Skip to main content

The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment

Part of the The Handbook of Environmental Chemistry book series (HEC,volume 48)

Abstract

The aim of this chapter is to evaluate what information is needed in order to quantify the flows of ENM to the environment by reviewing the current state of knowledge. The life cycle thinking forms the basis of the evaluation. The first step in release assessment is the knowledge about the production and use of ENM. Data on production are crucial for the assessment, because they determine the maximal amount that could potentially be released. The different life cycles of products containing the ENM are determining the release potential. The knowledge about the product distribution is therefore key to release estimation. The three important life cycle steps that need to be considered are production/manufacturing, the use phase, and the end of life (EoL) treatment. Release during production and manufacturing to the environment may occur because large amounts of pure material are handled. During the use and EoL phase, experimental data from real-world release studies are preferred; however, in most cases release has been estimated or guessed based on standard knowledge about product use and behavior. The mass flows discussed in this chapter provide the input data to derive environmental concentrations needed for environmental risk assessment of ENM. The mass flows to the environment will also be needed for environmental fate models that are based on mechanistic description of the reactions and the behavior of the released ENM in environmental compartments such as water or soils.

Keywords

  • Nanomaterials
  • Life cycle perspectives
  • Release
  • Material flow modeling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/698_2015_402
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-23919-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. EU (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Offi J L 275:38–40

    Google Scholar 

  2. Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    CAS  CrossRef  Google Scholar 

  3. von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ et al (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49

    CrossRef  Google Scholar 

  4. Gottschalk F, Nowack B (2011) Release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    CAS  CrossRef  Google Scholar 

  5. Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI et al (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269:160–169

    CAS  CrossRef  Google Scholar 

  6. Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260

    CAS  CrossRef  Google Scholar 

  7. Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569

    CAS  CrossRef  Google Scholar 

  8. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world. J Nanoparticle Res 14:1109

    CrossRef  Google Scholar 

  9. Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1–17

    CrossRef  Google Scholar 

  10. Future Markets (2012) The global market for nanomaterials 2002–2006: production volumes, revenues and end use markets. Future Markets Inc. http://www.futuremarketsinc.com/index.php?option=com_content&view=article&id=176&Itemid=73

  11. ANSES (2013) Éléments issus des déclarations des substances à l’état nanoparticulaire. RAPPORT d’étude. ANSES (l’Agence nationale de sécurité sanitaire)

    Google Scholar 

  12. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive modeling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    CAS  CrossRef  Google Scholar 

  13. Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    CrossRef  Google Scholar 

  14. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233

    CAS  CrossRef  Google Scholar 

  15. Project on Emerging Nanotechnologies (2008) An inventory of nanotechnology-based consumer products currently on the market http://www.nanotechproject.org/inventories/consumer/

  16. Berube DM, Searson EM, Morton TS, Cummings CL (2010) Project on emerging nanotechnologies – consumer product inventory evaluated. Nanoetchnol Law Bus 7:152–163

    Google Scholar 

  17. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    CAS  CrossRef  Google Scholar 

  18. Lo LY, Li Y, Yeung KW, Yuen CWM (2007) Indicating the development stage of nanotechnology in the textile and clothing industry. Int J Nanotechnol 4:667–679

    CrossRef  Google Scholar 

  19. Wijnhoven SWP, Dekkers S, Kool M, Jongeneel WP, De Jong WH (2010) Nanomaterials in consumer products. Update of products on the European market in 2010. RIVM Report 340370003/2010. http://www.rivm.nl/bibliotheek/rapporten/340370003.pdf

  20. Nowack B, Brouwer C, Geertsma RE, Heugens EHW, Ross BL, Toufektsian M-C et al (2013) Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology 7(6):1152–1156

    CrossRef  Google Scholar 

  21. Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M et al (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11

    CAS  CrossRef  Google Scholar 

  22. Geranio L, Heuberger M, Nowack B (2009) Behavior of silver nano-textiles during washing. Environ Sci Technol 43:8113–8118

