Metal Pollution and Ecotoxicology of the Boka Kotorska Bay

  • Danijela JoksimovićEmail author
  • Ana Castelli
  • Milena Mitrić
  • Rajko Martinović
  • Ana Perošević
  • Marko Nikolić
  • Slavka Stanković
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 54)


Modern economic development of the Boka Kotorska Bay, known for its outstanding natural values, in terms of dynamics and size, is often not in line with the principles of environmental protection. As a consequence, over the recent decades, the Bay has been exposed to anthropogenic pollution. Marine sediment acts at the same time as a depositor and also the secondary source of pollutants, thus the analysis of pollutants in sediment is of vital importance for the estimation of its quality. Based on the results obtained over the past two decades, this paper considers characterization of sediment of the Boka Kotorska Bay in terms of heavy metal content and an assessment of heavy metal contamination in sediment and biota (Mytilus galloprovincialis and Posidonia oceanica), by applying environmental quality indexes: Enrichment Factor (EF), Metal Pollution Index (MPI), and Geo-accumulation Index (Igeo).

Since 2009, the Institute of Marine Biology Kotor has been conducting Biomonitoring in the framework of the Environmental Monitoring Programme for Montenegro – Program monitoring of the coastal sea ecosystem status of Montenegro, under the MED POL program. The main activities are aimed at determining the environmental status of the Boka Kotorska Bay marine ecosystem by analyzing the parameters and biomarkers described by MED POL program. Beside the recommended biomarkers (metallothioneins, acetilholinesterase, catalase test, glutathione S-transferase, micronuclei test) a new approach of seawater quality biomonitoring was established and it is based on physiological biomarkers of benthic invertebrates. Analysis of all biomarkers showed the pollution trends in Boka Kotorska Bay.


Biomarkers Biomonitoring Biota Boka Kotorska Bay Heavy metals Pollution Sediment 



We would like to thank our colleague Branka Pestorić, PhD and Aleksandar Jovičić, who provided maps.


  1. 1.
    Kaushik A, Kansal A, Santosh et al (2009) Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediment. J Hazard Mater 164:265–270Google Scholar
  2. 2.
    Stanković S, Cantaluppi C, Mandić S, Degetto S (2002) The environmental state of aquatic systems through sediments analysis: radiochemical approach. Stud Mar 23:57–64Google Scholar
  3. 3.
    Tanaskovski B, Petrovic M, Kljajic Z, Degetto S, Stankovic S (2014) Analysis of major, minor and trace elements in surface sediments by X-ray fluorescence spectrometry for assessment of possible contamination of Boka Kotorska Bay, Montenegro. Maced J Chem Chem Eng 33:139–150CrossRefGoogle Scholar
  4. 4.
    Schettino T, Caricato R, Calisi A et al (2012) Biomarker approach in marine monitoring and assessment: new insights and perspectives. Open Environ Sci 6:20–27CrossRefGoogle Scholar
  5. 5.
    UNEP/RAMOGE: Manual on the biomarkers recommended for the MED POL biomonitoring programme (1999) UNEP, AthensGoogle Scholar
  6. 6.
    OSPAR Commission (2008) Coordinated environmental monitoring programme – assessment manual for contaminants in sediment and biota, publication no. 379/2008, p 39Google Scholar
  7. 7.
    Law R, Hanke G, Angelidis M et al (2010) Marine strategy framework directive – task group 8 report contaminants and pollution effects. Scientific and Technical Research Series, vol 161. EUR 24335 EN – Joint Research Centre Scientific and Technical Reports. Office for Official 622 Publications of the European Communities, LuxembourgGoogle Scholar
  8. 8.
    Peijenenburg WJGM, Posthuma L, Eijsacheis HJP et al (1997) A conceptual frame work of implementation of bioavailability of metals for environmental management purposes. Ecotoxicol Environ Saf 37:163–172CrossRefGoogle Scholar
  9. 9.
    Committee on Biological Markers of the National Research Council (1987) Biological markers in environmental health research. Environ Health Perspect 74:3–9Google Scholar
  10. 10.
    Ramsak A, Scancar J, Horvat M (2012) Evaluation of metallothioneins in blue mussels (Mytilus galloprovincialis) as a biomarker of mercury and cadmium exposure in the Slovenian waters (Gulf of Trieste): a long-term field study. Acta Adriat 53(1):71–86Google Scholar
  11. 11.
    Zhou Q, Zhang J, Fu J et al (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150CrossRefGoogle Scholar
  12. 12.
    Stankovic S, Kalaba P, Stankovic RA (2014) Biota as toxic metals indicators. A review. Environ Chem Lett 12:63–84CrossRefGoogle Scholar
  13. 13.
