes WP, Tichaczek PS (1994) The potential of lactic acid bacteria for the production of safe and wholesome food. Z Lebensm Unters Forsch 198:193–201

    CAS  Google Scholar 

  8. van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54(9):1215–1247

    Google Scholar 

  9. Lacroix N, St Gelais D, Champagne CP, Fortin J, Vuillemard JC (2010) Characterization of aromatic properties of old-style cheese starters. J Dairy Sci 93:3427–3441

    CAS  Google Scholar 

  10. Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces sensu strict complex. C R Biol 334(3):229–236

    Google Scholar 

  11. Holzapfel WH, Giesen R, Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol 24:343–362

    CAS  Google Scholar 

  12. Mogensen G, Salminen S, O’Brien J, Ouwehand A, Holzapfel W, Shortt C, Fonden R, Miller GD, Donohue D, Playne M, Crittenden R, Salvadori B, Zink R (2002) Food microorganisms health benefits, safety evaluation and strains with documented history of use in foods. Bulletin of IDF 377:4–9

    Google Scholar 

  13. Mogensen G, Salminen S, O’Brien J, Ouwehand A, Holzapfel W, Shortt C, Fonden R, Miller GD, Donohue D, Playne M, Crittenden R, Salvadori B, Zink R (2002) Inventory of microorganisms with a documented history of use in food. Bulletin of IDF 377:10–19

    Google Scholar 

  14. Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Ter Schure E, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154(3):87–97

    CAS  Google Scholar 

  15. FAO/WHO (Food and Agriculture Organization/World Health Organization) (2002) Guidelines for the evaluation of probiotics in foods. Report of a joint FAO/WHO Working Group, London

    Google Scholar 

  16. Elsser-Gravesen D, Elsser-Gravesen A (2014) Biopreservatives. Adv Biochem Eng Biotechnol 143:29–49

    CAS  Google Scholar 

  17. Mahgoub SA, Ramadan MF, El-Zahar KM (2013) Cold pressed Nigella sativa oil inhibits the growth of foodborne pathogens and improves the quality of domiati cheese. J Food Saf 33:470–480

    Google Scholar 

  18. Osman A, Mahgoub S, El-Massry R, El-Gaby A, Sitohy M (2014) Extending the technological validity of raw buffalo milk at room temperature by esterified legume proteins. J Food Process Preserv 38(1):223–231

    CAS  Google Scholar 

  19. Osman A, Mahgoub S, Sitohy M (2013) Preservative action of 11S (glycinin) and 7S (B-conglycinin) soy globulin on bovine raw milk stored either at 4 or 25°C. J Dairy Res 80:174–183

    CAS  Google Scholar 

  20. Osman A, Mahgoub S, Sitohy M (2014) Hindering milk quality storage deterioration by mild thermization combined with methylated chickpea protein. Int Food Res J 21(2):693–701

    CAS  Google Scholar 

  21. Ramadan MF, Mahgoub SA, El-Zahar KM (2014) Soft cheese supplemented with black cumin oil: impact on food borne pathogens and quality during storage. Saudi J Biol Sci 21:280–288

    Google Scholar 

  22. Al-Zoreky N, Ayres JW, Sandine WE (1991) Antimicrobial activity of microgard against food spoilage and pathogenic microorganisms. J Dairy Sci 74:758–763

    CAS  Google Scholar 

  23. Lemay MJ, Choquette J, Delaquis PJ, Claude G, Rodrigue N, Saucier L (2002) Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. Int J Food Microbiol 78:217–226

    CAS  Google Scholar 

  24. Dave RI, Sharma P, Julson J, Muthukumarappan K, Henning DR (2003) Effectiveness of microgard (R) in controlling Escherichia coli O157: H7 and Listeria mnocytogenes. J Food Sci Technol 40:262–266

