The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment

  • Bernd Nowack
  • Nikolaus Bornhöft
  • Yaobo Ding
  • Michael Riediker
  • Araceli Sánchez Jiménez
  • Tianyin Sun
  • Martie van Tongeren
  • Wendel Wohlleben
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 48)


The aim of this chapter is to evaluate what information is needed in order to quantify the flows of ENM to the environment by reviewing the current state of knowledge. The life cycle thinking forms the basis of the evaluation. The first step in release assessment is the knowledge about the production and use of ENM. Data on production are crucial for the assessment, because they determine the maximal amount that could potentially be released. The different life cycles of products containing the ENM are determining the release potential. The knowledge about the product distribution is therefore key to release estimation. The three important life cycle steps that need to be considered are production/manufacturing, the use phase, and the end of life (EoL) treatment. Release during production and manufacturing to the environment may occur because large amounts of pure material are handled. During the use and EoL phase, experimental data from real-world release studies are preferred; however, in most cases release has been estimated or guessed based on standard knowledge about product use and behavior. The mass flows discussed in this chapter provide the input data to derive environmental concentrations needed for environmental risk assessment of ENM. The mass flows to the environment will also be needed for environmental fate models that are based on mechanistic description of the reactions and the behavior of the released ENM in environmental compartments such as water or soils.


Nanomaterials Life cycle perspectives Release Material flow modeling 



This work was supported by the European Commission within the Seventh Framework Program (FP7; MARINA project – Grant Agreement No. 263215).


