Skip to main content

Factors Controlling the Trace Metal Distribution in Hydrothermal Vent Organisms

  • Chapter
  • First Online:
Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 50))

Abstract

Despite the numerous published data, the evaluation of the various conditions, influencing the trace metal distribution and accumulation in the different hydrothermal organisms, is not completed up till now. In this chapter we aimed to clear out the influence of the main factors, affecting the trace metal bioaccumulation in the deep-sea hydrothermal vent biota: environmental factors, acting outside the organisms, and biological ones, acting inside the organisms and within the biological communities. Among the environmental conditions there are such site-specific differences as depth, temperature, and fluid chemical composition that control trace metal concentrations in water of the biotope, as well as mineralogical features of substratum. Meanwhile the biogenic factors include stage of ontogenesis, species differences, trophic level and feeding type, and etc. For this purpose we consider data on the Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Co, Cr, As, Se, Sb, and Hg concentrations in the benthic organisms inhabiting the following hydrothermal vent fields at the Mid-Atlantic Ridge (MAR): Menez Gwen, Rainbow, Lost City, Broken Spur, as well at the 9°50′N at the East Pacific Rise (EPR), and the Guaymas Basin (Gulf of California). To clarify some of the influencing factors, we have aimed to summarize the available data on factors that control the trace metal distribution in hydrothermal vent organisms, including not only Bathymodiolus mussels, but also other dominant organisms, such as Rimicaris shrimps, vestimentiferan tube worms Riftia pachyptila, whose feeding strategy relies on microbial symbiotrophy. Distribution patterns of some trace metals studied in different taxa gave an evidence of the influence of environmental and biological parameters on their bioaccumulation in the hydrothermal vent organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kádár E, Costa V, Segonzac M (2007) Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Sci Total Environ 373:464–472

    Article  Google Scholar 

  2. Demina LL, Holm NG, Galkin SV, Lein AY (2010) Concentration function of the deep-sea vent benthic organisms. Cah Biol Mar 51:369–373

    Google Scholar 

  3. Demina LL, Holm NG, Galkin SV, Lein AY (2013) Some features of the trace metal biogeochemistry in the deep-sea hydrothermal vent fields (Menez Gwen, Rainbow, Broken Spur at the MAR and 9°50′N at the EPR): a synthesis. J Mar Syst 126:94–105

    Article  Google Scholar 

  4. Rousse N, Boulegue J, Cosson R, Fiala-Médioni A (1998) Bioaccumulation des métaux chez le mytilidae hydrothermal Bathymodiolus sp. de la ride médio-atlantique. Oceanol Acta 21(4):597–607

    Article  CAS  Google Scholar 

  5. Colaço A, Bustamante P, Fouquet Y, Sarradin PM, Serrão-Santos R (2006) Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction hydrothermal vent fields food web. Chemosphere 65:2260–2267

    Article  Google Scholar 

  6. Cosson RP, Thiebaut E, Company R, Castrec-Rouelle M, Colaco A, Martins I, Sarradin P-M, Bebianno MJ (2008) Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. Mar Environ Res 65:405–415

    Google Scholar 

  7. Demina LL, Galkin SV (2008) On the role of abiogenic factors in the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge. Oceanology 48:784–797

    Article  Google Scholar 

  8. Koschinsky A, Kausch M, Borowski C (2014) Metal concentrations in the tissues of the hydrothermal vent mussel Bathymodiolus: reflection of different metal sources. Mar Environ Res 95:62–73

    Article  CAS  Google Scholar 

  9. Ruelas-Inzunza J, Páez-Osuna F, Soto LA (2005) Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin, Gulf of California. Deep-Sea Res I 52:1319–1323

    Article  CAS  Google Scholar 

  10. Roesijadi G, Crecelius EA (1984) Elemental composition of the hydrothermal vent clam Calyptogena magnifica from the East Pacific Rise. Mar Biol 83:155–161

    Article  CAS  Google Scholar 

  11. Kádár E, Costa V (2006) First report on the micro-essential metal concentrations in bivalve shells from deep-sea hydrothermal vents. J Sea Res 56:37–44

    Article  Google Scholar 

  12. Cravo A, Foster P, Almedia C, Company R, Cosson R, Bebianno MJ (2007) Metals in the shell of Bathymodiolus azoricus from a hydrothermal vent site on the mid-Atlantic ridge. Environ Int 33:609–615

    Google Scholar 

  13. Desbruyères D, Biscoito M, Caprais J-C, Colaço A, Comtet T, Crassous P, Fouquet Y, Khripounoff A, Le Bris N, Olu K, Riso R, Sarradin P-M, Segonzac M, Vangriesheim A (2001) Variations in the deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep-Sea Res I 48:1325–1346

    Article  Google Scholar 

  14. Galkin SV (2002) Hydrothermal vent communities of the World Ocean. Structure, typology, biogeography. GEOS, Moscow, 199 pp (in Russian)

    Google Scholar 

  15. Desbruyères D, Almeida A, Biscoito M (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216

    Article  Google Scholar 

  16. Van Dover CL (2007) The ecology of deep-sea hydrothermal vents. Princeton University Press, 417 pp

    Google Scholar 

  17. Gebruk AV, Chevaldonné P, Shank T, Lutz RA, Vrienhoek RC (2000) Deep-sea hydrothermal vent communities of the Logatchev area (14°45′N, Mid-Atlantic Ridge): diverse biotope and high biomass. J Mar Biol Assoc 80:383–394

    Article  Google Scholar 

  18. Demina LL, Galkin SV (2010) Polychaetes Alvinella pompejana is an extrathermophile and metal “champion”. Priroda 8:14–21 (in Russian)