    CAS  CrossRef  Google Scholar 

  23. Lorenz C, Windler L, Lehmann RP, Schuppler M, Von Goetz N, Hungerbühler K et al (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89:817–824

    CAS  CrossRef  Google Scholar 

  24. Windler L, Lorenz C, Von Goetz N, Hungerbuhler H, Amberg M, Heuberger M et al (2012) Release of titanium dioxide from textiles during washing. Environ Sci Technol 46:8181–8188

    CAS  CrossRef  Google Scholar 

  25. Lombi E, Donner E, Scheckel K, Sekine R, Lorenz C, von Götz N et al (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358

    CAS  CrossRef  Google Scholar 

  26. Farkas J, Peter H, Christian P, Urrea JAG, Hassellov M, Tuoriniemi J et al (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37:1057–1062

    CAS  CrossRef  Google Scholar 

  27. Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI et al (2012) Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products. Sci Total Environ 421:267–272

    CrossRef  Google Scholar 

  28. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905

    CAS  CrossRef  Google Scholar 

  29. Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S et al (2013) Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ Sci Process Impacts 15:2186–2193

    CAS  CrossRef  Google Scholar 

  30. Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S et al (2015) Characterization of materials released into water from paint containing nano-SiO2. Chemosphere 119:1314–1321

    CAS  CrossRef  Google Scholar 

  31. Künniger T, Gerecke AC, Ulrich A, Huch A, Vonbank R, Heeb M et al (2014) Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environ Pollut 184:464–471

    CrossRef  Google Scholar 

  32. Hauri JF, Niece BK (2011) Leaching of silver from silver-impregnated food storage containers. J Chem Educ 88:1407–1409

    CAS  CrossRef  Google Scholar 

  33. Huang YM, Chen SX, Bing X, Gao CL, Wang T, Yuan B (2011) Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 24:291–297

    CAS  CrossRef  Google Scholar 

  34. Song H, Li B, Lin QB, Wu HJ, Chen Y (2011) Migration of silver from nanosilver-ìpolyethylene composite packaging into food simulants. Food Addi Contam Part A 28:1758–1762

    CAS  Google Scholar 

  35. von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addi Contam Part A 30:612–620

    CrossRef  Google Scholar 

  36. Harper S, Wohlleben W, Doa M, Nowack B, Clancy S, Canady R et al (2015) Measuring nanomaterial release from carbon nanotube composites: review of the state of the science. J Phys Conf Ser 617: 012026

    Google Scholar 

  37. Hirth S, Cena L, Cox G, Tomovic Z, Peters T, Wohlleben W (2013) Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. J Nanoparticle Res 15:1504

    CrossRef  Google Scholar 

  38. Wohlleben W, Vilar G, Fernández-Rosas E, González-Gálvez D, Gabriel C, Hirth S et al (2014) A pilot interlaboratory comparison of protocols that simulate aging of nanocomposites and detect released fragments. Environ Chem 11:402–418

    CAS  CrossRef  Google Scholar 

  39. Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45:10713–10719

    CAS  CrossRef  Google Scholar 

  40. Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A et al (2011) Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanoparticle Res 13:3377–3391

    CAS  CrossRef  Google Scholar 

  41. Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabie M et al (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159:1543–1548

    CAS  CrossRef  Google Scholar 

  42. Gondikas AP, Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational lake. Environ Sci Technol 48:5415–5422

    CAS  CrossRef  Google Scholar 

  43. Holbrook DR, Motabar D, Quiñones O, Stanford B, Vanderford B, Moss D (2013) Titanium distribution in swimming pool water is dominated by dissolved species. Environ Pollut 181:68–74

    CrossRef  Google Scholar 

  44. Mueller NC, Buha J, Wang J, Ulrich A, Nowack B (2013) Modeling the flows of engineered nanomaterials during waste handling. Environ Sci Process Impacts 15:251–259