  1. 1.
    EU (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Offi J L 275:38–40Google Scholar
  2. 2.
    Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300CrossRefGoogle Scholar
  3. 3.
    von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ et al (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49CrossRefGoogle Scholar
  4. 4.
    Gottschalk F, Nowack B (2011) Release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRefGoogle Scholar
  5. 5.
    Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI et al (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269:160–169CrossRefGoogle Scholar
  6. 6.
    Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260CrossRefGoogle Scholar
  7. 7.
    Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569CrossRefGoogle Scholar
  8. 8.
    Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world. J Nanoparticle Res 14:1109CrossRefGoogle Scholar
  9. 9.
    Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1–17CrossRefGoogle Scholar
  10. 10.
    Future Markets (2012) The global market for nanomaterials 2002–2006: production volumes, revenues and end use markets. Future Markets Inc.
  11. 11.
    ANSES (2013) Éléments issus des déclarations des substances à l’état nanoparticulaire. RAPPORT d’étude. ANSES (l’Agence nationale de sécurité sanitaire)Google Scholar
  12. 12.
    Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive modeling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76CrossRefGoogle Scholar
  13. 13.
    Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70CrossRefGoogle Scholar
  14. 14.
    Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233CrossRefGoogle Scholar
  15. 15.
    Project on Emerging Nanotechnologies (2008) An inventory of nanotechnology-based consumer products currently on the market
  16. 16.
    Berube DM, Searson EM, Morton TS, Cummings CL (2010) Project on emerging nanotechnologies – consumer product inventory evaluated. Nanoetchnol Law Bus 7:152–163Google Scholar
  17. 17.
    Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306CrossRefGoogle Scholar
  18. 18.
    Lo LY, Li Y, Yeung KW, Yuen CWM (2007) Indicating the development stage of nanotechnology in the textile and clothing industry. Int J Nanotechnol 4:667–679CrossRefGoogle Scholar
  19. 19.
    Wijnhoven SWP, Dekkers S, Kool M, Jongeneel WP, De Jong WH (2010) Nanomaterials in consumer products. Update of products on the European market in 2010. RIVM Report 340370003/2010.
  20. 20.
    Nowack B, Brouwer C, Geertsma RE, Heugens EHW, Ross BL, Toufektsian M-C et al (2013) Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology 7(6):1152–1156CrossRefGoogle Scholar
  21. 21.
    Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M et al (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11CrossRefGoogle Scholar
  22. 22.
    Geranio L, Heuberger M, Nowack B (2009) Behavior of silver nano-textiles during washing. Environ Sci Technol 43:8113–8118CrossRefGoogle Scholar
  23. 23.
    Lorenz C, Windler L, Lehmann RP, Schuppler M, Von Goetz N, Hungerbühler K et al (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89:817–824CrossRefGoogle Scholar
  24. 24.
    Windler L, Lorenz C, Von Goetz N, Hungerbuhler H, Amberg M, Heuberger M et al (2012) Release of titanium dioxide from textiles during washing. Environ Sci Technol 46:8181–8188CrossRefGoogle Scholar
  25. 25.
    Lombi E, Donner E, Scheckel K, Sekine R, Lorenz C, von Götz N et al (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358CrossRefGoogle Scholar
  26. 26.
    Farkas J, Peter H, Christian P, Urrea JAG, Hassellov M, Tuoriniemi J et al (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37:1057–1062CrossRefGoogle Scholar
  27. 27.
    Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI et al (2012) Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products. Sci Total Environ 421:267–272CrossRefGoogle Scholar
  28. 28.
    Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905CrossRefGoogle Scholar
  29. 29.
    Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S et al (2013) Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ Sci Process Impacts 15:2186–2193CrossRefGoogle Scholar
  30. 30.
    Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S et al (2015) Characterization of materials released into water from paint containing nano-SiO2. Chemosphere 119:1314–1321CrossRefGoogle Scholar
  31. 31.
    Künniger T, Gerecke AC, Ulrich A, Huch A, Vonbank R, Heeb M et al (2014) Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environ Pollut 184:464–471CrossRefGoogle Scholar
  32. 32.
    Hauri JF, Niece BK (2011) Leaching of silver from silver-impregnated food storage containers. J Chem Educ 88:1407–1409CrossRefGoogle Scholar
  33. 33.
    Huang YM, Chen SX, Bing X, Gao CL, Wang T, Yuan B (2011) Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 24:291–297CrossRefGoogle Scholar
  34. 34.
    Song H, Li B, Lin QB, Wu HJ, Chen Y (2011) Migration of silver from nanosilver-ìpolyethylene composite packaging into food simulants. Food Addi Contam Part A 28:1758–1762Google Scholar
  35. 35.
    von Goetz N, Fabricius L, Glaus R, Weitbrecht V, Günther D, Hungerbühler K (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addi Contam Part A 30:612–620CrossRefGoogle Scholar
  36. 36.
    Harper S, Wohlleben W, Doa M, Nowack B, Clancy S, Canady R et al (2015) Measuring nanomaterial release from carbon nanotube composites: review of the state of the science. J Phys Conf Ser 617: 012026Google Scholar
  37. 37.
