Advertisement

Climate Change Scenarios in the Pantanal

  • Jose A. MarengoEmail author
  • Gilvan S. Oliveira
  • Lincoln M. Alves
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 37)

Abstract

The South America Pantanal is a large floodplain wetland in the center of the Upper Paraguay River Basin, which has a total area of around 360,000 km2. Large sectors of the Pantanal floodplain are submerged from 4 to 8 months each year by water depths from a few centimeters to more than 2 m. Changes in rainfall and temperature and also on land use can affect significantly the flood season with severe consequences for downstream inhabitants. However, impact of climate change on wetlands is small so far compared to the damage caused by the lack of management at the local level due to land-use change. In this chapter we assess climate and hydrology variability for the present and projections of climate change using the global climate models from the Fifth Assessment Report (AR5) from the Intergovernmental Panel on Climate Change (IPCC). Projections show that by the end of the century, temperatures can increase up to 7°C and rainfall can decrease in both summer and particularly winter. The possibility of longer dry spells and increased evaporation may affect the water balance in the region. However, uncertainties on climate projections are still high, particular for rainfall.

Keywords

Climate change Drought Flood Uncertainty Wetland 

Notes

Acknowledgments

The research leading to results shown on this publication has received funding from Rede CLIMA, the National Institute of Science and Technology (INCT) for Climate Change funded by CNPq Grant Number 573797/2008-0 and FAPESP Grant Number 57719-9, FAPESP-Assessment of Impacts and Vulnerability to Climate Change in Brazil and strategies for Adaptation Options Project, and the CNPq-IRD Project Mudanças, variabilidade e tendências do clima no passado, PResente e futuro e desastres naturais nas Regiões Tropicais e Subtropicais do BrasIl: observações e MOdelagem (PRIMO), Ref: 590172/2011-5.

