Skip to main content

Ecotoxicological Studies of Pharmaceuticals in Aquatic Organisms

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 66))

Abstract

Pharmaceuticals are widely used in human and veterinary medicine as well as agriculture and aquaculture to heal and save lives since they have been designed to interact specifically with biochemical mechanisms in higher vertebrate species at low concentrations. However, adverse effects on nontarget species may be possible despite the generally low toxicity of these compounds in mammalian species and the low levels found in the environment. The level of damage induced on aquatic organisms depends on the concentration to which they are exposed, the biological activity and toxicity of the pharmaceutical, its history of use, and its persistence in the environment. Studies on the ecotoxicity of pharmaceuticals are limited in number and are based primarily on acute toxicity studies and a few results about chronic effects on aquatic species. This chapter seeks to conduct an up-to-date review of published reports dealing with ecotoxicological studies of pharmaceuticals in aquatic organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Elizalde-Velázquez A, Martínez-Rodríguez H, Galar-Martínez M et al (2017) Effect of amoxicillin exposure on brain, gill, liver, and kidney of common carp (Cyprinus carpio): the role of amoxicilloic acid. Environ Toxicol 32:1102–1120

    Article  CAS  Google Scholar 

  2. Oliveira R, McDonough S, Ladewig CLJ et al (2013) Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environ Toxicol Pharmacol 36:903–912

    Article  CAS  Google Scholar 

  3. Andreozzi R, Caprio V, Ciniglia C et al (2004) Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ Sci Technol 38:6832–6838

    Article  CAS  Google Scholar 

  4. Liu Y, Wang F, Chen X et al (2015) Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels. Ecotoxicol Environ Saf 111:138–145

    Article  CAS  Google Scholar 

  5. Anlas C, Ustuner O (2016) Genotoxic assessment of amoxicillin in rainbow trout (Oncorhynchus mykiss) by comet assay and micronucleus test. Fresenius Environ Bull 25(12):5358–5364

    CAS  Google Scholar 

  6. Johansson H, Janmar L, Backhaus T (2014) Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria. Aquat Toxicol 156:248–258

    Article  CAS  Google Scholar 

  7. Liu B-Y, Nie X-P, Liu W-Q, Snoeijs P, Guan C, Tsui M (2011) Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum. Ecotoxicol Environ Saf 74(4):1027–1035

    Article  CAS  Google Scholar 

  8. Nie X, Wang X, Chen J et al (2008) Response of the freshwater alga Chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environ Toxicol Chem 27(1):168–173

    Article  CAS  Google Scholar 

  9. Ebert I, Bachmann J, Kühnen U et al (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30(12):2786–2792

    Article  CAS  Google Scholar 

  10. Melvin S, Cameron M, Lanctôt C (2014) Individual and mixture toxicity of pharmaceuticals naproxen, carbamazepine, and sulfamethoxazole to Australian striped marsh frog tadpoles (Limnodynastes peronii). J Toxicol Environ Health A 77(6):337–345

    Article  CAS  Google Scholar 

  11. Pomati F, Netting AG, Calamari D et al (2004) Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67(4):387–396

    Article  CAS  Google Scholar 

  12. Gonzalez-Pleiter M, Gonzalo S, Rodea-Palomares I et al (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47(6):2050–2064

    Article  CAS  Google Scholar 

  13. Rodrigues S, Antunes SC, Correia AT et al (2016) Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. Sci Total Environ 545–546:591–600

    Article  CAS  Google Scholar 

  14. Meinertz J, Schreier R, Bernardy T (2011) Chronic toxicity of erythromycin thiocyanate to Daphnia magna in a flow-through, continuous exposure test system. Bull Environ Contam Toxicol 87(6):621–625

    Article  CAS  Google Scholar 

  15. Peltzer PM, Lajmanovich RC, Attademo AM et al (2017) Ecotoxicity of veterinary enrofloxacin and ciprofloxacin antibiotics on anuran amphibian larvae. Environ Toxicol Pharmacol 51:114–123

    Article  CAS  Google Scholar 

  16. Shang A, Ye J, Chen D et al (2015) Physiological effects of tetracycline antibiotic pollutants on non-target aquatic Microcystis aeruginosa. J Environ Sci Health B Pestic 50(11):809–818

    Article  CAS  Google Scholar 

  17. Nunes B, Antunes S, Gomes C et al (2015) Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations. Arch Environ Contam Toxicol 68(2):371–381