    Hirth S, Cena L, Cox G, Tomovic Z, Peters T, Wohlleben W (2013) Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. J Nanoparticle Res 15:1504CrossRefGoogle Scholar
  38. 38.
    Wohlleben W, Vilar G, Fernández-Rosas E, González-Gálvez D, Gabriel C, Hirth S et al (2014) A pilot interlaboratory comparison of protocols that simulate aging of nanocomposites and detect released fragments. Environ Chem 11:402–418CrossRefGoogle Scholar
  39. 39.
    Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45:10713–10719CrossRefGoogle Scholar
  40. 40.
    Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A et al (2011) Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanoparticle Res 13:3377–3391CrossRefGoogle Scholar
  41. 41.
    Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabie M et al (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159:1543–1548CrossRefGoogle Scholar
  42. 42.
    Gondikas AP, Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational lake. Environ Sci Technol 48:5415–5422CrossRefGoogle Scholar
  43. 43.
    Holbrook DR, Motabar D, Quiñones O, Stanford B, Vanderford B, Moss D (2013) Titanium distribution in swimming pool water is dominated by dissolved species. Environ Pollut 181:68–74CrossRefGoogle Scholar
  44. 44.
    Mueller NC, Buha J, Wang J, Ulrich A, Nowack B (2013) Modeling the flows of engineered nanomaterials during waste handling. Environ Sci Process Impacts 15:251–259CrossRefGoogle Scholar
  45. 45.
    Froggett S, Clancy S, Boverhof D, Canady R (2014) A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 11:17CrossRefGoogle Scholar
  46. 46.
    Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRefGoogle Scholar
  47. 47.
    von Goetz N, Lorenz C, Windler L, Nowack B, Heuberger M, Hungerbuhler K (2013) Migration of Ag- and TiO2-(nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–9987CrossRefGoogle Scholar
  48. 48.
    Nowack B (2014) Emissions from consumer products containing engineered nanomaterials over their lifecycle. In: Wohlleben W, Kuhlbusch TAJ, Lehr C-M, Schnekenburger J (eds) Safety of nanomaterials along their lifecycle: release, exposure and human hazards. Taylor & Francis, London. ISBN 978-1-46-656786-3Google Scholar
  49. 49.
    Bello D, Wardle BL, Yamamoto N, de Villoria RG, Garcia EJ, Hart AJ et al (2009) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 11:231–249CrossRefGoogle Scholar
  50. 50.
    Demou E, Stark W, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53:829–838CrossRefGoogle Scholar
  51. 51.
    Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52:695–706CrossRefGoogle Scholar
  52. 52.
    Evans DE, Ku BK, Birch ME, Dunn KH (2010) Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 54:514–531CrossRefGoogle Scholar
  53. 53.
    Huang C-H, Tai C-Y, Huang C-Y, Tsai C-J, Chen C-W, Chang C-P et al (2010) Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory. J Environ Sci Health A 45:1227–1233CrossRefGoogle Scholar
  54. 54.
    Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH et al (2011) Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23:226–236CrossRefGoogle Scholar
  55. 55.
    Hang J, Luo Z, Sandberg M, Gong J (2013) Natural ventilation assessment in typical open and semi-open urban environments under various wind directions. Build Environ 70:318–333CrossRefGoogle Scholar
  56. 56.
    Kiwan A, Berg W, Fiedler M, Ammon C, Gläser M, Müller H-J et al (2013) Air exchange rate measurements in naturally ventilated dairy buildings using the tracer gas decay method with 85Kr, compared to CO2 mass balance and discharge coefficient methods. Biosyst Eng 116:286–296CrossRefGoogle Scholar
  57. 57.
    You Y, Niu C, Zhou J, Liu Y, Bai Z, Zhang J et al (2012) Measurement of air exchange rates in different indoor environments using continuous CO2 sensors. J Environ Sci 24:657–664CrossRefGoogle Scholar
  58. 58.
    Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8:7208–7219CrossRefGoogle Scholar
  59. 59.
    Gottschalk F, Nowack B (2012) Modeling environmental release and exposure of engineered nanomaterials. In: Jerzy L, Tomasz P (eds) Towards efficient designing of safe nanomaterials. RSC, CambridgeGoogle Scholar
  60. 60.
    Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453CrossRefGoogle Scholar
  61. 61.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  62. 62.
    ECHA (2010) Guidance on information requirements and chemical safety assessment Chapter R.16: Environmental Exposure Estimation, European Chemicals AgencyGoogle Scholar
  63. 63.
    Bosch A, Maier M, Morfeld P (2012) Nanosilica? Clarifications are necessary! Nanotoxicology 6:611–613CrossRefGoogle Scholar
  64. 64.
    Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320–332CrossRefGoogle Scholar
  65. 65.
    Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers – exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159:3439–3445CrossRefGoogle Scholar
  66. 66.
    Praetorius A, Scheringer M, Hungerbuhler K (2012) Development of environmental fate models for engineered nanoparticles – a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46:6705–6713CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bernd Nowack
    • 1
  • Nikolaus Bornhöft
    • 1
  • Yaobo Ding
    • 2
  • Michael Riediker
    • 2
  • Araceli Sánchez Jiménez
    • 3
  • Tianyin Sun
    • 1
  • Martie van Tongeren
    • 3
  • Wendel Wohlleben
    • 4
  1. 1.EMPA – Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland
  2. 2.IST, Institute for Work and HealthEpalingesSwitzerland
  3. 3.IOM, Institute of Occupational MedicineEdinburghUK
  4. 4.Department of Material PhysicsBASF SE, Advanced Materials ResearchLudwigshafenGermany

Personalised recommendations