    Walker CH, Hopkin SP, Sibly RM et al (2006) Principles of ecotoxicology. CRC Presss, Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  14. 14.
    Vincent C, Heinrich H, Edwards A et al (2002) Guidance on typology, reference conditions and classification systems for transitional and coastal waters. CIS Working Group 2.4 (COAST). Common Implementation Strategy of the Water Framework Directive, European Commision, p 119Google Scholar
  15. 15.
    Allan IJ, Vrana B, Greenwood R et al (2006) “Toolbox” for biological and chemical monitoring requirements for the European Union’s Water Framework Directive. Talanta 69:302–322CrossRefGoogle Scholar
  16. 16.
    Mills GA, Greenwood R, Gonzalez C (2007) Environmental monitoring within the Water Framework Directive (WFD). Trends Anal Chem 26:450–453CrossRefGoogle Scholar
  17. 17.
    Libes SM (1992) An introduction to marine biogeochemistry. Wiley, New YorkGoogle Scholar
  18. 18.
    Phillips DJH, Rainbow PS (1993) Biomonitoring of trace aquatic contaminants. Elsevier Applied Science, LondonCrossRefGoogle Scholar
  19. 19.
    Balkis N, Çağatay MN (2001) Factors controlling metal distribution in the surface sediment in the Erdek Bay, Sea of Marmara, Turkey. Environ Int 27:1–13CrossRefGoogle Scholar
  20. 20.
    Chapman PM (2007) Determining when contamination is pollution – weight of evidence determinations for sediments and effluents. Environ Int 33:492–501CrossRefGoogle Scholar
  21. 21.
    Cenci RM, Basset A, Sena F et al (2002) Trace elements in sediment cores of Lake Alimini (Lecce Italy). Fresenius Environ Bull 11:681–685Google Scholar
  22. 22.
    Ansari TM, Marr L, Tariq N (2004) Heavy metals in marine pollution perspective-A: mini review. J Appl Sci 4:1–20CrossRefGoogle Scholar
  23. 23.
    Papatheodorou G, Hotos G, Gerada M et al (2002) Heavy metal concentrations in sediments of Klisova lagoon (Southeast Mesalonghi-Aetolikon lagoon complex), W. Greece. Fresenius Environ Bull 11:951–956Google Scholar
  24. 24.
    Zabetoglou K, Voutsa D, Samara C (2002) Toxicity and heavy metal contamination of surficial sediment from the Bay of Thessaloniki (Northwestern Aegean Sea) Greece. Chemosphere 49:17–26CrossRefGoogle Scholar
  25. 25.
    Ünlü S, Topcuoğlu S, Alpar B et al (2008) Heavy metal pollution in surface sediments and mussel samples in the Gulf of Gemlik. Environ Monit Assess 144:169–178CrossRefGoogle Scholar
  26. 26.
    Ujević I, Kljaković-Gašpić Z, Bogner D (2010) Influence of suspended matter on cadmium accumulation in sediment from Kaštela Bay, Adriatic Sea, Croatia. Acta Adriat 51:79–88Google Scholar
  27. 27.
    Dugalić JG, Gajić AB (2005) Pedologija – praktikum. Agronomski fakultet, ČačakGoogle Scholar
  28. 28.
    UNEP/IOC/IAEA (1995). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Reference Methods for Marine Pollution Studies No.63, UNEPGoogle Scholar
  29. 29.
    Tam NFY, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 10:195–205CrossRefGoogle Scholar
  30. 30.
    Aloupi M, Angelidis MO, Gabriel A et al (2007) Marine monitoring along the eastern coastal area of the island of Lesvos, Greece during 2004 in the framework of MedPol III. J Global Nest 9:83–97Google Scholar
  31. 31.
    Joksimovic D (2015) Complex research of the ecosystem of coastal sea of Montenegro. University of Montenegro, Final study of the KOTOR project. Institute of Marine Biology, pp 1–145Google Scholar
  32. 32.
    Del Bianco F, Gasperini L, Giglio F et al (2014) Seafloor morphology of the Montenegro/N. Albania Continental Margin (Adriatic Sea—Central Mediterranean). Geomorphology 226:202–216CrossRefGoogle Scholar
  33. 33.
    ICES (2009) Report of the Working Group on Marine Sediments in Relation to Pollution (WGMS). ICES CM 2009/MHC:02, p 59Google Scholar
  34. 34.
    Dolenec T, Faganeli J, Pirc S (1998) Major, minor and trace elements in surficial sediments from the open Adriatic Sea: a regional geochemical study. Geol Croatica 51:59–73. doi: 10.4154/GC.1998.08 Google Scholar
  35. 35.