    Google Scholar 

  19. Koschinsky A (2016) Sources and forms of trace metals taken up by hydrothermal vent mussels, and possible adaption and mitigation strategies. Handb Environ Chem. doi:10.1007/698_2016_2

    Google Scholar 

  20. Demina LL (2016) Trace metals in water of the hydrothermal biotopes. Handb Environ Chem. doi:10.1007/698_2016_1

    Google Scholar 

  21. Luther GW, Rozan TF, Tallefert M, Nuzzio DB, Di Meo C, Shank TM, Lutz RA, Cary SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816

    Article  CAS  Google Scholar 

  22. Le Bris N, Sarradin PM, Caprais JC (2003) Contrasted sulphide chemistries in the environment of 13°N EPR vent fauna. Deep Sea Res I 6:737–747

    Article  Google Scholar 

  23. Sarrazin J, Juniper SK (1999) Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Progr Ser 185:1–19

    Article  Google Scholar 

  24. Colaso P, Bustamante Y, Fouquet J, Sarradin PM, Serro-Santos R (2006) Bioaccumulation of Hg, Cu, and Zn in the Azores Triple Junction hydrothermal vent fields food web. Chemosphere 65(11):2260–2267

    Article  Google Scholar 

  25. Martins I, Costa V, Porteiro F, Cravo A, Santos RS (2001) Mercury concentrations in invertebrates from Mid-Atlantic Ridge hydrothermal vent fields. J Mar Biol Assoc UK 81(6):913–915

    Article  CAS  Google Scholar 

  26. Douville E, Charlou JL, Oelkers EH, Bienvenu P, Jove Colon CF, Donval JP, Fouquet Y, Prieur Y, Appriou P (2002) The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metals content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48

    Article  CAS  Google Scholar 

  27. Kádár E, Costa V, Martins I, Santos RS, Powell JJ (2005) Enrichment in trace metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb and Hg) of the macro-invertebrate habitats at hydrothermal vents along the Mid-Atlantic Ridge. Hydrobiologia 548:191–205

    Article  Google Scholar 

  28. Lukashin VN, Galkin SV, Lein AY (1990) Features of chemical composition of animals from deep-sea hydrothermal areas. Geochem Intern 2:279–285

    Google Scholar 

  29. Kuznetsov AP, Maslennikov VV (2000) History of the ocean hydrothermal fauna. VNIRO Publishing House, Moscow, 118 pp (in Russian)

    Google Scholar 

  30. Bonch-Osmolovskaya EA (2002) Thermophilic microorganisms in the marine hydrothermal systems. In: Gebruk AV (ed) Biology of hydrothermal systems. КМК Scientific Press Ltd, Moscow, pp 131–140 (in Russian)

    Google Scholar 

  31. Demina LL, Galkin SV, Dara OM (2012) Trace metal bioaccumulation in the shells of mussels and clams at deep-sea hydrothermal vent fields. Geochem Int 50(2):133–147

    Article  CAS  Google Scholar 

  32. Kádár E, Santos RS, Powell JJ (2006) Biological factors influencing tissue compartmentalization of trace metals in the deep-sea hydrothermal vent bivalve Bathymodiolus azoricus at geochemically distinct vent sites of the Mid-Atlantic Ridge. Environ Res 101:221–229

    Article  Google Scholar 

  33. Ruelas-Inzunza J, Soto LA, Páez-Osuna F (2003) Heavy-metal accumulation in the hydrothermal vent clam Vesicomya gigas from Guaymas basin, Gulf of California. Deep Sea Res I 50:757–761

    Article  CAS  Google Scholar 

  34. Demina LL, Galkin SV, Shumilin EN (2009) Bioaccumulation of some trace metals in the biota of hydrothermal fields of the Guaymas basin (Gulf of California). Bul Soc Geol Mexicana 61:31–45

    Google Scholar 

  35. Cosson-Manevy MA, Cosson RP, Gaill RP (1988) Transfert, accumulation et régulation des éléments minéraux chez organismes des sources hydrothermales. Oceanol Acta 8:219–225

    Google Scholar 

  36. Galkin SV, Gebruk AV, Krylova EM, Len AY, Vinogradov GM, Vereshchaka AL (2006) Trophic structure of the North Atlantic hydrothermal biocommunities: data on isotopic analysis. In: Vinogradov ME, Vereshchaka OL (eds) Ecosystems of the Atlantic hydrothermal vents. Nauka, Moscow, pp 95–118 (in Russian)

    Google Scholar 

  37. Le Bris N, Gaill F (2006) How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment? Rev Environ Sci Biotechnol. doi:10.1007/sl1157-006-9112-1

  38. Gaill F, Hunt S (1991) The biology of annelid worms from high temperature hydrothermal vent regions. Rev Aquat Sci 4:107–137

    Google Scholar 

  39. Demina LL, Galkin SV, Lein AY, Lisitzin AP (2007) First data on the microelemental composition of benthic organisms from the 9°50′N hydrothermal field, East Pacific Rise. Doklady Earth Sci 415(6):905–907

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Russian Scientific Foundation (Project No 14-50-00095 “World Ocean in ХХI century: climate, ecosystems, mineral resources and disasters”) for financial support of this research over the period of preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila L. Demina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demina, L.L., Galkin, S.V. (2016). Factors Controlling the Trace Metal Distribution in Hydrothermal Vent Organisms. In: Demina, L., Galkin, S. (eds) Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. The Handbook of Environmental Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/698_2016_5

Download citation

Publish with us

Policies and ethics