    Google Scholar 

  25. El-Kharbotly I (2014) Milk in Egypt: spotlight on a dilemma. J Global Health 1–5

    Google Scholar 

  26. El-Gendy SM (1983) Fermented foods of Egypt and the Middle East. J Food Prot 46(4):358–367

    Google Scholar 

  27. Hammad AM, Hassan HA, Shimamoto T (2015) Prevalence, antibiotic resistance and virulence of Enterococcus spp. in Egyptian fresh raw milk cheese. Food Control 50:815–820

    CAS  Google Scholar 

  28. Hammad AM, Ishida Y, Shimamoto T (2009) Prevalence and molecular characterization of ampicillin-resistant Enterobacteriaceae isolated from traditional Egyptian Domiati cheese. J Food Prot 72:624–630

    CAS  Google Scholar 

  29. Hegazy MI, Mahgoub SA (2013) Microbiological characterization of the Egyptian soft white cheese and identification of its dominant yeasts. Afr J Microbiol Res 7(20):2205–2212

    Google Scholar 

  30. Abd-El-Malek Y, Demerdash M (1970) Studies on the microbiology of some fermented milks in Egypt. 1. In: Sour milk. Food and dairy microbiology. 2nd conference. Microbiology, Cairo

    Google Scholar 

  31. Abd-El-Malek Y, Demerdash M (1970) Studies on the microbiology of some fermented milks in Egypt. 2. In: Laban Zeer. Food and dairy microbiology, 2nd conference. Microbiology, Cairo

    Google Scholar 

  32. EI-Erian AF, Farag AH, EI-Gendy SM (1975) Chemical studies on mish-cheese. Agric Res Rev 53:173–181

    Google Scholar 

  33. Litopoulou-Tzanetaki E, Tzanetakis N (2011) Microbiological characteristics of Greek traditional cheeses. Small Rumin Res 101:17–32

    Google Scholar 

  34. Poznanski E, Cavazza A, Cappa F, Cocconcelli P (2004) Indigenous raw milk microbiota influences the bacterial development in traditional cheese from an alpine natural park. Int J Food Microbiol 92:141–151

    CAS  Google Scholar 

  35. Rysanek D, Zouharova M, Babak V (2009) Monitoring major mastitis pathogens at the population level based on examination of bulk tank milk samples. J Dairy Res 76:117–123

    CAS  Google Scholar 

  36. Commission Regulation (EU) No 605/2010 of 2 July (2010) laying down animal and public health and veterinary certification conditions for the introduction into the European Union of raw milk and dairy products intended for human consumption

    Google Scholar 

  37. Hassanein NA, Hassanein MA, Soliman YA, Ghazy AA, Ghazyi YA (2009) Bovine tuberculosis in a dairy cattle farm as a threat to public health. Afr J Microbiol Res 3:446–450

    Google Scholar 

  38. Ombarak RA, Hinenoya A, Awasthi SP, Iguchi A, Shima A, Elbagory AR, Yamasaki S (2016) Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. Int J Food Microbiol 221:69–76

    Google Scholar 

  39. Langer AJ, Ayers T, Grass J, Lynch M, Angulo FJ, Mahon BE (2012) Nonpasteurized dairy products, disease outbreaks, and state laws-United States, 1993–2006. Emerg Infect Dis 18(3):385–391

    Google Scholar 

  40. Heidinger JC, Winter CK, Cullor JS (2009) Quantitative microbial risk assessment for Staphylococcus aureus and Staphylococcus enterotoxin A in raw milk. J Food Prot 72(8):1641–1653

    CAS  Google Scholar 

  41. Giammanco GM, Pepe A, Aleo A, D’Agostino V, Milone S, Mammina C (2011) Microbiological quality of Pecorino Siciliano “primosale” cheese on retail sale in the street markets of Palermo, Italy. N Microbiol 34(2):179–185

    Google Scholar 

  42. Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2:115–129

    CAS  Google Scholar 

  43. De Buyser ML, Dufour B, Maire M, Lafarge V (2001) Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int J Food Microbiol 67:1–17