    Tanaskovski B, Jovic M, Milicic L et al (2016) The geochemistry model of the surface sediment determined by using ED-XRF technique: a case study of the Boka Kotorska bay, Adriatic Sea. Environ Sci Pollut Res 1–13. doi:  10.1007/s11356-016-6353-6 Google Scholar
  36. 36.
    Feng H, Han X, Zhang WG et al (2004) A preliminary study of heavy metal contamination in Yangtze River Intertidal Zone Due to urbanization. Mar Pollut Bull 49(11–12):910–915. doi: 10.1016/j.marpolbul.2004.06.014 CrossRefGoogle Scholar
  37. 37.
    Cato I (1977) Recent sedimentological and geochemical conditions and pollution problems in two marine areas in Southwestern Sweden. Striae 6:1–150Google Scholar
  38. 38.
    Choi K, Kim S, Hong G et al (2012) Distribution of heavy metals in the sediments of South Korean harbours. Environ Geochem Health 34:71–82. doi: 10.1007/s10653-011-9413-3 CrossRefGoogle Scholar
  39. 39.
    Sinex S, Helz G (1981) Regional geochemistry of trace elements in Chesapeak Bay sediments. Environ Geol 3(6):315–323. doi: 10.1007/BF02473521 CrossRefGoogle Scholar
  40. 40.
    Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–92CrossRefGoogle Scholar
  41. 41.
    Pekey H (2006) The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar Pollut Bull 52:1197–1208CrossRefGoogle Scholar
  42. 42.
    Stanković S, Jović M, Tanaskovski B et al (2015) Can the origin of some metals in the seagrass Posidonia oceanica be determined by the indexes of metals pollutions? Environ Sci Pollut Res 22(11):8253–8263. doi: 10.1007/s11356-014-3953-x CrossRefGoogle Scholar
  43. 43.
    Stanković S, Jović M, Mihajlović ML et al (2015) Metal pollution determined by pollution indices for sea grass P. oceanica and surface sediments. Arch Biol Sci 67(1):91–101CrossRefGoogle Scholar
  44. 44.
    Ligero RA, Barrera M, Casas-Ruiz M et al (2002) Dating of marine sediments and time evolution of heavy metal concentrations in the Bay of Cadiz, Spain. Environ Pollut 118:97–108CrossRefGoogle Scholar
  45. 45.
    Lee WY, Wang XW (2001) Metal accumulation in the green macroalgae Ulva fasciata: effect of nitrate, ammonium and phosphate. Sci Total Environ 278:11–22CrossRefGoogle Scholar
  46. 46.
    Joksimović D, Stanković S (2012) Accumulation of trace metals in marine organisms of the southeastern Adriatic coast, Montenegro. J Serb Chem Soc 77:105–117CrossRefGoogle Scholar
  47. 47.
    Usero J, Morillo J, Gracia I (2005) Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere 59:1175–1181CrossRefGoogle Scholar
  48. 48.
    Rodríguez-Barroso MR, Benhamou Y, El Moumni B (2009) Evaluation of metal contamination in sediments from North of Morocco: geochemical and statistical approaches. Environ Monit Assess 159:169–181CrossRefGoogle Scholar
  49. 49.
    Uluturhan E (2010) Heavy metal concentrations in surface sediments from two regions (Saros and Gökova Gulfs) of the Eastern Aegean Sea. Environ Monit Assess 165:657–684CrossRefGoogle Scholar
  50. 50.
    Stanković S, Jović M, Petrović M et al (2012) Trace elements concentrations in the seagrass Posidonia oceanica and surface sediments samples at the southeastern Adriatic coast. Int Conf Mar Coast Ecos, Tirana, Albania 25–28:89Google Scholar
  51. 51.
    Jović M, Stanković S (2014) Determination of marine pollution by comparative analysis of metal pollution indices. Arch Biol Sci 66(3):1205–1215CrossRefGoogle Scholar
  52. 52.
    Müller G (1981) Die Schwemetallbelastungder sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chem Ztg 105:157–164Google Scholar
  53. 53.
    Martin JM, Meybeck M (1979) Elemental mass balance of materials carried by major world rivers. Mar Chem 7:173–206CrossRefGoogle Scholar
  54. 54.
    Buccolieri A, Buccolieri G, Cardellicchio N et al (2006) Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). Mar Chem 99:227–235CrossRefGoogle Scholar
  55. 55.
    Da Ros L, Moschino V, Macic V et al (2011) An ecotoxicological approach for the Boka Kotorska Bay (south-eastern Adriatic Sea): first evaluation of lysosomal responses and metallothionein induction in mussels. Mar Pollut Bull 63:326–333CrossRefGoogle Scholar
  56. 56.