    CAS  CrossRef  Google Scholar 

  45. Froggett S, Clancy S, Boverhof D, Canady R (2014) A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 11:17

    CrossRef  Google Scholar 

  46. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    CAS  CrossRef  Google Scholar 

  47. von Goetz N, Lorenz C, Windler L, Nowack B, Heuberger M, Hungerbuhler K (2013) Migration of Ag- and TiO2-(nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–9987

    CrossRef  Google Scholar 

  48. Nowack B (2014) Emissions from consumer products containing engineered nanomaterials over their lifecycle. In: Wohlleben W, Kuhlbusch TAJ, Lehr C-M, Schnekenburger J (eds) Safety of nanomaterials along their lifecycle: release, exposure and human hazards. Taylor & Francis, London. ISBN 978-1-46-656786-3

    Google Scholar 

  49. Bello D, Wardle BL, Yamamoto N, de Villoria RG, Garcia EJ, Hart AJ et al (2009) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 11:231–249

    CAS  CrossRef  Google Scholar 

  50. Demou E, Stark W, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53:829–838

    CAS  CrossRef  Google Scholar 

  51. Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52:695–706

    CrossRef  Google Scholar 

  52. Evans DE, Ku BK, Birch ME, Dunn KH (2010) Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 54:514–531

    CAS  CrossRef  Google Scholar 

  53. Huang C-H, Tai C-Y, Huang C-Y, Tsai C-J, Chen C-W, Chang C-P et al (2010) Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory. J Environ Sci Health A 45:1227–1233

    CAS  CrossRef  Google Scholar 

  54. Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH et al (2011) Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23:226–236

    CAS  CrossRef  Google Scholar 

  55. Hang J, Luo Z, Sandberg M, Gong J (2013) Natural ventilation assessment in typical open and semi-open urban environments under various wind directions. Build Environ 70:318–333

    CrossRef  Google Scholar 

  56. Kiwan A, Berg W, Fiedler M, Ammon C, Gläser M, Müller H-J et al (2013) Air exchange rate measurements in naturally ventilated dairy buildings using the tracer gas decay method with 85Kr, compared to CO2 mass balance and discharge coefficient methods. Biosyst Eng 116:286–296

    CrossRef  Google Scholar 

  57. You Y, Niu C, Zhou J, Liu Y, Bai Z, Zhang J et al (2012) Measurement of air exchange rates in different indoor environments using continuous CO2 sensors. J Environ Sci 24:657–664

    CAS  CrossRef  Google Scholar 

  58. Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8:7208–7219

    CAS  CrossRef  Google Scholar 

  59. Gottschalk F, Nowack B (2012) Modeling environmental release and exposure of engineered nanomaterials. In: Jerzy L, Tomasz P (eds) Towards efficient designing of safe nanomaterials. RSC, Cambridge

    Google Scholar 

  60. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    CAS  CrossRef  Google Scholar 

  61. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    CAS  CrossRef  Google Scholar 

  62. ECHA (2010) Guidance on information requirements and chemical safety assessment Chapter R.16: Environmental Exposure Estimation, European Chemicals Agency

    Google Scholar 

  63. Bosch A, Maier M, Morfeld P (2012) Nanosilica? Clarifications are necessary! Nanotoxicology 6:611–613

    CrossRef  Google Scholar 

  64. Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320–332

    CrossRef  Google Scholar 

  65. Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers – exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159:3439–3445

    CAS  CrossRef  Google Scholar 

  66. Praetorius A, Scheringer M, Hungerbuhler K (2012) Development of environmental fate models for engineered nanoparticles – a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46:6705–6713

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission within the Seventh Framework Program (FP7; MARINA project – Grant Agreement No. 263215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nowack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nowack, B. et al. (2015). The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment. In: Viana, M. (eds) Indoor and Outdoor Nanoparticles. The Handbook of Environmental Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/698_2015_402

Download citation