Skip to main content

Occurrence of Pharmaceuticals in the Environment

  • Chapter
  • First Online:
Ecopharmacovigilance

Abstract

Roughly 4,000 pharmaceuticals are manufactured and marketed in the world for use in the treatment, prevention, and diagnosis of diverse diseases in humans and animals. Once their role in body systems has been accomplished, these compounds are excreted from the body, having aquatic ecosystems as their final destination. Pharmaceuticals are also released into the environment as a result of manufacturing processes and inadequate disposal of unused or expired medications. The environmental concentrations that have been detected in water systems are usually at trace levels (ng L−1 to μg L−1) since removal in sewage treatment plants is not significant for most pharmaceuticals as these facilities have not been designed to reduce or eliminate these contaminants, representing instead a continuous contribution to the environment. Effluents have been identified as the main entry route of pharmaceuticals into the environment. This chapter aims to review, compile, and analyze research studies on the occurrence of pharmaceuticals in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Boeckel TP, Gandra S, Ashok A et al (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14:742–750

    Article  Google Scholar 

  2. Aus der Beek T, Weber FA, Bergmann A et al (2016) Pharmaceuticals in the environment – global occurrences and perspectives. Environ Toxicol Chem 35:823–835

    Article  CAS  Google Scholar 

  3. López-Serna R, Petrović M, Barceló D (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ 440:280–289

    Article  CAS  Google Scholar 

  4. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35(5):803–814

    Article  CAS  Google Scholar 

  5. Tijani JO, Fatoba OO, Babajide OO, Petrik LF (2016) Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett 14(1):27–49

    Article  CAS  Google Scholar 

  6. World Health Organization (2006) WHO Collaborating Centre for Drug Statistics and Methodology. http://www.whocc.no/. Accessed 20 Aug 2017

  7. World Health Organization (2016) WHO Collaborating Centre for Drug Statistics and Methodology. https://www.whocc.no/atc_ddd_index/. Accessed 20 Aug 2017

  8. United States Environmental Protection Agency (2008) Aquatic life criteria for contaminants of emerging concern. Prepared by the OW/ORD Emerging Contaminants Workgroup. http://www.epa.gov/waterscience/criteria/library/sab-emergingconcerns.pdf. Accessed 21 Aug 2017

  9. Patneedi CB, Prasadu KD (2015) Impact of pharmaceutical wastes on human life and environment. Rasayan J Chem 8(1):67–70

    CAS  Google Scholar 

  10. Camacho-Muñoz D, Martín J, Santos JL et al (2012) Effectiveness of three configurations of membrane bioreactors on the removal of priority and emergent organic compounds from wastewater: comparison with conventional wastewater treatments. J Environ Monit 14(5):1428–1436

    Article  CAS  Google Scholar 

  11. Rodil R, Quintana JB, Concha-Graña E et al (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86(10):1040–1049

    Article  CAS  Google Scholar 

  12. Howard PH, Muir DC (2011) Identifying new persistent and bioaccumulative organics among chemicals in commerce II: pharmaceuticals. Environ Sci Technol 45(16):6938–6946

    Article  CAS  Google Scholar 

  13. K’oreje KO, Vergeynst L, Ombaka D et al (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244

    Article  CAS  Google Scholar 

  14. Joss A, Keller E, Alder AC et al (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152

    Article  CAS  Google Scholar 

  15. Tamtam F, Mercier F, Le Bot B et al (2008) Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393(1):84–95

    Article  CAS  Google Scholar 

  16. Ribeiro C, Ribeiro AR, Tiritan ME (2016) Priority substances and emerging organic pollutants in Portuguese aquatic environment: a review. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 238. Springer, Cham, pp 1–44

    Google Scholar 

  17. Reddersen K, Heberer T, Dünnbier U (2002) Identification and significance of phenazone drugs and their metabolites in ground and drinking water. Chemosphere 49(6):539–544

    Article  CAS  Google Scholar 

  18. United States Environmental Protection Agency (1991) Guides to pollution prevention: the pharmaceutical industry. US Environmental Protection Agency, Cincinnati, pp 5–9

    Google Scholar 

  19. Balcıoğlu IA, Ötker M (2003) Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50(1):85–95

    Article  Google Scholar 

  20. Monteiro SC, Boxall AB (2010) Occurrence and fate of human pharmaceuticals in the environment. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 202. Springer, New York, pp 53–154