    Google Scholar 

  44. Giacometti F, Serraino A, Bonilauri P, Ostanello F, Daminelli P, Finazzi G, Losio MN, Marchetti G, Liuzzo G, Zanoni RG, Rosmini R (2012) Quantitative risk assessment of verocytotoxin-producing Escherichia coli O157 and Campylobacter jejuni related to consumption of raw milk in a province in northern Italy. J Food Prot 75:2031–2038

    CAS  Google Scholar 

  45. Nuñez JA, Chavarri FJ, Nuñez M (1984) Psychrotrophic bacterial flora of raw ewes’ milk, with particular reference to gram negative rods. J Appl Bacteriol 57:23–29

    Google Scholar 

  46. FDA (2012) Bad bug book: foodborne pathogenic microorganisms and natural toxins handbook, 2nd ed. International Medical Publishing

    Google Scholar 

  47. Ayad EHE, Omran N, El-Soda M (2006) Characterisation of lactic acid bacteria isolated from artisanal Egyptian Ras cheese. Lait 86:317–331

    CAS  Google Scholar 

  48. El Deeb HK, Salah-Eldin H, Khodeer S, Allah AA (2012) Prevalence of Toxoplasma gondii infection in antenatal population in Menoufia Governorate, Egypt. Acta Trop 124:185–191

    Google Scholar 

  49. Little C, Rhoades J, Sagoo S, Harris J, Greenwood M, Mithani V et al (2008) Microbiological quality of retail cheeses made from raw, thermized or pasteurized milk in the UK. Food Microbiol 25:304–312

    CAS  Google Scholar 

  50. Conde-Estevez D, Grau S, Albanell J, Terradas R, Salvado M, Knobel H (2011) Clinical characteristics and outcomes of patients with vancomycin-susceptible Enterococcus faecalis and Enterococcus faecium bacteraemia in cancer patients. Eur J Clin Microbiol Infect Dis 30:103–108

    CAS  Google Scholar 

  51. Angulo FJ, Heuer OE, Hammerum AM, Collignon P, Wegener HC (2006) Human health hazard from antimicrobial-resistant enterococci in animals and food. Clin Infect Dis 43:911–916

    Google Scholar 

  52. Lebreton F, Depardieu F, Bourdon N, Fines-Guyon M, Berger P, Camiade S, Leclercq R, Courvalin P, Cattoir V (2011) D-Ala-d-Ser VanN-type transferable ncomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 55:4606–4612

    CAS  Google Scholar 

  53. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

    CAS  Google Scholar 

  54. Sava IG, Heikens E, Huebner J (2010) Pathogenesis and immunity in enterococcal infections. Clin Microbiol Infect 16:533–540

    CAS  Google Scholar 

  55. Gelsomino R, Vancanneyt M, Cogan TM, Swings J (2003) Effect of raw-milk cheese consumption on the enterococcal flora of human feces. Appl Environ Microbiol 69:312–319

    CAS  Google Scholar 

  56. Hammerum A (2012) Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 18:619–625

    CAS  Google Scholar 

  57. Simjee S (ed) (2007) Foodborne diseases. Springer, New York

    Google Scholar 

  58. El Kholy A, Baseem H, Hall GS, Procop GW, Longworth DL (2003) Antimicrobial resistance in Cairo, Egypt 1999-2000: a survey of five hospitals. J Antimicrob Chemother 51:625–630

    Google Scholar 

  59. Saied GM (2006) Microbial pattern and antimicrobial resistance, a surgeon’s perspective: retrospective study in surgical wards and seven intensive-care units in two university hospitals in Cairo, Egypt. Dermatology 212:8–14

    Google Scholar 

  60. Rabie MA, Elsaidy S, El-Badawy A, Siliha H, Malcata FX (2011) Biogenic amine contents in selected Egyptian fermented foods as determined by ion-exchange chromatography. J Food Prot 74(4):681–685