    Kristan U, Kanduc T, Osterc A et al (2014) Assessment of pollution level using Mytilus galloprovincialis as a bioindicator species: The case of the Gulf of Trieste. Mar Pollut Bull 89(1–2):455–63CrossRefGoogle Scholar
  57. 57.
    Ramsak A, Tkalcic B, Kljajic Z (2010) Evaluation of biomarkers response at the SE Gulf of Trieste (Slovenia) and Boka Kotorska (Montenegro). CIESM - 39th Congress, Venezia, 10-14May 2010Google Scholar
  58. 58.
    Tsangaris C, Moschino V, Strogyloudi E et al (2016) Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern Mediterranean and the Black Sea. Environ Sci Pollut Res 23:1789–1804CrossRefGoogle Scholar
  59. 59.
    Bolognesi C, Hayashi M (2011) Micronucleus assay in aquatic animals. Mutagenesis 26(1):205–213CrossRefGoogle Scholar
  60. 60.
    Heberger K, Kolarevic S, Kracun-Kolarevic M et al (2014) Evaluation of single-cell gel electrophoresis data: Combination of variance analysis with sum of ranking differences. Mutat Res 771:15–22CrossRefGoogle Scholar
  61. 61.
    Kholodkevich SV, Ivanov AV, Kurakin AS et al (2008) Real time biomonitoring of surface water toxicity level at water supply stations. Environ Bioindic 3(1):23–34CrossRefGoogle Scholar
  62. 62.
    Bellafiore D, Guarnieri A, Grilli F et al (2011) Study of the hydrodynamical processes in the Boka Kotorska Bay with a finite element model. Dyn Atmos Oceans 52(1):298–321CrossRefGoogle Scholar
  63. 63.
    Depledge MH, Aagaard A, Györkös P (1995) Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers. Mar Pollut Bull 31(1):19–27CrossRefGoogle Scholar
  64. 64.
    Nicholson S, Lam PKS (2005) Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia). Environ Int 31(1):121–132CrossRefGoogle Scholar
  65. 65.
    Martinović R, Kurakin AS, Kholodkevich SV et al (2013a) Preliminary results of sea water quality assessment based on physiological biomarkers in part of the Boka Kotorska Bay. Water Resour Manag 3(1):31–34Google Scholar
  66. 66.
    Fedotov VP, Kholodkevich SV, Strochilo AG (2000) Study of contractile activity of the crayfish heart with the aid of a new non-invasive technique. J Evol Biochem Physiol 36(3):288–293CrossRefGoogle Scholar
  67. 67.
    Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28(3):R1CrossRefGoogle Scholar
  68. 68.
    Gaines SE (1991) Polluter-pays principle: from economic equity to environmental ethos. Tex Int'l LJ 26:463Google Scholar
  69. 69.
    Martinović R, Gacic Z, Kljajic Z (2013) Heart rate changes of the Mediterranean mussel (Mytilus galloprovincialis L.). Stud Mar 26(1):111–118Google Scholar
  70. 70.
    Etkin DS (2011) Spill occurrences: a world overview. In: Fingas M (ed) Oil spill science and technology: prevention, response and clean up, 1st edn. Gulf Professional Publishing, Burlington, pp 7–48CrossRefGoogle Scholar
  71. 71.
    DeNardis NI, Svetličić V, Pletikapić G et al (2014) Presence of dispersed diesel fuel in the water column of the Boka Kotorska Bay: a case study. Stud Mar 27(1):43–64Google Scholar
  72. 72.
    Martinovic R, Gacic Z, Kljajic Z (2015a) The influence of oil, dispersed oil and the oil dispersant SD-25 on the heart rate of the mediterranean mussel (M.galloprvincialis L.). In: Stylios C et al (eds) Sustainable development of sea-corridors and coastal waters. Springer, Switzerland, pp 21–27. doi: 10.1007/978-3-319-11385-2_2 Google Scholar
  73. 73.
    Martinović R, Kolarević S, Kračun-Kolarević M et al (2015b) Genotoxic potential and heart rate disorders in the Mediterranean mussel Mytilus galloprovincialis exposed to Superdispersant-25 and dispersed diesel oil. Mar Environ Res 108:83–90CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Danijela Joksimović
    • 1
    Email author
  • Ana Castelli
    • 1
  • Milena Mitrić
    • 1
  • Rajko Martinović
    • 1
  • Ana Perošević
    • 1
  • Marko Nikolić
    • 1
  • Slavka Stanković
    • 2
  1. 1.Institute of Marine BiologyUniversity of MontenegroKotorMontenegro
  2. 2.TMF, Department of Analytical ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations