Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 50))

Abstract

Deep-sea hydrothermal vent communities are characterized by complicated taxonomic, trophic, and spatial structure. Different animals consume chemosynthetic bacterial production to a variable extent and by different ways. Different animal groups demonstrate variable degree of adaptations to the extreme environment of hydrothermal vent systems. According to their ecological requirements, vent animal populations occupy different zones within the vent field. The boundaries of different vent fauna assemblages could be rather sharp or feebly marked appearing to be defined by gradients of water chemistry as well as the hydrodynamic regime within the vent field. To ensure the correct analyses of bioconcentration function (BCF) of vent organisms, such factors as taxonomic position, trophic specialization, patterns of physiology, ontogenetic stages, and spatial disposition of animal population within the vent field should be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elder JW (1965) Physical processes in geothermal areas. AGU Monogr 8:211–239

    Google Scholar 

  2. Talwani M, Windish CC, Langseth ML (1971) Reykjanes ridge crest: a detailed geographical study. J Geophys Res 76:473–517

    Article  Google Scholar 

  3. Lister CRB (1972) On the thermal balance of a mid-oceanic ridge. Geophys J Roy Astron Soc 26:515–535

    Article  Google Scholar 

  4. Wolery TJ, Sleep NH (1976) Hydrothermal circulation and geothermal flux at mid-ocean ridges. J Geol 84:249–275

    Article  CAS  Google Scholar 

  5. Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centres. Deep-Sea Res 24:857–863

    Article  Google Scholar 

  6. Corliss JB, Ballard RD (1977) Oases of life in the cold abyss. National Geographic 152:440–453

    Google Scholar 

  7. Enright JT, Newman WA, Hessler RR, McGowan JA (1981) Deep-ocean hydrothermal vent communities. Nature 289:219–221

    Article  Google Scholar 

  8. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm. Science 213:340–342

    Article  CAS  Google Scholar 

  9. Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213:336–338

    Article  CAS  Google Scholar 

  10. Rau GH (1981) Hydrothermal vent clam and tube worm 13C/12C: further evidence of non-photosynthetic food source. Science 213:338–340

    Article  CAS  Google Scholar 

  11. Elderfield H, Schulz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224

    Article  CAS  Google Scholar 

  12. Hessler RR, Smithey WM Jr (1983) The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In: Rona PA, Boström K, Lanbier L, Smith KL Jr (eds) Hydrothermal processes at seafloor spreading centers, NATO Conference, Marine Sciences 12(IV), pp 735–770

    Google Scholar 

  13. Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Mar Biol Oceanogr – Annu Rev 29:319–407

    Google Scholar 

  14. Desbruyeres D, Segonzac M (1997) Handbook of deep-sea hydrothermal vent fauna. IFREMER, Brest, 279 p

    Google Scholar 

  15. Wolff T (2005) Composition and endemism of the deep-sea hydrothermal vent fauna. Cah Biol Mar 46:97–104

    Google Scholar 

  16. Moalic Y, Desbruères D, Duarte CM, Rosenfeld AF, Bachraty C, Arnaud-Haond S (2012) Biogeography revisited with network theory: retracing the history of hydrothermal vent communities. Syst Biol 61(1):127–137

    Article  Google Scholar 

  17. Humes AG, Segonzac M (1998) Copepoda from deep hydrothermal sites and cold seeps: description of a new species of Aphotopontius from the East Pacific rise and general distribution. Cah Biol Mar 39:51–62

    Google Scholar 

  18. Komai T, Segonzac M (2005) A revision of the genus Alvinocaris Williams and Chace (Crustacea: Decapoda: Caridae: Alvinocarididae), with description of a new genus and new species of Alvinocaris. J Nat Hist 39:1111–1175

    Article  Google Scholar 

  19. Rouse GW, Fauchald K (1997) Cladistics and polychaetes. Zool Scr 26:139–204

    Article  Google Scholar 

  20. Smirnov AV, Gebruk AV, Galkin SV, Shank T (2000) New species of holothurian (Echinodermata: Holothurioidea) from hydrothermal vent habitats. J Mar Biol Assoc UK 80:321–328

    Article  Google Scholar 

  21. Galkin S (1997) Megafauna associated with hydrothermal vents in the Manus Back-Arc Basin (Bismark Sea). Mar Geol 142:197–206

    Article  Google Scholar 

  22. Desbruyères D, Crassous P, Grassle J, Khripounoff A, Reyss D, Rio M, Van Praet M (1982) Donnees ecologiques sur un nouveau site d’hydrothermalisme actif de la ride du Pacifique oriental. C R Acad Sci Paris 295(III):489–494

    Google Scholar 

  23. Laubier L, Desbruyères D (1985) Oases at the bottom of the ocean. Endeavour 9(2):67–76

    Article  Google Scholar 

  24. Fustec A, Desbruyères D, Juniper SK (1987) Deep-sea hydrothermal vent communities at 130N on the East Pacific Rise: microdistribution and temporal variations. Biol Oceanogr 4(2):121–164

    Google Scholar 

  25. Galkin SV (2002) Hydrothermal vent communities of the World Ocean. Structure, typology, biogeography. GEOS, Moscow, 99 p (in Russian)

    Google Scholar 

  26. Galkin SV (2010) Structure and biogeography of hydrothermal vent communities of the World Ocean. Zh Obshch Biol 71(3):205–218, in Russian

    CAS  Google Scholar 

  27. BRIDGE (1994) Workshop Report No. 4. Diversity of vent ecosystems (DOVE), Marine Biological Association, Plymouth

    Google Scholar 

  28. Desbruyères D, Alayse-Danet AM, Ohta S, Antoine E, Barbier G, Briand P, Godfroy A, Crassous P, Jollivet D, Kerdoncuff J, Khripounoff A, Laubier L, Marchand M, Perron R, Derelle E, Dinet A, Fialamedioni A, Hashimoto J, Nojiri Y, Prieur D, Ruellan E, Soakai S (1994) Deep-Sea hydrothermal communities in Southwestern Pacific Back-Arc Basins (the North Fiji and Lau Basins): composition, microdistribution and food-Web. Mar Geol 116(1–2):227–242

    Article  Google Scholar 

  29. Arp AJ, Childress J, Fisher CR (1984) Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve, Calyptogena magnifica. Physiol Zool 57:648–662

    Article  CAS  Google Scholar 

  30. Hessler RR, Smithey WM Jr, Keller CM (1985) Spatial and temporal variation of giant clams, tube worms and mussels at deep-sea hydrothermal vents. Bull Biol Soc Wash 6:411–428

    Google Scholar 

  31. Le Pennec M, Lucas A, Petit H (1983) Etudes preliminaires sur un Mytilidae des sources hydrother-males du Pacifique. Haliotis 13:69–82

    Google Scholar 

  32. Tunnicliffe V, Jensen RG (1987) Distribution and behavior of the spider crab Macroregonia macrochira Sakai (Brachiura) around the hydrothermal vents of the Northeast Pacific. Can J Zool 65:2443–2449

    Article  Google Scholar 

  33. Hessler RR, Smithey WM, Boudrias MA, Keller CH, Lutz RA, Childress JJ (1988) Temporal change in megafauna at the rose garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific). Deep-Sea Res 35:1681–1709

    Article  Google Scholar 

  34. Van Dover CL, Hessler RR (1990) Spatial variation in faunal composition of hydrothermal vent communities on the East Pacific Rise and Galapagos spreading center. In: McMurray GR (ed) Gorda Ridge: a seafloor spreading center in the United States’ exclusive economic zone. Springer, New York, pp 253–264

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the captain of the R/V Akademik Mstislav Keldysh and his crew, the pilots, and crew of the submersibles MIR for their essential collaboration during the cruises. Many thanks to scientist who helped us with sorting sample collection and taxonomic identifications. We also acknowledge Drs. L.Moskalev, A. Mironov, A. Gebruk, and M. Turkay for productive discussions. This work was partially funded by the Russian Science Foundation (Grant No. 14-50-00095) (analyses and generalization of the material).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Galkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Galkin, S.V. (2016). Structure of Hydrothermal Vent Communities. In: Demina, L., Galkin, S. (eds) Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. The Handbook of Environmental Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/698_2015_5018

Download citation

Publish with us

Policies and ethics