    CAS  Google Scholar 

  61. Silla-Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231

    CAS  Google Scholar 

  62. Tsai YH, Kung HF, Lee TM, Lin GT, Hwang DF (2004) Histamine-related hygienic qualities and bacteria found in popular commercial scombroid fish fillets in Taiwan. J Food Prot 67:407–412

    CAS  Google Scholar 

  63. Tsai YH, Hsieh HS, Chen HC, Cheng SH, Chai T, Hwang DF (2007) Histamine level and species identification of billfish meats implicated in two food-borne poisonings. Food Chem 104:1366–1371

    CAS  Google Scholar 

  64. McKay LL, Baldwin KA (1990) Application for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev 7:3–14

    CAS  Google Scholar 

  65. Corsetti A, Settanni L, Van Sinderen D (2004) Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl Microbiol 96(3):521–534

    CAS  Google Scholar 

  66. Zotta T, Parente E, Ricciardi A (2009) Viability staining and detection of metabolic activity of sourdough lactic acid bacteria under stress conditions. World J Microbiol Biotechnol 25(6):1119–1124

    CAS  Google Scholar 

  67. Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie van Leuwenhoek 70:331–345

    CAS  Google Scholar 

  68. EFSA (European Food Safety Authority) (2015) Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA J 11:3449

    Google Scholar 

  69. Ortolani MB, Yamazi AK, Moraes PM, Viçosa GN, Nero LA (2010) Microbiological quality and safety of raw milk and soft cheese and detection of autochthonous lactic acid bacteria with antagonistic activity against Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. Foodborne Pathog Dis 7(2):175–180

    CAS  Google Scholar 

  70. Alegría A, Delgado S, Roces C, López B, Mayo B (2010) Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. Int J Food Microbiol 143:61–66

    Google Scholar 

  71. Bravo D, Rodríguez E, Medina M (2009) Nisin and lacticin 481 coproduction by Lactococcus lactis strains isolated from raw ewes milk. J Dairy Sci 92:4805–4811

    CAS  Google Scholar 

  72. Rossi F, Veneri G (2016) Use of bacteriocinogenic cultures without inhibiting cheese associated nonstarter lactic acid bacteria; a trial with Lactobacillus plantarum. Challenges 7(1):4

    Google Scholar 

  73. Rayman MK, Aris B, Hurst A (1981) Nisin: a possible alternative or adjunct to nitrite in the preservation of meats. Appl Environ Microbiol 41:375–380

    CAS  Google Scholar 

  74. Rossi F, Capodaglio A, Dellaglio F (2008) Genetic modification of Lactobacillus plantarum by heterologous gene integration in a non functional region of the chromosome. Appl Microbiol Biotechnol 80:79–86

    CAS  Google Scholar 

  75. Rossi F, Pallotta ML (2016) Bacteriocin producing cultures: a sustainable way for food safety improvement and probiotics with additional health promoting effects. Bacteriocins: production, applications and safety. Nova Science Publishers, New York

    Google Scholar 

  76. Rossi F, Pallotta M (2016) Bacteriocin producing cultures: a sustainable way for food safety improvement and probiotics with additional health promoting effects. Int J Med Biol Front 22(1):59

    Google Scholar 

  77. Perin LM, Bello BD, Belviso S, Zeppa G, de Carvalho AF, Cocolin L, Nero LA (2015) Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05. Int J Food Microbiol 214:159–167

    CAS  Google Scholar 

  78. Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LM, Franco BD, Vaz-Velho M, Drider D (2010) Characterization of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27:869–879

    CAS  Google Scholar 

  79. Maestri E, Marmiroli M, Marmiroli N (2016) Bioactive peptides in plant-derived foodstuffs. J Proteomics 147:140–155

    CAS  Google Scholar 

  80. Sharma S, Singh R, Rana S (2011) Bioactive peptides: a review. Int J Bioautomation 15(4):223–250

    CAS  Google Scholar 

  81. Fitzgerald JR, Murray BA (2006) Bioactive peptides and lactic fermentations. Int J Dairy Technol 59:118–125

    CAS  Google Scholar 

  82. Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9(16):1309–1323

    CAS  Google Scholar 

  83. Kumarasamy Y, Fergusson M, Nahar L, Sarker SD (2002) Biological activity of moschamindole from Centaurea moschata. Pharm Biol 40:307–310

    CAS  Google Scholar 

  84. Lönnerdal B (2013) Bioactive proteins in breast milk. J Paediatr Child Health 49(1):1–7

    Google Scholar 

  85. Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491

    CAS  Google Scholar 

  86. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    CAS  Google Scholar 

  87. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    CAS  Google Scholar 

  88. Charpentier E, Courvalin P (1999) Antibiotic resistance in Listeria spp. Antimicrob Agents Chemother 43:2103–2108

    CAS  Google Scholar 

  89. Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5:452–456

    CAS  Google Scholar 

  90. Friedrich CL, Moyles D, Beveridge TJ, Hancock REW (2000) Antimicrobial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44:2086–2092

    CAS  Google Scholar 

  91. Giuliani A, Rinaldi AC (2010) Antimicrobial peptides, methods in molecular biology, vol 618. Humana Press, Totowa

    Google Scholar 

  92. Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Chiozzi R, Lagana A (2014) Protein profile of mature soybean seeds and prepared soy milk. J Agric Food Chem 62:9893–9899

    CAS  Google Scholar 

  93. Capriotti AL, Caruso G, Cavaliere C, Samperi R, Ventura S, Chiozzi R, Laganà A (2015) Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J Food Compos Anal 44:205–213

    CAS  Google Scholar 

  94. Carvalho A, Machado O, Da Cunha M, Santos I, Gomes V (2001) Antimicrobial peptides and immunolocalization of a LTP in Vigna unguiculata seeds. Plant Physiol Biochem 39:137–146

    CAS  Google Scholar 

  95. Ma Q, Davidson PM, Zhong Q (2016) Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin. Food Chem 206(1):167–173

    CAS  Google Scholar 

  96. Sitohy M, Mahgoub S, Osman A (2012) In vitro and in situ antimicrobial action and mechanism of glycinin and its basic subunit. Int J Food Microbiol 154:19–29

    CAS  Google Scholar 

  97. Liu H, Pei H, Han Z, Feng G, Li D (2015) The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-Polylysine and nisin against Bacillus subtilis. Food Control 47:444–450

    CAS  Google Scholar 

  98. Abo El-Maati MF, Mahgoub SA, Labib SM, Al-Gaby AM, Ramadan NF (2016) Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur J Integrative Med 8:494–504

    Google Scholar 

  99. Froc J (2007) Balade au pays des fromages: Les traditions fromagères en France. Quae, Versailles

    Google Scholar 

  100. Cantin MA, Gaudin C, Leser N (2013) Guide de l’amateur de fromages. A. Michel, Paris

    Google Scholar 

  101. Marchiani R, Bertolino M, Ghirardello D, McSweeney PLH, Zeppa G (2016) Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J Food Sci Technol 53:1585–1596

    CAS  Google Scholar 

  102. Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW (2013) Effects of catechin on the phenolic content and antioxidant properties of low-fat cheese. Int J Food Sci Technol 48:2448–2455

    CAS  Google Scholar 

  103. Huvaere K, Nielsen JH, Bakman M, Hammershøj M, Skibsted LH, Sørensen J, Vognsen L, Dalsgaard TK (2011) Antioxidant properties of green tea extract protect reduced fat soft cheese against oxidation induced by light exposure. J Agric Food Chem 59:8718–8723

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir A. Mahgoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahgoub, S.A. (2018). Fermented Food in Egypt: A Sustainable Bio-preservation to Improve the Safety of Food. In: Negm, A.M., Abu-hashim, M. (eds) Sustainability of Agricultural Environment in Egypt: Part I. The Handbook of Environmental Chemistry, vol 76. Springer, Cham. https://doi.org/10.1007/698_2018_245

Download citation

Publish with us

Policies and ethics