    Article  CAS  Google Scholar 

  18. Liang X, Wang L, Ou R et al (2015) Effects of norfloxacin on hepatic genes expression of P450 isoforms (CYP1A and CYP3A), GST and P-glycoprotein (P-gp) in Swordtail fish (Xiphophorus helleri). Ecotoxicology 24(7–8):1566–1573

    Article  CAS  Google Scholar 

  19. Liu J, Lu G, Wu D et al (2014) A multi-biomarker assessment of single and combined effects of norfloxacin and sulfamethoxazole on male goldfish (Carassius auratus). Ecotoxicol Environ Saf 102:12–17

    Article  CAS  Google Scholar 

  20. Wan J, Guo P, Zhang S (2014) Response of the cyanobacterium Microcystis flos-aquae to levofloxacin. Environ Sci Pollut Res Int 21(5):3858–3865

    Article  CAS  Google Scholar 

  21. Ambili TR, Saravanan M, Ramesh M et al (2013) Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Arch Environ Contam Toxicol 64(3):494–503

    Article  CAS  Google Scholar 

  22. Zounkova R, Klimesova Z, Nepejchalova L et al (2011) Complex evaluation of ecotoxicity and genotoxicity of antimicrobials oxytetracycline and flumequine used in aquaculture. Environ Toxicol Chem 30(5):1184–1189

    Article  CAS  Google Scholar 

  23. Rodrigues S, Antunes SC, Correia AT et al (2017) Rainbow trout (Oncorhynchus mykiss) pro-oxidant and genotoxic responses following acute and chronic exposure to the antibiotic oxytetracycline. Ecotoxicology 26(1):104–117

    Article  CAS  Google Scholar 

  24. Zivna D, Plhalova L, Praskova E et al (2013) Oxidative stress parameters in fish after subchronic exposure to acetylsalicylic acid. Neuroendocrinol Lett 34:116–122

    CAS  Google Scholar 

  25. Gómez-Oliván LM, Galar-Martínez M, Islas-Flores H et al (2014) DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 164:21–26

    Article  CAS  Google Scholar 

  26. Schwaiger J, Ferling H, Mallow U et al (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68(2):141–150

    Article  CAS  Google Scholar 

  27. Hong HN, Kim HN, Park KS et al (2007) Analysis of the effects diclofenac has on Japanese medaka (Oryzias latipes) using real-time PCR. Chemosphere 67(11):2115–2121

    Article  CAS  Google Scholar 

  28. Mehinto AC, Hill EM, Tyler CR (2010) Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 44(6):2176–2182

    Article  CAS  Google Scholar 

  29. Oviedo-Gómez DGC, Galar-Martínez M, García-Medina S et al (2010) Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca. Environ Toxicol Pharmacol 29(1):39–43

    Article  CAS  Google Scholar 

  30. Praskova E, Voslarova E, Siroka Z et al (2011) Assessment of diclofenac LC50 reference values in juvenile and embryonic stages of the zebrafish (Danio rerio). Pol J Vet Sci 14(4):545–549

    Article  CAS  Google Scholar 

  31. Feito R, Valcárcel Y, Catalá M (2012) Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology 21(1):289–296

    Article  CAS  Google Scholar 

  32. Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M et al (2013) Diclofenac-induced oxidative stress in brain, liver, gill and blood of common carp (Cyprinus carpio). Ecotoxicol Environ Saf 92:32–38

    Article  CAS  Google Scholar 

  33. Stepanova S, Praskova E, Chromcova L et al (2013) The effects of diclofenac on early life stages of common carp (Cyprinus carpio). Environ Toxicol Pharmacol 35(3):454–460

    Article  CAS  Google Scholar 

  34. Gonzalez-Rey M, Bebianno MJ (2014) Effects of non-steroidal anti-inflammatory drug (NSAID) diclofenac exposure in mussel Mytilus galloprovincialis. Aquat Toxicol 148:221–230

    Article  CAS  Google Scholar 

  35. Praskova E, Plhalova L, Chromcova L et al (2014) Effects of subchronic exposure of diclofenac on growth, histopathological changes, and oxidative stress in zebrafish (Danio rerio). Sci World J 2014:1–5

    Article  CAS  Google Scholar 

  36. Cardoso-Vera JD, Islas-Flores H, SanJuan-Reyes N et al (2017) Comparative study of diclofenac-induced embryotoxicity and teratogenesis in Xenopus laevis and Lithobates catesbeianus, using the frog embryo teratogenesis assay: Xenopus (FETAX). Sci Total Environ 574:467–475

    Article  CAS  Google Scholar 

  37. Saucedo-Vence K, Dublán-García O, López-Martínez L et al (2015) Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. Ecotoxicology 24(3):527–539

    Article  CAS  Google Scholar 

  38. Flippin JL, Huggett D, Foran CM (2007) Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquat Toxicol 81(1):73–78

    Article  CAS  Google Scholar 

  39. Heckmann LH, Callaghan A, Hooper HL et al (2007) Chronic toxicity of ibuprofen to Daphnia magna: effects on life history traits and population dynamics. Toxicol Lett 172(3):137–145

    Article  CAS  Google Scholar 

  40. David A, Pancharatna K (2009) Developmental anomalies induced by a non-selective COX inhibitor (ibuprofen) in zebrafish (Danio rerio). Environ Toxicol Pharmacol 27(3):390–395

    Article  CAS  Google Scholar 

  41. Parolini M, Binelli A, Provini A (2011) Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicol Environ Saf 74(6):1586–1594

    Article  CAS  Google Scholar 

  42. Bartoskova M, Dobsikova R, Stancova V et al (2013) Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuro Endocrinol Lett 34:102–108

    CAS  Google Scholar 

  43. Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M et al (2014) Effect of ibuprofen exposure on blood, gill, liver, and brain on common carp (Cyprinus carpio) using oxidative stress biomarkers. Environ Sci Pollut Res 21(7):5157–5166

    Article  CAS  Google Scholar 

  44. Parolini M, Binelli A, Cogni D et al (2010) Multi-biomarker approach for the evaluation of the cyto-genotoxicity of paracetamol on the zebra mussel (Dreissena polymorpha). Chemosphere 79(5):489–498

    Article  CAS  Google Scholar 

  45. Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M et al (2012) Assessing the oxidative stress induced by paracetamol spiked in artificial sediment on Hyalella azteca. Water Air Soil Pollut 223(8):5097–5104

    Article  CAS  Google Scholar 

  46. Vliegenthart AD, Starkey LP, Tucker CS et al (2014) Retro-orbital blood acquisition facilitates circulating microRNA measurement in zebrafish with paracetamol hepatotoxicity. Zebrafish 11(3):219–226

    Article  CAS  Google Scholar 

  47. Parolini M, Binelli A, Cogni D et al (2009) An in vitro biomarker approach for the evaluation of the ecotoxicity of non-steroidal anti-inflammatory drugs (NSAIDs). Toxicol In Vitro 23(5):935–942

    Article  CAS  Google Scholar 

  48. SanJuan-Reyes N, Gómez-Oliván L, Galar-Martínez M et al (2013) Effluent from an NSAID-manufacturing plant in Mexico induces oxidative stress on Cyprinus carpio. Water Air Soil Pollut 224(9):1–14

    Article  CAS  Google Scholar 

  49. Gómez-Oliván L, Galar-Martínez M, García-Medina S et al (2014) Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 37(4):391–399

    Article  CAS  Google Scholar 

  50. García-Medina AL, Galar-Martínez M, García-Medina S et al (2015) Naproxen-enriched artificial sediment induces oxidative stress and genotoxicity in Hyalella azteca. Water Air Soil Pollut 226(6):1–10

    Google Scholar 

  51. Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M et al (2014) Binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and these pharmaceuticals in isolated form induce oxidative stress on Hyalella azteca. Environ Monit Assess 186(11):7259–7271

    Article  CAS  Google Scholar 

  52. Galar-Martínez M, García-Medina S, Gómez-Olivan LM et al (2016) Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus carpio. Environ Toxicol 31(9):1035–1043

    Article  CAS  Google Scholar 

  53. Novoa-Luna KA, Romero-Romero R, Natividad-Rangel R et al (2016) Oxidative stress induced in Hyalella azteca by an effluent from a NSAID-manufacturing plant in Mexico. Ecotoxicology 25(7):1288–1304

    Article  CAS  Google Scholar 

  54. Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M et al (2017) Cyto-genotoxicity and oxidative stress in common carp (Cyprinus carpio) exposed to a mixture of ibuprofen and diclofenac. Environ Toxicol 32(5):1637–1650

    Article  CAS  Google Scholar 

  55. SanJuan-Reyes N, Gómez-Oliván LM, Galar-Martínez M et al (2015) NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp (Cyprinus carpio). Sci Total Environ 530–531:1–10

    Article  CAS  Google Scholar 

  56. González-González E, Gómez-Oliván LM, Galar-Martínez M et al (2014) Metals and nonsteroidal anti-inflammatory pharmaceuticals drugs present in water from Madín Reservoir (Mexico) induce oxidative stress in gill, blood, and muscle of common carp (Cyprinus carpio). Arch Environ Contam Toxicol 67(2):281–295

    Article  CAS  Google Scholar 

  57. Cleuvers M (2005) Initial risk assessment for three beta-blockers found in the aquatic environment. Chemosphere 59:199–205

    Article  CAS  Google Scholar 

  58. Yamamoto H, Nakamura Y, Nakamura Y et al (2007) Initial ecological risk assessment of eight selected human pharmaceuticals in Japan. Environ Sci 14:77–193

    Google Scholar 

  59. Kϋster A, Alder AC, Escher BI et al (2010) Environmental risk assessment of human pharmaceuticals in the European Union: a case study with the β-blocker atenolol. Integr Environ Assess Manag 6:514–523

    Google Scholar 

  60. Van den Brandhof EJ, Montforts M (2010) Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicol Environ Saf 73:1862–1866

    Article  CAS  Google Scholar 

  61. Contardo-Jara V, Pflugmacher S, Nützmann G et al (2010) The β-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha. Environ Pollut 158:2059–2066

    Article  CAS  Google Scholar 

  62. Sun L, Xin L, Peng Z et al (2014) Toxicity and enantiospecific differences of two β-blockers, propranolol and metoprolol, in the embryos and larvae of zebrafish (Danio rerio). Environ Toxicol 29:1367–1378

    Article  CAS  Google Scholar 

  63. Moermond CTA (2014) Environmental risk limits for pharmaceuticals: derivation of WFD water quality standards for carbamazepine, metoprolol, metformin and amidotrizoic acid. RIVM Report 27000602. National Institute for Public Health and the Environment, Bilthoven

    Google Scholar 

  64. Lilius H, Isomaa B, Holmstroem TA (1994) A comparison of the toxicity of 50 reference chemicals to freshly isolated rainbow trout hepatocytes and Daphnia magna. Aquat Toxicol 30(1):47–60

    Article  CAS  Google Scholar 

  65. Dzialowski EM, Turner PK, Brooks BW (2006) Physiological and reproductive effects of beta adrenergic receptor antagonists in Daphnia magna. Arch Environ Contam Toxicol 50(4):503–510

    Article  CAS  Google Scholar 

  66. Owen SF, Huggett DB, Hutchinson TH et al (2009) Uptake of propranolol, a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry. Aquat Toxicol 93:217–224

    Article  CAS  Google Scholar 

  67. Huggett DB, Brooks BW, Peterson B et al (2002) Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (β-blockers) on aquatic organisms. Arch Environ Contam Toxicol 43(2):229–235

    Article  CAS  Google Scholar 

  68. Brooks BW, Stanley JK, Glidewell E et al (2004) Chemistry’s impact on the global economy. 228th national meeting of the American Chemical Society, Philadelphia, PA. American Chemical Society, Washington, p U621

    Google Scholar 

  69. Bjerselius R, Lundstedt-Enkel K, Olsén H et al (2001) Male goldfish reproductive behaviour and physiology are severely affected by exogenous exposure to 17-estradiol. Aquat Toxicol 53:139–152

    Article  CAS  Google Scholar 

  70. Schoenfuss HL, Levitt JT, Van der Craak G et al (2002) Ten-week exposure to treated sewage discharge has relatively minor, variable effects on reproductive behavior and sperm production in goldfish. Environ Toxicol Chem 21:2185–2190

    Article  CAS  Google Scholar 

  71. Oshima Y, Kang IJ, Kobayashi M et al (2003) Suppression of sexual behavior in male Japanese medaka (Oryzias latipes) exposed to 17-estradiol. Chemosphere 50:429–436

    Article  Google Scholar 

  72. Seki M, Fujishima S, Nozaka T et al (2005) Comparison of response to 17β-estradiol and 17β-trenbolone among three small fish species. Environ Toxicol Chem 25(10):2742–2752

    Article  Google Scholar 

  73. Hirai N, Nanba A, Koshio M et al (2006) Feminization of Japanese medaka (Oryzias latipes) exposed to 17β-estradiol: formation of testis-ova and sex-transformation during early-ontogeny. Aquat Toxicol 77(1):78–86

    Article  CAS  Google Scholar 

  74. Wolf J, Lutz I, Kloas W et al (2010) Effects of 17 β-estradiol exposure on Xenopus laevis gonadal histopathology. Environ Toxicol Chem 29(5):1091–1105

    Article  CAS  Google Scholar 

  75. Gutierrez-Gomes AA, SanJuan-Reyes N, Galar-Martinez M et al (2016) 17β-Estradiol induced oxidative stress in brain, gill, liver, kidney and blood of common carp (Cyprinus carpio). Electron J Biol 12(1):53–63

    Google Scholar 

  76. Seki M, Yokota H, Matsubara H et al (2002) Effect of ethinylestradiol on the reproduction and induction of vitellogenin and testis-ova in medaka (Oryzias latipes). Environ Toxicol Chem 21(8):1692–1698

    Article  CAS  Google Scholar 

  77. Bell AM (2001) Effects of an endocrine disrupter on courtship and aggressive behaviour of male three-spined stickleback, Gasterosteus aculeatus. Anim Behav 62:775–780

    Article  Google Scholar 

  78. Örn S, Holbech H, Madsen TH et al (2003) Gonad development and vitellogenin production in zebrafish (Danio rerio) exposed to ethinylestradiol and methyltestosterone. Aquat Toxicol 65(4):397–411

    Article  CAS  Google Scholar 

  79. Zillioux E, Johnson I, Kiparissis Y et al (2001) The sheepshead minnow as an in vivo model for endocrine disruption in marine teleosts: a partial life-cycle test with 17alpha-ethynylestradiol. Environ Toxicol Chem 20(9):1968–1978

    Article  CAS  Google Scholar 

  80. Jobling S, Sheahan D, Osborne JA et al (1996) Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15(2):194–202

    Article  CAS  Google Scholar 

  81. Nakamura Y, Yamamoto H, Sekizawa J et al (2008) The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): acute toxicity in fish larvae and bioaccumulation in juvenile fish. Chemosphere 70(5):865–873

    Article  CAS  Google Scholar 

  82. Dzieweczynski T, Kane J, Campbell B et al (2016) Fluoxetine exposure impacts boldness in female Siamese fighting fish, Betta splendens. Ecotoxicology 25(1):69–79

    Article  CAS  Google Scholar 

  83. Forsatkar M, Nematollahi N, Amiri A et al (2014) Fluoxetine inhibits aggressive behaviour during parental care in male fighting fish (Betta splendens, Regan). Ecotoxicology 23(9):1794–1802

    Article  CAS  Google Scholar 

  84. Weinberger J, Klaper R (2014) Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat Toxicol 151:77–83

    Article  CAS  Google Scholar 

  85. Henry T, Black B (2008) Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish. Arch Environ Contam Toxicol 54(2):325–330

    Article  CAS  Google Scholar 

  86. Abreu MS, Giacomini ACV, Gusso D et al (2016) Acute exposure to waterborne psychoactive drugs attract zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 179:37–43

    Article  CAS  Google Scholar 

  87. Brandão FP, Rodrigues S, Castro BB et al (2013) Short-term effects of neuroactive pharmaceutical drugs on a fish species: biochemical and behavioural effects. Aquat Toxicol 144–145:218–229

    Article  CAS  Google Scholar 

  88. Nunes B, Carvalho F, Guilhermino L (2005) Acute toxicity of widely used pharmaceuticals in aquatic species: Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chui. Ecotoxicol Environ Saf 61(3):413–419

    Article  CAS  Google Scholar 

  89. Nunes B, Gaio A, Carvalho F et al (2008) Behaviour and biomarkers of oxidative stress in Gambusia holbrooki after acute exposure to widely used pharmaceuticals and a detergent. Ecotoxicol Environ Saf 71(2):341–354

    Article  CAS  Google Scholar 

  90. Lamichhane K, Garcia S, Huggett D et al (2013) Chronic effects of carbamazepine on life-history strategies of Ceriodaphnia dubia in three successive generations. Arch Environ Contam Toxicol 64(3):427–438

    Article  CAS  Google Scholar 

  91. Ellesat KS, Tollefsen K-E, Åsberg A et al (2010) Cytotoxicity of atorvastatin and simvastatin on primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Toxicol In Vitro 24(6):1610–1618

    Article  CAS  Google Scholar 

  92. Ellesat KS, Holth TF, Wojewodzic MW et al (2012) Atorvastatin up-regulate toxicologically relevant genes in rainbow trout gills. Ecotoxicology 21(7):1841–1856