References

  1. 1.
    Ioris AAR, Irigaray CT, Girard P (2014) Institutional responses to climate change: opportunities and barriers for adaptation in the Pantanal and the Upper Paraguay River Basin. Clim Change. doi: 10.1007/s10584-014-1134-z Google Scholar
  2. 2.
    Bergier I (2013) Effects of highlands land-use over lowlands of the Brazilian Pantanal. Sci Total Environ 463–464:1060–1066CrossRefGoogle Scholar
  3. 3.
    Bergier I (2010) River level sensitivity to SOI and NAO in Pantanal and Amazonia. In III Simpósio de Geotecnologias no Pantanal, Cáceres-MT, October 2010. Embrapa Informática Agropecuária/INPE, 25–34Google Scholar
  4. 4.
    Marengo JA, Cornejo A, Satyamurty P, Nobre C, Sea W (1997) Cold surges in tropical and extratropical South America: the strong event in June 1994. Mon Weather Rev 125(11):2759–2781CrossRefGoogle Scholar
  5. 5.
    Marcuzzo FFN, Faria TG, Cardoso MRD, Melo DCR (2010) Chuvas no Pantanal brasileiro: análise histórica e tendência futura. Anais do 3o Simpósio de Geotecnologias no Pantanal. Cacéres, MT, p 170–180Google Scholar
  6. 6.
    Cardoso MRD, Marcuzzo FFN (2010) Mapeamento de três decênios da precipitação pluviométrica total e sazonal do bioma Pantanal. Anais do 3° Simpósio de Geotecnologias no Pantanal. Cáceres, MT. 84–94Google Scholar
  7. 7.
    Garcia N, Pedraza RA (2008) Daily rainfall variability over northeastern Argentina in the La Plata River basin. Ann N Y Acad Sci. doi: 10.1196/annals. 1446.011 Google Scholar
  8. 8.
    Alho Cleber JR, Silva JSV (2012) Effects of severe floods and droughts on wildlife of the Pantanal wetland (Brazil) – a review. Animals 2:591–610, available in: http://www.mdpi.com/2076-2615/2/4/591 CrossRefGoogle Scholar
  9. 9.
    Clarke RT (2005) The relation between interannual storage and frequency of droughts, with particular reference to the Pantanal wetland of South America. Geophys Res Lett 32, L05402. doi: 10.1029/2004GL021742 Google Scholar
  10. 10.
    Collischonn W, Tucci CEM, Clarke RT (2001) Further evidence of changes in the hydrological regime of the river Paraguay: part of a wider phenomenon of climate change? J Hydrol 245(1–4):218–238CrossRefGoogle Scholar
  11. 11.
    Castañeda E, Barros V (1994) Las tendencias de la precipitación en el cono Sur de américa al este de los andes. Meteorol 19:23–32Google Scholar
  12. 12.
    Minetti J, Vargas W (1998) Trends and jumps in the annual precipitation in South America, south of the 15 S. Atmósfera 11:205–2221Google Scholar
  13. 13.
    Assine ML, Macedo HA, Stevaux JC, Bergier I, Padovani CR, Silva A (2015) Avulsive rivers in the hydrology of the Pantanal wetland. Hdb Environ Chem. doi: 10.1007/698_2015_351 Google Scholar
  14. 14.
    Gonçalves HC, Mercante MA, Santos ET (2011) Hydrological cycle. Braz J Biol 71(1 Suppl):241–253Google Scholar
  15. 15.
    Galdino S, Vieira LM, Oliveira H, Cardoso EL (2002) Impactos da agropecuária nos planaltos sobre o regime hidrológico do Pantanal. Corumbá: EMBRAPA-CPAP. 6 p.Google Scholar
  16. 16.
    Fantin-Cruz I, Pedrollo O, Castro NMR, Girard P, Zeilhofer P, Hamilton SK (2011) Historical reconstruction of floodplain inundation in the Pantanal (Brazil) using neural networks. J Hydrol 399(3–4):376–384CrossRefGoogle Scholar
  17. 17.
    Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29(15):2241–2255CrossRefGoogle Scholar
  18. 18.
    Marengo JA, Ambrizzi T, da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SET (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Climate Dynam 35(6):1089–1113CrossRefGoogle Scholar
  19. 19.
    Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Climate Dynam 38(9–10):1829–1848CrossRefGoogle Scholar
  20. 20.
    PBMC (2013) Contribuição do Grupo de Trabalho 1 ao Primeiro Relatório de Avaliação Nacional do Painel Brasileiro de Mudanças Climáticas. Sumário Executivo GT1. PBMC, Rio de Janeiro, Brasil, 24 pGoogle Scholar
  21. 21.
    Van Vuuren DP, Bayer LB, Chuwah C, Ganzeveld L, Hazeleger W, van den Hurk B, van Noije T, O’Neill B, Strengers BJ (2012) A comprehensive view on climate change: coupling of earth system and integrated assessment models. Environ Res Lett 7:024012. doi: 10.1088/1748 9326/7/2/024012 (10 pp)CrossRefGoogle Scholar
  22. 22.
    Knutti R, Seclacek JK (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3:369–373CrossRefGoogle Scholar
  23. 23.
    Torres RR, Marengo JA (2013) Uncertainty assessments of climate change projections over South America. Theor Appl Climatol 112:253–272CrossRefGoogle Scholar
  24. 24.
    Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schðr C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1535p. doi: 10.1017/CBO9781107415324
  25. 25.
    Roland F, Huszar VLM, Farjalla VF, Enrich-Prast A, Amado AM, Ometto JPHB (2012) Climate change in Brazil: perspective on the biogeochemistry of inland waters. Braz J Biol 72(3 Suppl):709–722CrossRefGoogle Scholar
  26. 26.
    Santos SA, Abreu UGP, Comastri Filho JA, Crispim SMA, Pellegrin AO, Tomich TR (2008) Desafios e soluções tecnológicas para a produção sustentável de gado de corte no Pantanal [< http://www.cpap.embrapa.br/publicacoes/online/DOC99.pdf] / Sandra Aparecida Santos…[et al]. – Corumbá, Embrapa Pantanal, 2008. 32 p (Documentos / Embrapa Pantanal, ISSN 1981-7223:99)
  27. 27.
    Pott A, Silva JSV (2015) Terrestrial and aquatic vegetation diversity of the Pantanal wetland. Hdb Environ Chem. doi: 10.1007/698_2015_352 Google Scholar
  28. 28.
    Buller LS, Bayma-Silva G, Zanej MR, Ortega E, Moraes A, Goulart T, Bergier I (2015) Historical land-use changes in São Gabriel do Oeste at the upper Taquari river basin. Hdb Environ Chem. doi: 10.1007/698_2015_355 Google Scholar
  29. 29.
    Assine ML (2005) River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology 70(3–4):357–371CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jose A. Marengo
    • 1
    Email author
  • Gilvan S. Oliveira
    • 2
  • Lincoln M. Alves
    • 2
  1. 1.CEMADENCachoeira PaulistaBrazil
  2. 2.CCST INPECachoeira PaulistaBrazil

Personalised recommendations