    Chapter  Google Scholar 

  21. Yamamoto H, Nakamura Y, Moriguchi S et al (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43(2):351–362

    Article  CAS  Google Scholar 

  22. Bound JP, Voulvoulis N (2004) Pharmaceuticals in the aquatic environment – a comparison of risk assessment strategies. Chemosphere 56(11):1143–1155

    Article  CAS  Google Scholar 

  23. Caracciolo AB, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 106:25–36

    Article  CAS  Google Scholar 

  24. Megharaj M, Ramakrishnan B, Venkateswarlu K et al (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  Google Scholar 

  25. Kunkel U, Radke M (2008) Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment. Environ Sci Technol 42(19):7273–7279

    Article  CAS  Google Scholar 

  26. Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387(4):1225–1234

    Article  CAS  Google Scholar 

  27. Boreen AL, Arnold WA, McNeill K (2003) Photodegradation of pharmaceuticals in aquatic environment: a review. Aquat Sci 65(4):320–341

    Article  CAS  Google Scholar 

  28. Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50(10):1319–1330

    Article  CAS  Google Scholar 

  29. Jelić A, Gros M, Petrović M et al (2012) Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. In: Guasch H, Ginebreda A, Geiszinger A (eds) Emerging and priority pollutants in rivers. The handbook of environmental chemistry, vol 19. Springer, Berlin, pp 1–23

    Chapter  Google Scholar 

  30. Vane JR, Botting RM (2003) The mechanism of action of aspirin. Thromb Res 110(5):255–258

    Article  CAS  Google Scholar 

  31. Escher BI, Bramaz N, Richter M et al (2006) Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach. Environ Sci Technol 40(23):7402–7408

    Article  CAS  Google Scholar 

  32. Mahley RW, Bersot TP (2001) Drug therapy for hypercholesterolemia and dyslipidemia. In: Brunton LL, Chabner BA, Knollmann BC (eds) Goodman & Gilman’s: the pharmacological basis of therapeutics10th edn. McGraw-Hill, New York, pp 971–1002

    Google Scholar 

  33. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107(6):2319–2364

    Article  CAS  Google Scholar 

  34. Kümmerer K (2009) Antibiotics in the aquatic environment – a review – Part I. Chemosphere 75(4):417–434

    Article  CAS  Google Scholar 

  35. Tarnawski A, Ahluwalia A, Jones KM (2013) Gastric cytoprotection beyond prostaglandins: cellular and molecular mechanisms of gastroprotective and ulcer healing actions of antacids. Curr Pharm Des 19(1):126–132

    CAS  Google Scholar 

  36. Jelić A, Gros M, Ginebreda A et al (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176

    Article  CAS  Google Scholar 

  37. Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19(1):1–27

    Article  Google Scholar 

  38. Ghiselli G, Jardim WF (2007) Endocrine disruptors in the environment. Quim Nova 30(3):695–706

    Article  Google Scholar 

  39. Calisto V, Esteves VI (2009) Psychiatric pharmaceuticals in the environment. Chemosphere 77(10):1257–1274

    Article  CAS  Google Scholar 

  40. Franquet-Griell H, Gómez-Canela C, Ventura F et al (2015) Predicting concentrations of cytostatic drugs in sewage effluents and surface waters of Catalonia (NE Spain). Environ Res 138:161–172

    Article  CAS  Google Scholar 

  41. Mahnik SN, Lenz K, Weissenbacher N et al (2007) Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere 66(1):30–37

    Article  CAS  Google Scholar 

  42. World Health Organization (2017) WHO Collaborating Centre for Drug Statistics and Methodology. http://www.who.int/mediacentre/factsheets/fs138/en/. Accessed 31 Aug 2017

  43. Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466:421–438

    Article  CAS  Google Scholar 

  44. Dong Z, Senn DB, Moran RE et al (2013) Prioritizing environmental risk of prescription pharmaceuticals. Regul Toxicol Pharmacol 65(1):60–67

    Article  CAS  Google Scholar 

  45. Inzucchi SE, Bergenstal RM, Buse JB et al (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55(6):1577–1596

    Article  CAS  Google Scholar 

  46. Patrolecco L, Ademollo N, Grenni P et al (2012) Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchem J 107:165–171

    Article  CAS  Google Scholar 

  47. Nannou CI, Kosma CI, Albanis TA (2015) Occurrence of pharmaceuticals in surface waters: analytical method development and environmental risk assessment. Int J Environ Anal Chem 95(13):1242–1262