    Article  CAS  Google Scholar 

  93. Coimbra AM, Peixoto MJ, Coelho I et al (2015) Chronic effects of clofibric acid in zebrafish (Danio rerio): a multigenerational study. Aquat Toxicol 160:76–86

    Article  CAS  Google Scholar 

  94. Nunes B, Carvalho F, Guilhermino L (2004) Acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase, lactate dehydrogenase and catalase of the mosquitofish, Gambusia holbrooki. Chemosphere 57(11):1581–1589

    Article  CAS  Google Scholar 

  95. Weston A, Caminada D, Galicia H et al (2009) Effects of lipid-lowering pharmaceuticals bezafibrate and clofibric acid on lipid metabolism in fathead minnow (Pimephales promelas). Environ Toxicol Chem 28(12):2648–2655

    Article  CAS  Google Scholar 

  96. Zurita JL, Repetto G, Jos A et al (2007) Toxicological effects of the lipid regulator gemfibrozil in four aquatic systems. Aquat Toxicol 81(1):106–115

    Article  CAS  Google Scholar 

  97. Prindiville JS, Mennigen JA, Zamora JM et al (2011) The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout. Toxicol Appl Pharmacol 251(3):201–208

    Article  CAS  Google Scholar 

  98. Barreto A, Luis LG, Soares AMVM et al (2017) Genotoxicity of gemfibrozil in the gilthead seabream (Sparus aurata). Mutat Res Genet Toxicol Environ Mutagen 821:36–42

    Article  CAS  Google Scholar 

  99. Mimeault C, Woodhouse A, Miao X et al (2005) The human lipid regulator, gemfibrozil bioconcentrates and reduces testosterone in the goldfish, Carassius auratus. Aquat Toxicol 73(1):44–54

    Article  CAS  Google Scholar 

  100. Mimeault C, Trudeau VL, Moon TW (2006) Waterborne gemfibrozil challenges the hepatic antioxidant defense system and down-regulates peroxisome proliferator-activated receptor beta (PPARβ) mRNA levels in male goldfish (Carassius auratus). Toxicology 228(2):140–150

    Article  CAS  Google Scholar 

  101. Niemuth N, Jordan R, Crago J et al (2015) Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environ Toxicol Chem 34(2):291–296

    Article  CAS  Google Scholar 

  102. Niemuth NJ, Klaper RD (2015) Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere 135:38–45

    Article  CAS  Google Scholar 

  103. Qadri SY, Khan MAQ (1998) Induction of hepatic P450 by pentobarbital in semi-aquatic frog (Rana pipiens). Toxicol Lett 95:92–93

    Article  Google Scholar 

  104. Rocco L, Frenzilli G, Fusco D et al (2010) Evaluation of zebrafish DNA integrity after exposure to pharmacological agents present in aquatic environments. Ecotoxicol Environ Saf 73(7):1530–1536

    Article  CAS  Google Scholar 

  105. Orias F, Simon L, Mialdea G et al (2015) Bioconcentration of 15N-tamoxifen at environmental concentration in liver, gonad and muscle of Danio rerio. Ecotoxicol Environ Saf 120:457–462

    Article  CAS  Google Scholar 

  106. Xia L, Zheng L, Zhou JL (2016) Transcriptional and morphological effects of tamoxifen on the early development of zebrafish (Danio rerio). J Appl Toxicol 36(6):853–862

    Article  CAS  Google Scholar 

  107. Lee S, Jung D, Kho Y et al (2015) Ecotoxicological assessment of cimetidine and determination of its potential for endocrine disruption using three test organisms: Daphnia magna, Moina macrocopa, and Danio rerio. Chemosphere 135:208–216

    Article  CAS  Google Scholar 

  108. American Chemical Society (2008) Pharmaceuticals in the water environment. https://www.acs.org/content/dam/acsorg/policy/acsonthehill/briefings/pharmaceuticalsinwater/nacwa-paper.pdf. Accessed 22 Aug 2017

  109. Environmental Protection Agency (2017) Drinking water contaminant candidate list (CCL) and regulatory determinations (2017, April 13). https://www.epa.gov/ccl. Accessed 22 Aug 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leobardo Manuel Gómez-Oliván .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elizalde-Velázquez, A. et al. (2017). Ecotoxicological Studies of Pharmaceuticals in Aquatic Organisms. In: Gómez-Oliván, L. (eds) Ecopharmacovigilance. The Handbook of Environmental Chemistry, vol 66. Springer, Cham. https://doi.org/10.1007/698_2017_148

Download citation

Publish with us

Policies and ethics