    Article  CAS  Google Scholar 

  48. Guerra P, Kim M, Shah A et al (2014) Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci Total Environ 473:235–243

    Article  CAS  Google Scholar 

  49. Lolić A, Paíga P, Santos LH et al (2015) Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: occurrence and environmental risk. Sci Total Environ 508:240–250

    Article  CAS  Google Scholar 

  50. Martín J, Camacho-Muñoz D, Santos JL et al (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239:40–47

    Article  CAS  Google Scholar 

  51. Al Aukidy M, Verlicchi P, Jelic A et al (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25

    Article  CAS  Google Scholar 

  52. Fang TH, Nan FH, Chin TS et al (2012) The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Mar Pollut Bull 64(7):1435–1444

    Article  CAS  Google Scholar 

  53. Gonzalez-Rey M, Tapie N, Le Menach K et al (2015) Occurrence of pharmaceutical compounds and pesticides in aquatic systems. Mar Pollut Bull 96(1):384–400

    Article  CAS  Google Scholar 

  54. Yu Y, Wu L, Chang AC (2013) Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants. Sci Total Environ 442:310–316

    Article  CAS  Google Scholar 

  55. Santos LH, Gros M, Rodriguez-Mozaz S et al (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461:302–316

    Article  CAS  Google Scholar 

  56. Gibson R, Durán-Álvarez JC, Estrada KL et al (2010) Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere 81(11):1437–1445

    Article  CAS  Google Scholar 

  57. Siemens J, Huschek G, Siebe C et al (2008) Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system, Mexico City-Mezquital Valley. Water Res 42(8):2124–2134

    Article  CAS  Google Scholar 

  58. González-González ED, Gómez-Oliván LM, Galar-Martínez M et al (2014) Metals and nonsteroidal anti-inflammatory pharmaceuticals drugs present in water from Madín Reservoir (Mexico) induce oxidative stress in gill, blood, and muscle of common carp (Cyprinus carpio). Arch Environ Contam Toxicol 67(2):281–295

    Article  CAS  Google Scholar 

  59. Félix-Cañedo TE, Durán-Álvarez JC, Jiménez-Cisneros B (2013) The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci Total Environ 454:109–118

    Article  CAS  Google Scholar 

  60. Neri-Cruz N, Gómez-Oliván LM, Galar-Martínez M et al (2015) Oxidative stress in Cyprinus carpio induced by hospital wastewater in Mexico. Ecotoxicology 24(1):181–193

    Article  CAS  Google Scholar 

  61. SanJuan-Reyes N, Gómez-Oliván LM, Galar-Martínez M et al (2015) NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp (Cyprinus carpio). Sci Total Environ 530:1–10

    Article  CAS  Google Scholar 

  62. Pessoa GP, de Souza NC, Vidal CB et al (2014) Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Sci Total Environ 490:288–295

    Article  CAS  Google Scholar 

  63. Zhou Y, Zha J, Wang Z (2012) Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing, China. Environ Monit Assess 184(11):6799–6813

    Article  CAS  Google Scholar 

  64. Wang Y, Wang Q, Hu L et al (2015) Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China. Environ Geochem Health 37(1):147–156

    Article  CAS  Google Scholar 

  65. Díaz-Torres E, Gibson R, González-Farías F et al (2013) Endocrine disruptors in the Xochimilco wetland, Mexico City. Water Air Soil Pollut 224(6):1–11

    Article  CAS  Google Scholar 

  66. Althakafy JT, Kulsing C, Grace MR et al (2017) Liquid chromatography-quadrupole Orbitrap mass spectrometry method for selected pharmaceuticals in water samples. J Chromatogr A 1515:164–171

    Article  CAS  Google Scholar 

  67. Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D (2013) Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal Bioanal Chem 405(18):5937–5952

    Article  CAS  Google Scholar 

  68. Negreira N, de Alda ML, Barceló D (2014) Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: filtration, occurrence, and environmental risk. Sci Total Environ 497:68–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nely SanJuan-Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

SanJuan-Reyes, N. et al. (2017). Occurrence of Pharmaceuticals in the Environment. In: Gómez-Oliván, L. (eds) Ecopharmacovigilance. The Handbook of Environmental Chemistry, vol 66. Springer, Cham. https://doi.org/10.1007/698_2017_142

Download citation

Publish with us

Policies and ethics